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A B S T R A C T

National Forest Inventories (NFI) are key data and tools to better understand the role of forests in the global
carbon budget. Traditionally inventories have been carried out as field work, which makes them laborious and
expensive. In recent years, the development of various remote sensing techniques to improve the cost-efficiency
of the NFIs has accelerated. The goal of this study is to determine the usability of open and free multitemporal
multispectral satellite images from the European Space Agency's Sentinel-2 satellite constellation and to compare
their usability in forest inventories against airborne laserscanning (ALS) and three-dimensional data obtained
with high-resolution optical satellite images from WorldView-2 and Synthetic Aperture Radar (SAR) stereo data
from TerraSAR-X. Ground reference consisted of field data collected over 74 boreal forest plots in Southern
Finland in 2014 and 2016. Features utilizing both single- and multiple-date information were designed and
tested for Sentinel-2 data. Due to high cloud cover, only four Sentinel-2 images were available for the multi-
temporal feature analysis of all reference plots within the monitoring window. Random Forest technique was
used to find the best descriptive feature sets to model five forest inventory parameters (mean height, mean
diameter at breast height, basal area, volume, above-ground biomass) from all input remote sensing data. The
results confirmed that the higher spatial resolution input data correlated with more accurate forest inventory
parameter predictions, which is in line with other results presented in literature. The addition of temporal
information to the Sentinel-2 results showed limited variation in prediction accuracy between the single and
multidate cases ranging from 0.45 to 1.5 percentage points, whereof mean height, basal area and aboveground
biomass are lower for single date with relative RMSEs of 14.07%, 20.66% and 24.71% respectively. Diameter at
breast height and volume are lower for multi date feature combination with relative RMSEs of 18.38% and
27.21%. The results emphasize the importance of obtaining more evenly distributed data acquisitions over the
growing season to fully exploit the potential of temporal features.

1. Introduction

Gaining a better understanding of the effect of forests in the carbon
cycle and in climate change requires accurate information of forest
resources in short time intervals. One example of how this information
can be monitored and reported is for the Kyoto protocol, which requires
a report on the state of the nation's forests for an estimation of carbon
storage (UNFCCC, 1997).

The most common way of assessing forest structure, health and
productivity is by maintaining a national forest inventory, like those
kept e.g. in Finland (Tomppo, 1996) and Canada (Gillis et al., 2005).
Common forest inventory variables include, but are not limited to,

diameter at breast height (DBH), tree heights and basal area and above
ground biomass. Forest inventories mostly rely on statistical estimation
methods, meaning a good number of field plots are collected as re-
ference data and then remote sensing data together with estimation
models are used to create estimates for larger areas (Scott and Jeffrey,
2002). For example, in Finland, the National Forest Inventory is cur-
rently carried out in five-year cycles utilizing field measurements, high
resolution satellite imagery and digital maps (Katila and Tomppo, 2001;
Tomppo et al., 2008), but more accurate and more frequent remote
sensing data acquisitions would be preferred by the forest industry. As
of today, the costs of accurate acquisition of these data are too high to
fulfill this need.
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The means by which the field and remote sensing data are acquired
can range from manual in-situ field data collection to more automated
static, mobile, airborne or even spaceborne data acquisition. It has been
shown that the use of remote sensing data in addition to the field data
can increase the value of national forest inventories (e.g., McRoberts
and Tomppo, 2007; White et al., 2013). On the ground level, field work
covers only small areas and is time-consuming and expensive, but it is
also more accurate than remotely sensed estimation methods. Satellite
data covers wide areas, even continents, but the accuracy of freely
available satellite data is much lower than in-situ data and commercial
satellite data. Since the early days of the Landsat mission (https://
landsat.usgs.gov/), a variety of scientific research regarding the use of
reflectance information and various vegetation and other indices (2D
features in the present study) has been conducted in the field of forest
mapping (e.g., Chen and Cihlar, 1996; Wulder, 1998; Zhu and Liu,
2015). 3D remote sensing techniques, especially airborne laser scanning
(ALS, which will be described below), have shown huge potential in the
estimation of forest inventory parameters (Yu et al., 2004; Hyyppä
et al., 2008). In terms of cost and coverage, ALS positions between the
field inventories and satellite remote sensing in forest applications. Si-
milarly accurate results have also been acquired by using digital pho-
togrammetry; however, a digital terrain model (DTM) from for example
ALS data is always required. Also, 3D features acquired from optical
stereo satellite images and satellite SAR data have also provided good
results for estimating forest inventory variables (Yu et al., 2015; Karila
et al., 2015; Karjalainen et al., 2012).

