
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Kallio, Marko; Guillaume, Joseph; Kummu, Matti; Virrantaus, Kirsi-Kanerva
Spatial Variation in Seasonal Water Poverty Index for Laos: An Application of Geographically
Weighted Principal Component Analysis

Published in:
Social Indicators Research

DOI:
10.1007/s11205-017-1819-6

Published: 01/12/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Kallio, M., Guillaume, J., Kummu, M., & Virrantaus, K.-K. (2018). Spatial Variation in Seasonal Water Poverty
Index for Laos: An Application of Geographically Weighted Principal Component Analysis. Social Indicators
Research, 140(3), 1131-1157. https://doi.org/10.1007/s11205-017-1819-6

https://doi.org/10.1007/s11205-017-1819-6
https://doi.org/10.1007/s11205-017-1819-6


1 

Title:  Spatial Variation in Seasonal Water Poverty Index for Laos: An Application 

of Geographically Weighted Principal Component Analysis 

 

Abstract 

Water poverty, defined as insufficient water of adequate quality to cover basic needs, is an issue 

that may manifest itself in multiple ways. Extreme seasonal variation in water availability, such as 

in Laos, located in Monsoon Asia, results in large differences in water poverty conditions between 

dry and wet seasons. In this study, seasonal Water Poverty Indices (WPI) are developed for 8215 

villages in Laos. WPI is a multidimensional composite index integrating five dimensions of water: 

resource availability, access to safe water, capacity to manage the resource, its use and environ-

mental requirements. Principal Component Analysis (PCA) and Geographically Weighted PCA 

(GWPCA) were used to examine drivers of water poverty and to derive different weighting 

schemes. Three major drivers were identified: poverty, commercial/subsistence agriculture and 

village location. The least water poor areas are located around the capital city and along the 

Mekong River Valley while the highest water poverty is found in sparsely populated mountainous 

areas. Wet season WPI is on average more than 12 index points higher than in the dry season, 

but in some villages monsoon rain does not improve the situation. The results indicate large spa-

tial and temporal differences in WPI within Laos. In analysis of WPI components, a mean-variance 

scaled PCA is recommended due to its capacity for uncovering processes driving water poverty. 

Extending to GWPCA is recommended when information on local differences is of interest. 

 

Keywords:  Water Poverty Index; Geographically Weighted Principal Component Analysis; 

Monsoon; Water Poverty; spatio-temporal analysis; Laos 
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1 Introduction 

Water poverty is a multifaceted problem which occurs when there is not enough water available 
to cover basic requirements. Although there are other factors relating to physical water scarcity – 
namely economic, institutional and political issues (Molle and Mollinga 2003) – physical water 
availability may be considered the major driver in water poverty especially in dry and arid regions 
with high population pressure. In Lao People’s Democratic Republic (commonly known as Laos), 
located in Monsoon Asia, water availability difference between dry and wet seasons is extreme 
with in some cases more than 90% of the annual precipitation occurring during the wet season 
from May to November (Babel and Wahid 2009). The Monsoon region therefore faces very large 
variation in water availability throughout the year. With climate change projected to reduce pre-
cipitation in the dry season, to increase evaporation and and lengthen the dry spell (Beilfuss and 
Triet 2014), it is important to understand the dynamics of water poverty in the region. 

The Water Poverty Index (WPI) is a holistic, multidimensional tool developed to address the issue 
of water poverty specifically. Its development arises from the need to incorporate physical water 
availability, environmental water needs and societal dimensions into an easy-to-use decision 
making tool (Sullivan 2002; Sullivan and Meigh 2007; Sullivan et al. 2003). It is a composite index 
which is unstandardized in the sense that the selection of indicators within the components are 
not predefined but are case specific. The five components included in WPI were developed 
through consultation with water managers, scientists and stakeholders (Sullivan and Meigh 2007). 
The components are a) Resources (RES), b) Access (ACC), c) Capacity (CAP), d) Use (USE) 
and e) Environment (ENV). RES typically consists of different indicators representing water avail-
ability (surface and groundwater), internal and external water flows and intra-annual variability. 
ACC measures the degree to which the local population has access to safe water for sanitation 
and irrigation and is commonly measured as the penetration of safe water in the population. CAP 
consists of indicators of water management capability, based on education, health and finance. 
USE describes the amount of water being utilized and its contribution to the economy. Finally, 
ENV attempts to capture the environmental quality and impact of water management. (Sullivan 
2002; Sullivan and Meigh 2007; Sullivan et al. 2003) 

The WPI has been used in many studies over several scales; at a national scale (e.g. Cho et al. 
2010; Komnenic et al. 2009; Lawrence et al. 2002), regional scale (e.g. Heidecke 2006), and local 
scale (e.g. Garriga and Foguet 2010; Sullivan et al. 2003). In Monsoon Asia, WPI has been ap-
plied in only a few local studies: Ty et al (2010) assessed local water poverty in the dry season in 
Srepok River Basin in Cambodia-Vietnam, while Guppy (2014) looked at water poverty in five 
villages in Cambodia-Vietnam. Both studies conclude that the water poverty level in the areas 
investigated was high.  

WPI has not previously been studied in Laos, the study area of this paper, apart from the interna-
tional comparison by Lawrence et al (2002), which treated the country as a single unit. The study 
places Laos in the water poor half of the countries compared. The countries which score worse 
than Laos are mostly located in dry and arid regions or are also poor in other ways (including 
neighbouring Vietnam and Cambodia). The study, however, does not consider the seasonality of 
water resources nor the spatial variability within the country, which therefore remain knowledge 
gaps. To the authors’ knowledge, seasonal differences in water poverty using WPI as a tool have 
been addressed only by Ty et al (2010). Tang and Feng (2016) and Zhang et al (2015) have 
shown that WPI components vary considerably between years. The extreme difference between 
monsoon dry and wet seasons is likely to cause large differences in some of the WPI components 
seasonally as well. 

As WPI is a composite index consisting of five components, their weighting is an important issue, 
because the weights represent the importance of each component to the overall WPI. Many pa-
pers have discussed the selection of weights in a WPI context due to their arbitrariness and sub-
jectiveness  (e.g. Heidecke 2006; Molle and Mollinga 2003; Sullivan and Meigh 2007). There are 
many options for deciding how to weight the components: equal weights, expert opinion, stake-
holder consultation or analytically derived weighting.  

The computation of “objective”, data-driven weights is of particular interest, because the compu-
tation process itself has the potential to provide new insights. Though these insights have typically 
not been deeply analysed, especially with regard to WPI, several authors have used principal 
component analysis (PCA) (e.g. Cho et al. 2010; Garriga and Foguet 2010; Jemmali and Matoussi 
2013; Jemmali and Sullivan 2014; Pérez-Foguet and Garriga 2011). This method assigns weights 
based on the variances in the WPI components, which helps to highlight differences over time or 
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space. Furthermore, PCA can be localized to a certain geographic extent using Geographically 
Weighted PCA (GWPCA). GWPCA allows studying of spatial heterogeneity of WPI components 
and their relationships. It was introduced in Fotheringham et al. (2002), and further developed by 
Charlton et al. (2010) and Harris et al. (2011, 2015). It has been used in a number of studies;  
Harris et al. (2014) used GWPCA to re-design a water quality sampling campaign, the same 
authors later applied GWPCA to inspect the spatial structure of a water quality dataset (Harris et 
al. 2015). Lloyd (2010) used it to inspect the socio-economic structure of the greater Dublin area 
while Wei et al. (2016) used GWPCA to assess multivariate spatial inequality. However, it has not 
been applied to multidimensional composite indices before. 

The aim of this study is to investigate the spatial and seasonal heterogeneity of water poverty in 
Laos. Understanding is built up by using several data-driven weighting schemes of increasing 
sophistication, consisting of simple variance-based weights, PCA-derived weights, and local, 
GWPCA-derived weights. In doing so, this study demonstrates the usefulness of PCA and 
GWPCA in identifying processes governing water poverty, suggesting there is value in wider 
adoption in computation of social indicators.  

Section 2 gives background information on PCA, and how it can be extended to account for spatial 
heterogeneity using GWPCA. Then, the study area is introduced and the development of sea-
sonal WPI is shown in Section 3, including the different weighting schemes assessed. The fourth 
section provides the empirical results of the study, and finally, Sections 5 provides a discussion 
and conclusions. 

 

2 Background 

This section gives a description of PCA and GWPCA for interested readers. To understand how 
these methods can be used for weighting, the reader may jump directly to Section 3. 

2.1 Principal Component Analysis 

The PCA method is more than a hundred years old, and is one of the most widely used multivar-
iate analysis methods. The idea of PCA is to reduce the number of variables in data while retaining 
as much information as possible. This is done by transforming interrelated variables into a new 
set of variables, principal components (PC), which are uncorrelated with each other (Jolliffe 2002).  

PCs of a data matrix X with n observations and m variables can be found using the symmetrical 
variance-covariance matrix ∑  where the sum of the elements on the main diagonal is the total 
variance in X. If the data matrix X is standardized to zero mean and unit variance, the values in 
the variance-covariance matrix ∑  are equal to the correlation matrix for X and the sum of the 
elements in the diagonal is equal to the number of variables m. Thus, from standard linear algebra 
it follows by eigendecomposition that  

 

𝑳𝑽𝑳𝑻 = ∑     (1) 

 

where V is a diagonal matrix of eigenvalues and L is a matrix of eigenvectors. V represents the 
variances and the column vectors of L represent the loadings of variables in the corresponding 
PC. PCs are commonly reported in decreasing order of eigenvalues and thus, the first PC ac-
counts for most of the variance in the data, the second PC accounts for the most variance not 
accounted for by the first PC, and so on. Typically (but not always), the first few PCs explain the 
majority of the variance in the data while the last few describe a considerably lower amount (Harris 
et al. 2011; Jolliffe 2002). Joliffe (2002) provides a detailed explanation of the derivation of PCA 
and the numerous applications it is used in.  