Laser scanning, or LiDAR (Light Detection and Ranging), is one
technique of directly deriving 3D coordinates of an object. In laser
scanning a pulsed laser beam illuminates a target and the reflected
pulses are measured by the sensor. Through the time for the emitted
pulse to return, together with a scan angle and Global Navigation
Satellite System (GNSS) and Inertial Measurement Unit (IMU), the de-
termination of 3D coordinates is enabled. These measurements can be
obtained from terrestrial, mobile, aerial or spaceborne platforms. For
Airborne Laser Scanning (ALS) acquisition from a platform moving at
about 500 meters altitude, one of the most accuracy influencing factors
is the positioning of the platform, which is provided through continuous
monitoring of position and orientation of the sensor through GNSS and
IMU. These measurements permit the extraction of a georeferenced
point cloud. ALS has been shown to have great potential for forest
mapping purposes through the ability of the laser pulses to penetrate
the canopy and thus not only depicting the canopy but also the internal
structure of the forest, where other techniques, such as digital photo-
grammetry or radargrammetry can only represent the outer structure
(Vastaranta et al., 2013). In that way, forest parameters can be accu-
rately estimated by utilizing ALS data (Hyyppä and Inkinen, 1999;
Hyyppä et al., 2008; White et al., 2016; Yu et al., 2011). Nowadays, ALS
is used in operational forest management and producing very good
results, but due to the low altitude it can only cover a relatively small
area in a short time, thus making frequent monitoring expensive.

A Synthetic Aperture Radar (SAR) is an imaging radar capable of
producing high-resolution 3D data over land areas. SAR uses micro-
waves, typically with wavelengths ranging from centimeter level up to
tens of centimeters. These wavelengths penetrate clouds, making SAR
an advantageous sensor technology for Earth Observation from space in
cloudy areas. SAR transmits pulses of microwave radiation and receives
echoes from the target area, for which the strength of the backscattering
pulse is recorded as well as the phase of the signal. In addition, the
range between sensor and target pixel can be calculated from the time
delay. The strength of backscatter (intensity) contains information
about forest biomass, but is known to have limited capacity in esti-
mation due to the saturation of signal in high biomass volumes. The
point of saturation highly depends on the radar wavelength used (Le

Toan et al., 1992). In addition, the phase signal enables advanced
techniques of SAR polarimetry and interferometry, which may also be
used in forest mapping (Papathanassiou and Cloude, 2001). However,
currently there are no satellite systems fully capable of Polarimetric
SAR Interferometry techniques. Recently, the elevation models ex-
tracted from SAR data have shown their potential in forest biomass
estimation (Yu et al., 2015; Persson et al., 2017). SAR interferometry
and SAR stereo-radargrammetry are two techniques that can be used to
derive 3D information (Kaasalainen et al., 2015).

Optical satellite data has been used for estimation of forest in-
ventory parameters since the 1980s (Tomppo and Katila, 1991). The
Landsat archive has provided free and open 2D information suitable for
forest analysis since 1972 (Williams et al., 2006). Bolton et al. (2018)
and Zhu and Liu (2015) have studied the use of one Landsat image as
well as multiple Landsat images for forest disturbance and recovery
analysis, as well as classification and estimation of aboveground bio-
mass. The main drawbacks for precision forestry applications of the
Landsat archive are its striping error in Landsat 7 (Markham et al.,
2004), the rather low resolution of 30m and a revisit cycle of 16 days.

Since 2015, the Sentinel-2 (S-2) satellite constellation aims to tackle
the above mentioned drawbacks of Landsat imagery. The Sentinel-2
Multispectral Instrument (MSI) is a satellite constellation run by the
European Space Agency (ESA), consisting of two satellites (A and B, B in
orbit since 2017) orbiting earth at a height of 786 km in a sun-syn-
chronous orbit with a revisit cycle as low as 3–6 days in some regions of
the world (Drusch et al., 2012). As part of the Copernicus program of
the European commission, Sentinel-2 will be a part of six different sa-
tellite platforms observing earth once the program concludes. It pro-
vides 13 bands in different wavelength intervals in 10m, 20m or 60m
spatial resolution. Four of the bands cover the red edge area of the
electromagnetic spectrum, i.e., those wavelengths between red and
near infrared light where the reflection of vegetation changes rapidly
(Lillesand et al., 2014). In addition, it provides two bands within the
shortwave infrared (SWIR) area (1610 and 2190 nm). Compared to the
Landsat missions, Sentinel-2 does not carry thermal sensors. Sentinel-2
data has been shown to be suitable for different kinds of studies, such as
tropical coral reef mapping and coral bleaching detection (Hedley et al.,
2012), the detection of built-up areas (Pesaresi et al., 2016), glacier
monitoring (Paul et al., 2016) and water body mapping (Du et al.,
2016). As of today, the use of Sentinel-2 data for estimating forest in-
ventory parameters has been explored in a limited number of studies, of
which most focused on the estimation of biophysical variables
(Majasalmi and Rautiainen, 2016; Puliti et al., 2018; Korhonen et al.,
2017) or focusing on e.g., the mangrove forests on the Philippines
(Castillo et al., 2017) or a mediterranean forest ecosystem in Greece
(Chrysafis et al., 2017). These ecosystems differ greatly from finnish
boreal forest.

Higher resolution images from airborne or spaceborne platforms can
also be utilized to derive accurate 3D positions. Photogrammetry is a
technique allowing the reconstruction of position, orientation, shape
and size of objects from images (Kraus et al., 2007). Therefore, images
have to be taken either by a approximately horizontal looking camera
and different angles towards the target (close range photogrammetry)
or for airborne photogrammetry, by a vertically looking camera with
successive images with a minimum overlap of 60%. Features are then
identified in each image and matched to features in other images. Based
on this, 3D coordinates of the features can be extracted.