In order to achieve reduction in noise or to limit analysis to the most important drivers of change, 
only the first PCs are retained. It is customary to retain a number of PCs which satisfy a certain 
rule, for instance all components with eigenvalue higher than 1 (latent root criterion) or the number 
of components that explain more than a certain amount of variation. The number varies from 
study to study and from field to field; e.g. 60% in social sciences and up to 95% in earth sciences 
(Hair et al. 2006). This reduces the number of PCs, concentrating on major sources of variance, 
while retaining the majority of the information in the original data X. 



4 

This article takes the perspective that the loadings of the derived PCs can be interpreted as pro-
cesses that explain the variation in water poverty. Restricting the number of PCs focusses atten-
tion on specific processes. 

The standard PCA above assumes that the variances and covariances of the data are constant. 
In a spatial context, this means that, despite it being possible to map the results of PCA (provided 
that the data has a locational reference), the variances and component loads remain constant 
over the entire area of analysis (Harris et al. 2011). 

2.2 Geographically Weighted PCA 

PCA can, however, be modified to account for first order spatial effects (spatial heterogeneity) by 
replacing it with a variant called Geographically Weighted PCA (GWPCA). This is a form of 
weighted PCA, which weights the sample points based on their geographical proximity to a point-
of-interest (u, v) and performing standard PCA using the weighted sample (Demšar et al. 2013; 
Harris et al. 2011). The weighting in GWPCA effectively changes the scope of the PCA from 
global (the entire dataset) to the local geographic space. Geographically weighted (GW) eigen-
values and eigenvectors for location (u,v) may be obtained by computing the GW covariance 
matrix 

  ∑(𝑢, 𝑣) = 𝑿𝑇𝑾(𝑢, 𝑣)𝑿 = 𝑳𝑽𝑳𝑇(𝑢, 𝑣)  (2) 

where W is a diagonal matrix of weights obtained by a kernel density function.  

The kernel density function is used to address spatial autocorrelation; a measure of the relation-
ship of some variable between nearby spatial units (Getis 2010). In other words, spatial autocor-
relation describes whether values of nearby observations are more similar than distant observa-
tions. Statistical measures of spatial autocorrelation (e.g. Moran’s Index) can be used, for in-
stance, to identify spatial clusters, to test assumptions of spatial stationarity or heterogeneity or 
to test model mis-specification (Getis 2010). Geographical weighting of PCA addresses the spa-
tial heterogeneity of variances and covariances in the dataset it is used to investigate by weighting 
observations using a kernel centered on the point of interest. 

The kernel density function used can be for instance a “boxcar” (a moving window centered on 
the point of interest where all observations within a certain distance are given a weight 1, and all 
others excluded), a “Gaussian”, “exponential”, or “bi-square” (Brunsdon et al. 2002; Fotheringham 
et al. 2002). All of these weighting schemes are based on a bandwidth (BW), a geographical 
distance that defines the extent of “locality”. Alternatively, it can be defined as adaptive, based on 
the number of nearest observation points to include in the analysis rather than a fixed distance.  

The selection of BW may be done by an expert with sufficient domain knowledge, or it can be 
optimized by cross-validation. The cross-validation approach minimizes the sum of residual vari-
ance (the proportion of variance not explained by the retained PCs) for all locations in the data 
(Harris et al. 2011). The optimal BW ensures that the maximum amount of variance is explained 
by the pre-selected number of retained PCs. When PCs are interpreted as processes that explain 
variation, the BW describes the spatial extent of the combined processes, fit to the whole dataset 
rather than to each process individually. 

The interpretation of GWPCA results is challenging due to the large amount of data produced by 
running the analysis for n observation locations: an n x m matrix of eigenvalues and an n x m x 
m matrix of eigenvectors (Fotheringham et al. 2002; Harris et al. 2011). Charlton et al (2010) 
suggest several visualization methods to aid the interpretation: a) to map the local eigenvalues 
(proportion of variance explained by the PCs), b) to map the loadings for each variable in each 
PC, c) to map the “winning variable” of each PC, and d) to use multivariate glyphs to represent 
the loadings.  

 

 

3 Material and Methods 

3.1 Case study area 
Laos is a land locked country located between Cambodia, Thailand, Myanmar, China and Vi-
etnam (see Figure 1). 80% of the total land area is classified as mountainous. Laotians are rural 
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and poor with approximately 70% living in rural areas and approximately 30% living in pov-
erty (The United Nations in Lao PDR 2015). The Southwest Monsoon dominates the climate and 
causes distinct dry and wet seasons with more than 85% of precipitation occurring between May 
and November (Babel and Wahid 2009; Mekong River Commission 2011). Several large rivers 
flow through Laos. In addition to the Mekong, major rivers include Nam Ou, Nam Ngum, Se Bang 
Fai, and Sekong. Human impacts on water resources are relatively low, albeit local hotspots of 
water pollution may be found (Babel and Wahid 2009; Mekong River Commission 2007). In addi-
tion, only 0.9% of the discharge is withdrawn for utilization of which nearly 99% is used in agricul-
ture. Despite agriculture having a high share of water use, 90% of rice crops in Laos are rain-
fed and primarily practiced for sustenance (Babel and Wahid 2009). Based on the GWPCA anal-
ysis of this study (Section 4.3), Laos is divided into the four regions shown in Figure 1.  
 

 
Figure 1. Map of Laos, showing the 8215 villages included in the analysis, overlaid with the approximate 
area division identified using the GWPCA analysis. 
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3.2 Developing the Water Poverty Index 
 
WPI was calculated for 8215 villages in Laos, shown in Figure 1. These villages were selected 

because they are all represented in the two main data sources employed in this study: the Popu-

lation Census of 2005 (Lao Statistics Bureau 2005) and Agricultural Census of 2010/2011 (Lao 

Statistics Bureau 2011). These data sources were complemented with hydrological modelling for 

water availability, observed precipitation from 183 stations across Mekong Region (data period 

1981-2003), and SEDAC Last of the Wild v2 (Wildlife Conservation Society - WCS and Center for 

International Earth Science Information Network - CIESIN - Columbia University 2005) human 

footprint data, capturing human influence on terrestrial ecosystems. No new datasets were col-

lected for the purpose of this study, following recommendations of Sullivan and Meigh (2007) to 

use pre-existing data as much as possible. The indicator selection for each WPI component is 

detailed below and summarized in Table 1. Statistical analysis was performed to ensure that PCA 

can meaningfully be applied to the components ( according to the procedures in Cho et al. 2010; 

Hair et al. 2006; Hajkowicz 2006; Jemmali and Sullivan 2014) Details are given in Supplement 

A). Surface water availability and irrigation type were removed due to this analysis (Table 7 in 

Supplement A), and PCA was performed on the CAP indicators to create new uncorrelated vari-

ables. Low correlations were found between WPI components apart from ACC and CAP (Table 

8 in Supplement A). WPI was calculated for dry season (dWPI, mid-November to mid-May) and 

wet season (wWPI, mid-May to mid-November) in order to capture the differences between them. 

Aggregation of indicators to a component score was done by averaging the indicators in their 

corresponding components. 

 

Resources (RES) 

Seasonal water availability was modelled using the VMod modelling software, which is a distrib-

uted physical 2-D hydrological model developed by Environmental Impact Assessment Finland 

Ltd (Koponen et al. 2010). The model was selected as it has proved to perform well in the Mon-

soon climate (e.g. Darby et al. 2016; Lauri et al. 2014; Räsänen et al. 2017). The model was 

applied using a grid with 5 km resolution. Input data about landuse, elevation, soil, temperature 

and precipitation was sourced from the Mekong River Commission and is the same as used in 

the baseline scenario in Lauri et al (2014). Detailed description of the model can be found in the 

model manual (Koponen et al. 2010).  

For scoring, water availability per capita was used, following Ty et al (2010), rather than the total 

water availability. The threshold were taken from the Water Crowding Index (the Falkenmark Wa-

ter Stress Indicator (Falkenmark et al. 1989)), giving a score of 100 to villages with water availa-

bility higher than 1700 m3 capita-1 year-1 (no water shortage), and a score of 0 to villages below 

500 m3 capita-1 year-1 (severe water shortage).  

Average daily precipitation was used to indicate the internal water resource and was scored as a 

ratio relative to the highest average precipitation in the wet season. The average longest seasonal 

period of consecutive days without precipitation (referred to as, consecutive dry days; CDD) was 

used to indicate how long, on average, the village is relying on external water flow.  It was scored 

using the minimum length of CDD over both seasons (score 100) and the maximum length over 

both seasons (score 0).  
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Table 1. Indicators of the five WPI components, their scoring, data sources and whether the indi-
cator value changes between dWPI and wWPI. RES is Resources, ACC is Access, CAP is Ca-
pacity, USE is Use and ENV is Environment components of WPI.  

    Scoring Does the 
variable 

change be-
tween sea-

sons? 

  

Component Variable Minimum (0) Maximum (100) Data Source 

R
E

S
 

Surface water availability <500 
m3/cap/year 

>1700 
m3/cap/year 

Yes Simulated 

Average daily precipita-
tion 

0 mm Max wet season 
precipitation 

Yes Lauri et al (2014) 

Annual longest consecu-
tive drought days 

Longest average 
annual dry pe-
riod in days 

Shortest average 
annual dry period 
in days 

Yes Lauri et al (2014) 

A
C

C
 

Irrigation type No irrigation fa-
cilities 

Maximum number 
of different irriga-
tion methods 

No Agricultural Census 
2010/2011 

Drinking water source(s) No specified 
source 

Piped water No Agricultural Census 
2010/2011 

Toilet type No toilet Modern No Population Census 2005 

C
A

P
 

Travel time to province 
and district capitals 

>600 min Travel time 0 min No Population Census 2005 

Village road access No Yes Yes Agricultural Census 
2010/2011 

Literacy rate 0% 100% No Population Census 2005 

Incidence of poverty 100% 0% No Population Census 2005 

U
S

E
 

Share of irrigated crops 
from total crop area 

0% 100% Yes Agricultural Census 
2010/2011 

Share of population de-
pending on aqua- or agri-
culture for their income 

100% 0% No Agricultural Census 
2010/2011 

E
N

V
 

Disaster occurrence No disasters All disaster types 
occurring every 1-
2 years 

Yes Agricultural Census 
2010/2011 

Human Footprint 100 0 No SEDAC Last of the Wild 
v2 

Soil degradation Severe degrada-
tion 

No degradation No Agricultural Census 
2010/2011 

 