Even though the extraction of 3D features, especially from ALS,
have revolutionized forest inventories and are used in operational forest
management, present-day medium resolution satellite imagery has a
clear role in forest inventories: (1) satellite data cover wide areas, (2)
data acquisition is frequent and regular, (3) free and open satellite data
sources exist. However, a better understanding of the potential and
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accuracy of different 2D and 3D techniques is still required. Therefore,
it is very intriguing to compare the forest inventory variable estimation
accuracies of the current state-of-the-art 3D techniques to 2D techni-
ques. There are a number of publications comparing single-time sa-
tellite images to other means of remote sensing data acquisition (e.g.,
Chrysafis et al., 2017; Chubey et al., 2006; Gunlu et al., 2014; Hyyppä
et al., 2000; Mäkelä and Pekkarinen, 2004), as well as combining
multispectral satellite imagery with other sensors for forest parameter
estimation (e.g., Badreldin and Sanchez-Azofeifa, 2015; Carreiras et al.,
2017; Castillo et al., 2017; Puliti et al., 2018; Tanaka et al., 2015;
Fernández-Landa et al., 2018). Lefsky et al. (2001) compared multi-
temporal 2D optical satellite data to 2D (Airborne Visible InfraRed
Imaging Spectrometer) and 3D (Scanning Lidar Imager of Canopies by
Echo Recovery) data from airborne platforms, but were limited in the
spatial resolution of the optical satellite data. A study on the use of 3D
data extraction from aerial images for improving the Finnish National
Forest Inventory was done by Tuominen et al. (2017) who concluded
that 3D material derived from ALS and aerial images outperformed the
2D data derived from satellite and aerial imagery.

Therefore, we investigate in this study the potential of multi-
temporal Sentinel-2 imagery for forest inventory parameter estimation
in a homogeneous boreal forest in Southern Finland and compare this
technique to several 3D techniques. The aim is to determine, to what
extent free available optical satellite data can be used for forest in-
ventory parameter estimation. We will also assess to what degree
Sentinel-2 data is suitable for determining areas of interest to be
mapped more accurately with higher resolution methods, such as ALS.

2. Materials and methods

The study area, field data and different remote sensing datasets used
in this study as well as the feature derivation and accuracy assessment
are described in the following section.

2.1. Study area

The area selected for this study is situated in Southern Finland 120
km north of Helsinki in the Kanta-Häme region, close to Evo. The
4× 6 km2 area is part of the Southern Boreal Forest Zone and has its
centerpoint at lat. 61.202°, lon. 25.123°. The area contains mainly
Norway Spruce (picea abies) and Scots Pine (pinus sylvestris) and the
average stand size of the 2000ha managed forest has been observed to
be 1ha. With elevations ranging from 125m to 185m above sea level,
the topography of the study area is relatively flat.

2.2. Field data

The field data was acquired in summer 2014. 119 sample plots were
chosen from an systematic grid (32m×32m cell size) over the whole
study area. The sample plots were chosen to represent the different
forest conditions and comprising height and density variations within
the study area. The study site was revisited in 2016 to determine if the
plots had undergone changes. Consequently 91 plots that showed no
changes between 2014 and 2016 were utilized for this study. The

number of plots had to be reduced to 74 thereafter due to cloud cover in
parts of the study area during one satellite image acquisition.
Descriptive statistics of the 74 plots used in this study can be found in
Table 1.

For each plot, all trees with a diameter at breast height (DBH) of
more than 5 cm were measured and their mean served as value for DBH
of the plot. Tree heights were determined with the use of an electronic
hypsometer and tree species were recorded. The standard Finnish al-
lometric models (Laasasenaho, 1982; Repola, 2009) were used to cal-
culate tree volumes and biomass, taking tree species data, DBH and
mean height as input. The inventory parameters used in this study were
then derived by summing or averaging the tree data. More details on
the field data acquisition and information on the accuracy of field data
can be found in Luoma et al. (2017).

2.3. Remote sensing data

The remote sensing datasets used in this study have separate pre-
processing steps that will be presented in the following subsections.

2.3.1. Airborne laser scanning
ALS data was acquired on the first of May 2016, using an Optech

Titan multispectral system. The spectral channels of the system com-
prise two channels in the infrared spectrum at 1550 nm (channel 1) and
1064 nm (channel 2), and one operating in the green spectrum at
532 nm (channel 3). For this study, only the point cloud data from
channel 2 was used, to keep the results comparable to conventional
single-channel ALS data and previous studies. The three channels look
in different directions with channel 2 pointing towards the nadir. The
system operated at a pulse rate of 3× 250 kHz from an altitude of
500m above sea level. The average pulse density per channel was about
17 pulses per m2, with a footprint size of 17.5 cm in diameter for
channel 2 with a beam divergence of 0.35mrad. The point cloud was
geo-referenced to the local ETRS-TM35FIN coordinate system.
Calibration and matching between acquisition strips were performed by
the data provider.