Access (ACC) 

This study uses the presence of water infrastructure as a proxy for the penetration of safe water, 

which is missing from the census data used. The selected indicators are the presence of infra-

structure for irrigation (permanent weir, reservoir, pump scheme, gates/dykes, temporary weir, 

gabions or other irrigation scheme), main drinking water source (piped water, protected well, un-

protected well, surface water; mountain water source, rain water or other) and main toilet type 

(modern, normal, other or no toilet). Irrigation facilities are given the highest score for villages with 

all different irrigation methods, and zero score for those with no irrigation facilities present. Scoring 

for main water source and toilet type are given in Table 2.  
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Table 2. Scoring of Access indicators 

Indicator Type Score 

Main water 
source 

Piped water 100 

Protected well 83 

Unprotected well 67 

Surface water 50 

Mountain water source 33 

Rain water 17 

Other 0 

Toilet type 

Modern  100 

Normal 66 

Other 33 

No toilet 0 

 

Capacity (CAP) 

The Capacity component measures the capability to manage available water resources. In this 

study, four indicators are used as proxies of this; a) combined travel time to district and provincial 

capital (services available in each differ), b) road access, c) literacy rate, and d) incidence of 

poverty. Travel time to the capital(s) is scored 100 if the village is the provincial and district capital 

(travel time 0 minutes), and 0 if the combined travel time is above 10 hours (600 minutes). The 

ten-hour threshold is an arbitrary choice, but is selected assuming that it gives a meaningful indi-

cation that either capital may be visited within two days. In addition, it should be noted that the 

travel time likely changes throughout the year, but data on the effect of season was not available 

in the dataset used. Village road access is given a score of 0 for villages without, and score of 

100 for villages with road access. The census data shows that the road access varies according 

to season; in some cases, roads are blocked in the wet season due to flooding. Literacy rate is 

provided in the census by percentage of total village population that can read, and it is taken 

directly as the score. Incidence of poverty is likewise provided as percentage of total village pop-

ulation, and the score is computed by subtracting it from 100, which gives higher score to villages 

with low poverty.  

Use (USE) 

Use typically includes information about the quantity of water used by different water use sectors. 

This type of data, however, was not available from the data sources and therefore two indicators 

were used as proxies: a) the percentage of crops being irrigated from the total crop area, and b) 

the percentage of population (from the total village population) depending on agri- or aquaculture 

for their income. The share of crops irrigated is taken as is. For the dependency on water, the 

percentage is subtracted from 100 in order to give higher score to those villages with lower income 

dependency on water. Of these two, share of irrigated crops varies according to season. It is 

noteworthy that due to the selection of these two indicators, in this study USE is interpreted as a 

measure of vulnerability. 

Environment (ENV) 

Several studies use different indices to represent Environment, such as water quality index. How-

ever, no such data exists in high enough resolution from Laos, and thus, proxies were used. The 

indicators include a) soil degradation (from no degradation to light, moderate or severe degrada-

tion), b) disaster occurrence (drought, flood, landslide, pests, other, non-specified) (Lao Statistics 

Bureau 2011), and c) human footprint from SEDAC Last of the Wild v2 dataset (Wildlife 

Conservation Society - WCS and Center for International Earth Science Information Network - 

CIESIN - Columbia University 2005). It is assumed that droughts occur only during dry season, 

and that floods and landslides occur solely during wet season making disaster occurrence vary 

between seasons. Scoring for disaster occurrence is counted so that if there are no disasters 

occurring in a village, the score is 100, and having all disaster types occurring every 1-2 years, 
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the score is 0. Human footprint in the SEDAC dataset is a number between 0 (natural environ-

ment) and 100 (entirely human modified environment). It is assumed here that the lower the hu-

man footprint, the higher is the integrity of the ecosystem. Thus, the human footprint value is 

subtracted from 100 to give higher score to villages with lower footprint.  

 

3.3 Case study WPI component weighting schemes 

Five weighting schemes used to aggregate the components to a WPI were derived and compared. 

This section describes reasoning behind the progression of weights from variance-based weights 

to local, GWPCA derived weights. As a base case, the first weighting scheme assigns equal 

weights to each component. 

The remaining weighting schemes are based in some way on PCA. The approach used  is based 

on existing literature (e.g. Cho et al. 2010; Jemmali and Matoussi 2013; Jemmali and Sullivan 

2014). In PCA-based weighting, the weights are computed from eigenvalues V (the variances) 

and eigenvectors L (the component loads) of a number of retained PCs. Since PCA is based on 

the variance of the variables in data (in this case, the variance of WPI components), this approach 

gives higher weight to the WPI components which are highly loaded and lower weight to those 

which are weakly loaded in the first few PCs, emphasising the variables that contribute most to 

the variance of the WPI components. The PCA derived weights can be computed by multiplying 

the squared component loads and the proportion of variance explained by the corresponding PC, 

and summing across PCs. Weights are therefore derived using Eq. 3  

𝛽𝑖 = ∑ 𝑃𝐶𝑘,𝑖
2 ×

√𝜆𝑘

∑ √𝜆𝑗𝑗=1…𝑛
𝑘=1…𝑛    (3) 

where 𝛽𝑖 is the weight given to WPI component i (either RES, ACC, CAP, USE or ENV), 𝑃𝐶𝑘𝑖 is 

the component load in kth PC (column of L), 𝜆𝑘 is the eigenvalue of the kth PC (in V) and j is the 
number of PCs retained. This method of weighting is a modified version of that used by Jemmali 
and Sullivan (2014) with a difference that here the component load is squared. This has the ad-
vantage that the squared sum of an eigenvector is 1, such that the sum of squared principal 
component loads for each of the WPI components  corresponds to the proportion of its variance 
relative to the full dataset (Jolliffe 2002). Compared to Jemmali and Sullivan’s (2014) method, this 
avoids obtaining negative weights 𝛽𝑖, cancelling out of PCs due to opposite signs, and requiring 
further scaling for the components to add to one.  

The method of aggregation of components is also based on existing literature. Gariga and Foguet 
(2010) find that the classic style of using additive function to compute the final WPI suffers from 
full compensability, meaning that a low score in one component may be completely offset by a 
high score in another component. They instead recommend a weighted geometric mean: 

𝑊𝑃𝐼 = ∏ 𝑥𝑖
𝛽𝑖

𝑖       (4) 

where xi is the score of WPI component i. This prevents compensability of components in the WPI 
and increases the sensitivity to variation in each component. In this study, all component scores 
<0.01 were set at 0.01, in order to avoid the geometric mean setting the total WPI to zero because 
of a single component with value zero.  

Since weights are based on eigenvectors and eigenvalues from PCA, GWPCA can be used to 
derive weights for each individual location based on geographical proximity. This can be done by 
replacing the terms 𝛽𝑖, 𝑃𝐶𝑘𝑖 and 𝜆𝑘 in Eq. 3 with their local versions 𝛽𝑖(𝑢, 𝑣), 𝑃𝐶𝑘𝑖  (𝑢, 𝑣) and 

𝜆𝑘(𝑢, 𝑣), as derived in Section 2.2. 

The second weighting scheme is selected to provide a  foundation for understanding the behavior 

of PCA-based weighting – guiding the interpretation of the retained PCs as potential “processes”, 

as proposed in this study. It provides an intermediate step between the first, equal weight, 

scheme, and true PCA-based weighting. Given that the method of calculating weights based on 

PCA gives higher importance to the components with higher variance in their values, it follows 

then that, if there is a substantial difference in variances, the components with higher variance 

will dominate the retained higher variance principal components. To help understand this effect, 
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weights are derived from variances of the WPI components, i.e. variance of the component/sum 

of the variances.  

Because there are large differences in variances of WPI components (see Table 3), the third and 

fourth weighting schemes were respectively computed using PCA first without, and then with 

mean-variance standardized components. Mean-variance standardization scales the compo-

nents to mean of zero and variance of one. According to Chatfield and Collins (1980, cited in 

Harris et al (2011)), this can be thought as giving each component equal importance in the anal-

ysis. The effect on weights is that none of the components dominates through having a higher 

variance.  Note that the first two weighting schemes, using equal weighting and variance-based 

weighting, respectively correspond to the special cases of PCA-based weighting retaining all PCs 

with mean-variance scaled, and unscaled indicators. 

GWPCA is used for the fifth weighting scheme. Its use is motivated here by the observation that 

the indicators are strongly spatially autocorrelated according to the commonly used Moran’s I 

values, which are all >0.30 (with the exception of soil degradation, with 0.26). Visual inspection 

of the mapped variances also reveal large differences in their spatial distribution. It may therefore 

be expected that weights computed from the local results would vary spatially. Bandwidth selec-

tion for GWPCA was optimized using the cross-validation approach comparing boxcar, exponen-

tial, gaussian and bi-square kernel functions. An adaptive bandwidth was chosen because it a) 

provides the same number of sample points for each location and b) it addresses the problem of 

edge effects (Brunsdon et al. 2002). 

 

4 Results 

This section first gives an overview of the WPI component values and WPI computed using non-
PCA methods (equal and variance based weights). Interpretation of results focusses on spatial 
variation of WPI components Then, PCA is applied to the components and its results discussed 
along with PCA weights, highlighting socio-economic processes driving water poverty. The 
weights used to aggregate the components into WPI are shown in Table 3. Finally, GWPCA is 
performed and the spatial heterogeneity of components and weights is investigated, yielding a 
local analysis that reveals hidden processes.  