2.3.2. TerraSAR-X-stereo
SAR-stereo radargrammetry is represented in this study by the

German Aerospace Centers TerraSAR-X (TSX) data. The constellation
was launched in June 2007 and operates in the X-band microwave re-
gion with a central wavelength of 3.1 cm and a spatial resolution of 1m.
Compared to longer wavelengths of, e.g. C- and P-band, X-band radar
only minimally penetrates into the canopy. For the present study, six
TSX high-resolution model images were acquired with different ima-
ging geometry over the test site, providing a total of six stereo pairs
(each ascending/descending image with every ascending/descending
image: A1+A2, A1+A3, A2+A3, D1+D2, D1+D3, D2+D3) for
stereo-radargrammetric processing. The data shown in Table 2 was

Table 1
Statistics of the 74 plots used in this study.

Min Max Mean Std

Height [m] 10.48 31.35 21.16 4.49
DBH [cm] 14.03 46.57 25.83 7.61
Volume [m3/ha] 31.36 507.65 272.74 107.16
Biomass [Mg/ha] 17.27 225.87 135.53 46.37

Table 2
TerraSAR-X data products for Evo 2016 test site. D in the ID indicates des-
cending orbit, A in ID indicates ascending orbit, all are right looking and HH
polarization, high-resolution mode and of product type multi-look ground de-
tected.

ID Acquisition date Approximate
incidence angle [°]

Time
(UTC)

Temperature [°C],
daily rain sum [mm]

D1 4.7.2016 25.5 4:57 10 °C, 3mm
D2 29.6.2016 35.9 4:49 15 °C, 0mm
D3 5.7.2016 44.4 4:40 11 °C, 4mm
A1 4.7.2016 30.1 15:46 12 °C, 3mm
A2 28.6.2016 39.6 15:55 21 °C, 0mm
A3 3.7.2016 47.5 16:03 15 °C, 11mm
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chosen based on availability of the stereo configuration and with the
shortest possible time between acquisitions. The acquisition dates were
required to be around June to be comparable to the other datasets.
Stereo-radargrammetric processing was carried out using the Socet Set
software (version 5.6, BAE Systems). The output being a point cloud of
3D elevation data, based on a combination of all six stereo models. The
point cloud is then used to calculate forest vertical structure-related 3D
features with the help of an external DTM, which was a triangulated
irregular network (TIN) based on ALS ground points. A detailed process
description can be found in Karjalainen et al. (2012).

2.3.3. WorldView-2
For 3D photogrammetric data extraction we used very high spatial

resolution along track stereo pairs from WorldView-2 (WV-2) satellite.
This commercial multispectral satellite is operated and monitored by
DigitalGlobe (Maxar Technologies, Colorado, United States) and was
launched in October 2009, with a ground sampling distance of 0.5m for
the panchromatic images. For this study, a stereo-pair was acquired on
September 13th, 2016 around noon local time with nadir viewing
geometry and nearly cloudfree. This dataset was chosen because the
date of acquisition is close to that of the other datasets.

The acquisition of 3D features from the WV-2 stereo pair was similar
to the process used for the TSX stereo-radargrammetric data. For WV-2
however, Ground Control Points (GCP) were needed to refine the geo-
location accuracy. In the present study, 10 3D GCPs were extracted
from orthophotos and DEMs from the National Land Survey of Finland
with a pixel size of 0.5m. The residual after the adjustment were 0.49m
(Easting), 0.75m (Northing), and 0.15m (Elevation). The accuracy of
the WV-2 stereo-pair was also visually checked against the reference
orthophoto in order to verify the geolocation accuracy. The output of
the process is a point cloud, which is then used to estimate 3D features
for the forest inventory parameters. A more detailed description of the
process can be found in Yu et al. (2015).

2.3.4. Sentinel-2
The Sentinel-2 satellite constellation has consisted of two satellites,

Sentinel 2A and 2B since fall 2017, but as this study is focusing on the
year 2016, only data from Sentinel 2A was available. For data provision

and processing, we used the EODC platform (‘Earth Observation Data
Center’ (EODC Gmbh, Vienna, Austria)), which mirrors all Sentinel-2
data as L1C (top of atmosphere) products and allows on-site processing,
thus omitting data transfers, which was the main reason for choosing
this platform. Our region of interest in Southern Finland is completely
covered by tile 35VLH of the Sentinel-2 tile system with center point
lat. 60.81378684° lon. 24.33207008° and a size of 110 km×110 km
(see Fig. 1). In this study, we used all available images from 2016 with
less than 30% cloud cover in the area of investigation. This resulted in
three nearly cloud-free images and one with ∼30% cloud cover in the
area of interest (see Fig. 1), which resulted in a reduced number of
usable sampling plots (see Table 3). The four images used were ac-
quired on April 10th, May 10th, August 11th and August 31st, 2016; a
short description can be found in Table 3. Cloud cover indicates the
percentage based on the cloud mask calculated in the third party pro-
vided sen2cor atmospheric correction process (ESA, 2018a).

The processing of Sentinel-2 tiles was done using the Finnish
Geospatial Research Institute (FGI)-developed process, which is written
in Python and utilizes different open source tools: first, the images had
to be processed to L2A (bottom of atmosphere) product with sen2cor
tool. Next, one cloud mask and different index images per date were
generated using the SNAP toolbox python interface, known as snappy
(ESA, 2018b)(cf. Fig. 2). The indices used in this study were chosen
based on previous performance in other studies and are shown in
Table 4. The index raster images, as well as all available bands were

Fig. 1. Location of Evo in Finland (a), RGB images of Evo on the four dates used in this study (b): April 10 2016 (upper left, ice on lakes), May 10 2016 (upper right),
August 11 2016 (lower left) and August 31 2016 (lower right, northern part covered in cloud).