4.1 Spatial variation of WPI components 
The WPI components vary greatly in their scores. To distinguish between dry and wet season 
scores, WPI and its components are prefixed with “d*“ or “w*“ for dry and wet season respectively 
when a season specific WPI or its component is referred to. In the dry season, lowest mean 
scores are for dRES, 21.6, and for dUSE, 26.5 while the highest mean scores are found for dCAP, 
76.5 and for dENV, 78.5. dACC falls in between with a mean score of 43.3 (the higher the score, 
the lower the water poverty). The wet season changes the scores in all but ACC, since it does not 
have variables that change according to season. wRES increases, on average, 50 points from 
dRES, rising to 72.3. It is noteworthy that all of the villages have wRES at a minimum 10 index 
points higher than their corresponding dRES. The other components increase a considerably 
smaller amount. wUSE (30.6) is on average 5.1 points higher than dUSE. Increase in ENV is 
negligible, being on average 0.3 index points. CAP is the only component which, under these 
indicators, scores lower in wet than in dry season; on average the decrease is 11.5 index points 
(dCAP 76.5 vs. wCAP 65.0). The component values suggest that issues in village-level water 
poverty are mostly in access to safe water (due to missing infrastructure) and in USE component 
(in this case study, income vulnerability). In addition, RES scores suggest that in the dry season 
villages are reliant on external water flows. 

The spatial and temporal patterns of the WPI components are mapped in Figure 2 using a geo-

graphically weighted mean (see Brunsdon et al., 2002) of 50 nearest villages. Clear patterns are 

visible in the components. dRES scores highest in the northwestern part of the country and lowest 

in the central-south. This is because the difference between dry and wet season precipitation is 

the lowest in the northwest. For ACC, the area around the capital city scores high, while the rest 

of the country scores significantly lower. The pattern in CAP shows that the mountainous areas 

bordering Vietnam and China are of considerably lower capacity than the Mekong River Valley 
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bordering Thailand. In USE, clear hotspots of very low scores (high vulnerability) can be found in 

several areas in the north as well as in the Bolaven Plateau in the south. USE scores in the wet 

season increase mostly in the North in a few areas, while there is no or very little increase in the 

capital area and in the south. Finally, ENV scores high all throughout the country and shows only 

very small changes both spatially and temporally. 

The spatial patterns in individual components are brought to various extents in the aggregated 
result depending on the weights used. Variances in Table 3 (column 2) show that components 
which describe the environment (RES, ENV) vary considerably less than the “human” compo-
nents. The interpretation here is that socio-economic factors cause more variation in intra-sea-
sonal WPI in Laos than the environmental ones do and hence, are weighted accordingly. How-
ever, when the temporal scale is shifted to the annual level, combining data from both seasons, 
the variances change. Resource availability becomes as important as CAP in terms of variance 
and variance-based weights. This then means that overall WPI computed for seasons separately 
or combined respectively have similar and different distributions (Table 4). RES is the component 
that changes most between dry and wet seasons, but receives a low weight. These results cor-
respond to expectation regarding the important role of water availability variation temporally, be-
tween seasons, but less important role spatially, given the relative spatial homogeneity of the 
monsoon. It should also be noted, that the monsoon rains are, in addition to measures of water 
availability, the ultimate reason in variation of CAP as road access is hindered due to excess 
water. 
 

Table 3. Unscaled and scaled variances and the global weighting schemes used in the study. Equal, vari-
ance based and PCA based weighting schemes are given for dry season, wet season and both season data. 
Equal weighting scheme is equivalent to PCA derived weights when scaled data is used and all principal 
components are retained. Variance weighting scheme is equivalent to PCA derived weights when unscaled 
data is used and all principal components (PC) are retained. 

 
Compo-
nent 

Unscaled 
Variance 

Scaled 
Vari-
ance 

Equal 
weights / 

Scaled PCA 
weights us-
ing all PCs 

Variance 
weights / 

Unscaled PCA 
weights using 

all PCs 

Unscaled 
PCA 

weights 

Scaled 
PCA 

weights 

D
R

Y
  

S
E

A
S

O
N

 RES 96.3 1 0.2 0.064 0.005 0.127 
ACC 499.3 1 0.2 0.334 0.365 0.198 
CAP 423.9 1 0.2 0.284 0.284 0.212 
USE 389.4 1 0.2 0.260 0.346 0.220 
ENV 86.2 1 0.2 0.058 0.000 0.243 

               

W
E

T
  

S
E

A
S

O
N

 RES 49.6 1 0.2 0.024 0.000 0.260 
ACC 499.3 1 0.2 0.243 0.187 0.206 
CAP 992.8 1 0.2 0.483 0.579 0.201 
USE 420.4 1 0.2 0.205 0.234 0.110 
ENV 91.3 1 0.2 0.044 0.000 0.224 

               

B
O

T
H

  