Table 3
Sentinel-2 data used, all are tile ‘35VLH’, plots usable indicates the number of
plots that were free of clouds at the date of acquisition; for the analysis only 74
plots of all images for all methods were used.

April 10
2016

May 10
2016

August 11
2016

August 31
2016

Processing baseline 02.01 02.02 02.04 02.04
Cloudcover [%] 0 0 0 ∼30
Plots usable 91 91 91 74
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upsampled to 10m resolution using the nearest neighbor method.

2.4. Feature derivation

The process of feature derivation in this study can be split into two
parts. The first part is the feature derivation process from three-di-
mensional data acquired by ALS, Worldview-2 and TerraSAR-X. The 3D
feature derivation process is fundamentally different from the feature
derivation process for Sentinel-2 data that have no third dimension.

2.4.1. Feature derivation from 3D data
All point clouds from ALS, WV-2 and TSX were normalized by re-

moving the elevation of the ground from every point height value to
derive the height above ground for each point. A digital terrain model
(DTM) was derived from ALS data by classifying all points into non-
ground or ground points using the commercial software TerraScan
(Terrasolid Oy., Helsinki, Finland). The ALS derived DTM was used for
normalization of all 3D point clouds. Due to the characteristics of their
data acquisition, WV-2 and TSX point clouds seldom penetrated the
vegetation to the ground, and therefore no DTM can be extracted from
these data.

Feature derivation was split into two parts. First, a number of height
distribution features, i.e., maximum height, mean height calculated as
the arithmetic mean of heights, mode of heights, standard deviation of
the heights, coefficient of variation, penetration rate as a ratio of points
below 2 m (i.e., ground points) to total number of points, volume as the
multiplication of (1-penetration rate) and mean height, and percentiles
from 10% to 90% with 10% increments of the canopy height distribu-
tion. Second, density-related features were calculated from all above-
ground points (i.e., points above a threshold height of 2m). Therefore
each point cloud was split into 10 equal height intervals from bottom to
top of the canopy. The features were then calculated as a share of points
in each height-interval to the total number of points.

2.4.2. Feature derivation from 2D data
After computing the index images as described above, the further

processing of the S-2 dataset was done using Python packages rasterstats
(pythonhosted.org/rasterstats/) and pandas (pandas.pydata.org). A
total of 25 features per image were computed at plot level for seven
statistics each (mean, median, minimum, maximum, range, standard
deviation, 10th and 90th percentile). Additionally, temporal features
(band ratios and features using temporal differences/changes between
two dates) between all dates were calculated. Altogether 1100 features
were calculated for the 74 plots for each acquisition date. To assess the
predictive performance of multi temporality for forest inventory para-
meter estimation, different combinations of the Sentinel-2 data have
been used:

(I) Features calculated for each single date
(II) Combined features of all four single dates (single-date combina-

tion)
(III) Multitemporal features calculated using differences and ratios

between two or more dates (multiple-date combination)
(IV) All features (II and III combined).

2.5. Forest inventory parameter estimation

The forest inventory parameters were estimated with the Random
Forest technique (Breiman, 2001) using features obtained with four
different remote sensing techniques and field measurements. The
Random Forest algorithm is a non-parametric supervised learning al-
gorithm. It is used for both classification and regression tasks with the
latter being the task in this study. In the Random Forest algorithm, the
prediction is obtained by fitting a number of decision tree classifiers on
various sub-samples of the dataset and averaging is used for improving
the predictive accuracy and controlling overfitting of the model. We
chose the Random Forest algorithm because it does not make an as-
sumption about the data distribution and works well without variable
selection procedure. Another advantage of the algorithm is that it

Fig. 2. Flowchart of FGI's processing pipeline for Sentinel-2 images; AOI: Area of interest, L1C: S-2 top of atmosphere product, L2A: S-2 bottom of atmosphere
product, index meaning the vegetation and other indices calculated from S-2 data.

Table 4
Indices and their formulas, ♢ NIR: use of all available near-infrared bands (bands 8, 8A, 5,6,7) for separate NDVI calculations,
central wavelengths of the used bands: B2 – 490 nm, B3 – 560 nm, B4 – 665 nm, B5 – 705 nm, B6 – 740 nm, B7 – 783 nm, B8A –
865 nm, B8 – 842 nm, B11 – 1610 nm, B12 – 2190 nm; all index formulas based on https://www.indexdatabase.de/.

Normalized Difference Vegetation Index (NDVI) (NIR♢−B4)/(NIR♢+B4)
Ratio Vegetation Index (RVI) B8/B4
Soil-Adjusted Vegetation Index (SAVI) 1.5 * (B8 − B4) / (B8 + B4 + 0.5)
Moisture Stress Index (MSI) B8 / B11
Enhanced Vegetation Index (EVI) 2.5 * (B8 − B4) / (B8 + 6 * B4 − 7.5 * B2 + 1)
Enhanced Vegetation Index 2 (EVI2) 2.5 * (B8 − B4) / (B8 + 2.4 * B4 + 1)
Tasseled Cap Wetness (TCW) 0.1509 * B2 + 0.1973 * B3 + 0.3279 * B4 + 0.3406 *

B8 + 0.7112 * B11 + 0.4572 * B12
Tasseled Cap Brightness (TCB) 0.3037 * B2 + 0.2793 * B3 + 0.4743 * B4 + 0.5585 *

B8 + 0.5082 * B11 + 0.1863 * B12
Tasseled Cap Greenness (TCG) −0.2848 * B2 − 0.2435 * B3 − 0.5436 * B4 + 0.7243 *

B8 + 0.0840 * B11 − 0.1800 * B12
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provides the option to measure the relative importance of each feature
on the prediction. Thus, the least important features can be omitted
from the prediction to prevent overfitting and to improve the accuracy
when feature space is large.

For this study, the Random Forest technique was used firstly to
select the 10 most important features from each data set and then forest
attributes were estimated based on the selected features and field data.
The algorithm was implemented in MATLAB (The MathWorks, Inc.,
Massachusetts, United States) with the following parameter settings:
the number of classification trees to grow was set to 200, the number of
variables (features) to select at random for each decision split was set to
three and the minimum number of observations per tree leaf was set to
three.

2.6. Accuracy assessment

All remote sensing data sources were evaluated based on their
performance for predicting the forest inventory parameters. Thus the
correlation coefficient (R) as the relationship between predicted and
reference values and the coefficient of determination (R2) have been
calculated. In addition, bias and root mean square error (RMSE) have
been determined as follows:

= = X X
n

bias
( ˆ )i

n
i i1

= = X X
n

RMSE
( ˆ )i

n
i i1

2

with:
n – number of plots,
X̂ – estimated value from remote sensing data for plot i and
X – observed value for plot i from field observation.
Also, the relative bias and RMSE were calculated in regard to the

sampled mean of bias and RMSE, respectively.

3. Results and discussion

3.1. Feature importance

Identification of ten features with the most predictive power was
carried out for Sentinel-2 data and can be found in Appendix, Table A.1.
For the 3D datasets, the identification of the most important features
can be found in Yu et al. (2015). Table A1 shows that the minimum of
short wave infrared (SWIR) bands 11 (1610 nm) and 12 (2190 nm), as
well as near infrared (NIR) bands 5 (705 nm), 7 (783 nm) and 8A
(865 nm) show higher predictive performance than other features for
all parameters. Among the index and ratio features, the slope-like fea-
ture between May and April for band 11 and the TCW show the best
predictive capability for all parameters. In general, the multitemporal
features make up 2 to 3 of the best predicting features for basal area,
volume and aboveground biomass. For the mean diameter at breast
height and mean height, the multitemporal features make up 5 and 4,
respectively out of ten of the best predicting features. It can be noticed
that features involving the near-infrared bands are often the most op-
timal for diameter at breast height and total aboveground biomass. For
basal area and volume, the best features often include the shortwave
infrared bands.

We also tested the different NIR bands of Sentinel-2 for determining
NDVI. In general, the NDVI was the best predicting feature for all
parameters for the image of August 31st, 2016, where the NDVI cal-
culated with bands 5 or 7 show the best predictive capability. The
highest predictive capability of NDVI is at the end of August (for basal

area, volume and also aboveground biomass also at the beginning of
August) which shows that there is a connection between tree health/
greenness and the different forest inventory parameters. Vegetation is
densest in August in Finland, thus having most cover. Overall, the NDVI
calculated with bands 5 or 7 is among the 10 best features for all
parameters. Only aboveground biomass seems to be more related to the
NDVI calculated from band 8A. Hence, we recommend paying attention
to Sentinel-2's different NIR bands when calculating spectral indices
including the near infrared wavelength interval, as they do provide
more specific information on the vegetation's red edge area than band 8
with the broader wavelength coverage around 842 nm.

3.2. Accuracy of forest inventory parameter estimation

The main part of this study was to compare the accuracy for the
forest inventory attributes mean height, diameter at breast height, basal
area, volume and total above ground biomass from the different data-
sets derived from ALS, WV-2, TSX and single date and multitemporal S-
2. A summary of the statistics for forest inventory parameter estimation
from each dataset is shown in Table 5. It can be seen that features
derived from ALS data offer the most accurate estimates for all forest
inventory parameters studied.

The order of least accurate to most accurate based on R and RMSE
for all forest inventory attributes is TSX, S-2, WV-2, ALS. ALS shows the
highest correlation coefficient (R) between 0.84 and 0.97 for all para-
meters, while for WV-2, those values range from 0.81 to 0.93, for the
combination of all data of S-2 the values range from 0.63 to 0.80 and for
TSX they range from 0.42 to 0.74. According to high correlation coef-
ficients, the mean height, mean diameter at breast height and the vo-
lume were estimated best for all datasets. The lowest error was reported
for mean height and mean diameter at breast height for all datasets. The
biases for all data sources and all estimates ranging between −2.58 and
0.69 indicates a good calibration of systematic errors performed by the
model.

Table 5
Accuracy evaluation of plot attribute estimates from different datasets, for S-2
the results of the combination of all features including both single-date and
multitemporal features is shown.

Bias Bias [%] RMSE RMSE [%] R R2

ALS
Mean height [m] −0.01 −0.05 1.16 5.49 0.97 0.94
Mean DBH [cm] −0.08 −0.30 3.40 13.18 0.89 0.79
Basal area [m2/ha] 0.04 0.15 4.05 15.04 0.84 0.71
Volume [m3/ha] −1.16 −0.43 38.64 14.17 0.93 0.87
Biomass [Mg/ha] 0.69 0.51 20.35 15.01 0.90 0.81

WV-2
Mean height [m] −0.02 −0.09 1.66 7.86 0.93 0.87
Mean DBH [cm] −0.18 −0.70 3.81 14.73 0.86 0.74
Basal area [m2/ha] 0.19 0.69 4.36 16.18 0.81 0.66
Volume [m3/ha] 0.11 0.04 47.26 17.33 0.90 0.81
Biomass [Mg/ha] 0.48 0.35 22.53 16.62 0.87 0.76

TSX
Mean height [m] −0.02 −0.11 3.01 14.24 0.74 0.55
Mean DBH [cm] 0.06 0.24 5.74 22.24 0.65 0.42
Basal area [m2/ha] −0.10 −0.38 6.75 25.06 0.42 0.18
Volume [m3/ha] −1.28 −0.47 82.41 30.22 0.63 0.40
Biomass [Mg/ha] −0.63 −0.46 37.21 27.45 0.59 0.35

S-2 (all data)
Mean height [m] −0.09 −0.42 3.00 14.16 0.74 0.55
Mean DBH [cm] 0.00 −0.01 4.67 18.06 0.80 0.64
Basal area [m2/ha] 0.04 0.16 5.71 21.20 0.63 0.40
Volume [m3/ha] −2.58 −0.95 74.18 27.20 0.72 0.52
Biomass [Mg/ha] 0.02 0.02 33.88 25.00 0.68 0.46
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The results of this study compare well to other studies in this field.
When compared to results by Yu et al. (2015), the results regarding
ALS, WV-2, and TSX stereo are well in line with earlier results at the
same test site in Evo in 2014. For example, RMSE% for biomass esti-
mations are within one percentage point in 2014 and 2016. In 2014,
TanDEM-X bistatic INSAR data was also used, and the estimation ac-
curacies were better than TSX stereo but slightly worse than ALS and
WV-2. In the present study, we were not able to include TanDEM-X data
in the comparison because there was no TanDEM-X data available in

summer 2016 over the Evo test site.
The main difference from the 2014 study is the addition of Sentinel-

2 data into the comparison. Our results show that Sentinel-2 data is
close to TSX stereo regarding the accuracies of the estimations of the
forest inventory attributes. For example, biomass estimation results
were 25.0% and 27.5%, for TSX stereo and S-2 respectively. However,
S-2 RMSE% are roughly 10 percentage points higher compared with
ALS data and WV-2. This result is in accordance with Hyyppä et al.
(2000), where 3D features were found to be superior compared to 2D

Fig. 3. Forest inventory parameter difference maps derived from ALS minus Sentinel-2 all single date features over the whole study area. White areas correspond to
no data.
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spectral features.
Tuominen et al. (2017) obtained an RMSE of 33.78% for height,

37.50% for DBH and 45.34% with dual date Landsat 8 images from July
23rd, 2013 and July 3rd, 2014 patched together. Our results show a
better RMSE percentage for all three parameters. However, there are a
number of differences between the study of Tuominen et al. (2017) and
our study. Their study was conducted in central Finland on a study site
of approximately 5800 km2 on 2469 defined plots. Furthermore the
Landsat 8 data utilized was acquired in 2014/2015, and provides 30m
spatial resolution red, green, blue and near infrared bands and a 15m
panchromatic band compared to 10m spatial resolution red, green,
blue and near-infrared bands of Sentinel-2.

Compared to the spatial resolution of the Sentinel-2 data, the plot
size chosen in this study was relatively small. The 32m×32m plots
generally had a full or partial overlap of 10 to 17 Sentinel pixels
(10m×10m). It is estimated that increasing the plot size would also
increase the performance of Sentinel-2 data for forest inventory para-
meter estimation. However, for our research, the used plot size was due
to the Finnish National Forest Inventory field reference.

Fig. 3 shows difference maps for all derived forest inventory para-
meters from the best performing dataset (ALS) minus Sentinel-2

(combination of all single date features). The maps were calculated
using the model of the random forest algorithm and two rasters of
32× 32 meter pixel size over the whole study area. One raster derived
from Sentinel-2 features, the other based on ALS features. After calcu-
lating the forest inventory parameters for both rasters, water areas were
extracted based on the (ESRI) shapefile of water areas of the National
Land Survey's (NLS) topological database with a buffer of one pixel
(32m) around the water areas.

Negative values (dark orange) in the figures show that Sentinel-2 is
overestimating the parameter in question, positive values (dark tur-
quoise) show an underestimation by Sentinel-2. It can be seen, that
Sentinel-2 features are mainly overestimating the parameter values, but
there are a few condensed areas where Sentinel-2 features are under-
estimating. These areas, where Sentinel-2 features are underestimating
are partly sparse forest with high trees, suggesting a higher influence of
the lower vegetation on the reflectance than in denser forest.

Fig. 4 gives an impression of the estimation accuracy in the full
value range of the observations. It can be seen that the forest inventory
parameters with low values are not covered well by any of the sensors
used in this study. Sentinel-2 shows no prediction power for, e.g., low
biomass (< 100m3/ha) or low tree heights (< 20m). The

Fig. 4. The relationship between observation and prediction for all sensors and forest inventory parameters; the inserted line displays 1:1; for S-2 the results for the
combination of all features is shown, DBH: diameter at breast height, Biomass means the aboveground biomass.
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overestimation for low biomass and underestimation of high biomass
may result from the limited number of sample plots used in this study.
Also the small number of pixels covering one sample plot and together
with the number of border pixels in the case of Sentinel-2 data may be a
reason for the limited prediction power.

3.3. Multitemporal Sentinel-2 features

Three different combinations of Sentinel-2 data were assessed for
predictive performance. The estimations in Table 5 show the results
when all data from each individual date and their combinations were
used together.Two other groupings were also tested, these being (i) all
single-date data combined (single-date combination) and (ii) all mul-
titemporal features combined (multi-date combination). Fig. 5 shows
the RMSE as percentages for the different combinations and each single
date. In general, the difference between the combinations is only be-
tween 0 and 6 percentage points. The combination of all Sentinel-2 data
gave the best performance for all forest inventory parameters. The data
from April 10, 2016 (leaf-off with ground still frozen) shows the highest
percentage for RMSE, while data from August 11, 2016 (late summer)
shows an equally low or lower percentage for all parameters except for
the diameter at breast height, as when all features were used. This
shows that in general August 11, 2016 data could be chosen instead of
the multitemporal data. But after comparing the results for the other
dates with the multitemporal data, it is clear that this is not the case for
the other dates.

It can be estimated that the use of more dates of the Sentinel-2 data
would increase the predictive capability of the model, given that more
cloud free images are available per growth season. Having more
cloudfree dates would also allow extraction of additional, more time-
dependent features, from the time series, to improve the estimation and
to detect expected changes in growth patterns.

4. Conclusions

The primary objective of this research was to determine the per-
formance of multitemporal features from multispectral Sentinel-2 sa-
tellite imagery for forest inventory parameter estimation over a boreal
forest. The study was conducted over a small forested area in southern
Finland and the results were compared to those of single date multi-
spectral satellite data, stereo-SAR, high-resolution 3D satellite data, and

ALS. One big advantage of the multispectral satellite imagery compared
to all other methods used in this study, is that the data is openly
available, has global coverage, and regular revisit frequency. All 3D
data require a DTM for processing, preferably, from ALS if available. In
general, our results for the three-dimensional data were well in line
with previous studies.

We demonstrated that the use of here selected multitemporal fea-
tures did not increase the performance for predicting forest inventory
parameters compared to the use of single-date features. The results
indicate that even though the multitemporal multispectral data can
show a general trend in estimation of forest inventory parameters, it
cannot account for the missing third dimension, which the estimations
of many forest inventory parameters rely on. Furthermore, the images
used in this study did not cover the full extent of the growing season
due to high cloud coverage in 2016.

If the question is to find interesting areas, where a more detailed
survey is necessary, the free multispectral satellite data can give a good
impression of where to look. Compared to the closest method in esti-
mation accuracy for the forest inventory parameters, stereo SAR, the
multispectral Sentinel-2 satellite imagery has the advantage of being
free of charge and regularly updated.

One limitation of our research was the availability of cloud-free data
for the timeframe of interest. Having more data available would make
the use of time series features possible, which might improve the use of
multitemporal multispectral satellite images, as was also mentioned in
Bolton et al. (2018). Filling the gaps in a multispectral time series with
SAR data would be one way to mitigate data availability and perfor-
mance issues. Another limitation was the number of plots used in the
study, which was limited by the Finnish National Forest Inventory field
reference.

Open satellite data is valuable in providing large-scale routine
monitoring over large forest areas and detecting changes in them. This
allows for more accurate resources, such as ALS, to be focused on areas
with important changes. Also the various combination possibilities of
the data sources used in this study may improve the estimation of forest
inventory parameters.

Author contribution

Samantha Wittke processed the Sentinel-2 data, carried out research
and wrote the first version of the manuscript. Xiaowei Yu processed the
ALS data and carried out the Random Forest parameter estimation.
Mika Karjalainen processed WorldView-2 image data and TSX radar-
grammetry data. Juha Hyyppä and Eetu Puttonen provided the scien-
tific guidance. All co-authors assisted in writing and improving the
manuscript. All authors participated in the design of the scientific
study.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgements

This research was funded by the European Community's Seventh
Framework programme (FP7/2007-2013) [grant number 606971]. The
Academy of Finland is acknowledged for its support in the form of the
project ‘Centre of Excellence in Laser Scanning Research (CoE-LaSR)’
and ‘Urban Morphology and Atmospheric Boundary Layer Modeling’
(CityClim: decision number 277734).

Appendix A

Fig. 5. Comparison of single-date and multitemporal feature performance of
Sentinel-2 data; single-date combination: combination of features concerning
only single dates, multi-date combination: combination of features concerning
features calculated from two days each, all: combination of all calculated fea-
tures; DBH: Diameter at breast height, BA: Basal area, Vol: Volume, AGB:
Aboveground biomass.
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