S
E

A
S

O
N

S
 RES 714.8 1 0.2 0.291 0.338 0.184 

ACC 499.3 1 0.2 0.204 0.161 0.195 
CAP 741.3 1 0.2 0.302 0.320 0.201 
USE 409.2 1 0.2 0.167 0.181 0.160 
ENV 88.8 1 0.2 0.036 0.000 0.259 
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Figure 2. Seasonal comparison of WPI components shown as local geographical weighted mean of 50 near-
est villages using boxcar weighting scheme, showing dry season in the first and wet season in the second 
column. The (absolute) difference between dry and wet seasons are given in the third column. High score 
represents low water poverty. Note: the tiles within the box (i, l and o) have different scale to other tiles. For 
the colour reference, see the online version. 
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While the ranges and mean values of WPI differ from one weighting scheme to another, the spatial 
distribution of higher and lower WPI areas is similar, as can be seen by comparing the maps in 
Figure 3. The highest scoring areas are found around the capital city Vientiane and in a small 
area between Bolaven plateau (which is visible as the round area of low scores in the very south) 
and Cambodian border. The Mekong River valley likewise score high near the Thai border. Lower 
scores are found in the mountainous and remote areas near the Vietnamese border as well as in 
large parts of northern Laos. In some cases, provincial borders can be identified from the WPI 
values, especially in the South around Bolaven Plateau and in central Laos between Bolikhamxai 
and Khammouane. 

 
Table 4. Summary statistics of WPI computed from equal weights, variance weights based on data from 
individual season, and variance weights based on both season data. 

  Equal weights 
Variance weights  
(single season) 

Variance weights  
(both seasons) 

  dWPI wWPI dWPI wWPI dWPI wWPI 

Min. 1.57 1.34 0.31 0.44 1.74 1.36 

1st Quartile 27.99 36.71 24.82 27.64 24.78 35.34 

Median 37.11 49.58 39.02 46.54 33.75 50.26 

Mean 36.64 48.70 37.97 45.66 33.65 49.00 

3rd Quartile 46.76 61.87 50.23 62.88 43.08 63.18 

Max. 70.11 86.99 86.64 94.75 65.05 88.71 

 
Visual inspection of the maps in Figure 3 reveals that the spatial dynamics are comparable – 
similar kind of visual interpretations can be made. In addition to the spatial distribution, the differ-
ence between seasons is clearly seen. However, the extent to which water poverty decreases in 
the wet season varies by location. Generally, the situation improves the most in the areas which 
are least water poor in the dry season. The areas which are in the most difficult situation receive 
the least relief as the wet season sets in. The effect seems to be driven by the combined changes 
in CAP and RES: the increased water availability in villages in the poorest situation is offset by 
cut off road access in the wet season. This is attributed to general poverty levels and infrastruc-
ture. 

Overall, the variances and weights based on them seem to suggest (bearing in mind that water 
availability was not an issue in majority of the villages) that in Laos water poverty is mostly driven 
by the “human components” and thus is more a management problem.  
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Figure 3. WPI outcomes from equal, single season variance, both season variance and both season PCA 
derived weighting schemes and the seasonal difference between them. A high WPI score represents low 
water poverty where as low score represents high water poverty. Note: Seasonal difference has different 
colour scale from the dry and wet season columns. For the colour reference, see the online version. 

 
 

4.2 Socio-economic processes drive water poverty 

Moving from a variance-based weighting into analytical method using PCA provides new inter-
pretations regarding the causes of variation in WPI in Laos. Running a PCA analysis on the un-
scaled, raw WPI components yields two retained components for dry and wet seasons, explaining 
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73.3% and 79.8% of total variation respectively. The retained and excluded PCs are shown in 
Figure 4. As mentioned previously, the PCs are interpreted as processes that explain the most 
variance in the data. The unscaled, single season PCA return identical retained processes for 
both seasons: approximately half of all variation is explained by the “human” process with ACC, 
CAP and USE highly loaded, and where RES or ENV are not involved. The second PC, or pro-
cess, is one where vulnerability (USE) decreases as CAP increases. The interpretation is that the 
most important driver of water poverty in Laos is poverty (state of development) in general, and 
the dependence on water (agriculture) of the rural population. 

PCA results from both seasons combined, however, result in three retained PCs, the first of which 
explains 41.7% of variation, and contrasts abundant resources with low ACC and CAP. This could 
be interpreted as rural villages being located in locations with reliable water resources (higher 
precipitation, shorter dry periods). The second, PC2, describes a situation where increased water 
availability is coupled with increased infrastructure and increased income vulnerability. The third 
retained process, PC3, involves strongly increased dependency on agricultural products with in-
creased capacity and water availability. This is assumed as distinguishing the extent to which 
villages engage in commercial rather than subsistence farming.  

All of the above PCs make sense in light of the variances of components. All single season PCs 
are strongly loaded with the human components that show large variance. In the case combining 
seasons, RES is included, due to its large variance. However, scaling the raw component scores 
prior to PCA reveals richer, more detailed interactions between WPI components. The reason is 
that with mean-variance scaled variables, PCA is based on interactions (correlations) between 
the WPI components rather than the magnitude of variance. 

Three PCs are retained in each of the scaled PCA analyses, explaining from 72.9% to 74.5% of 
total variance. The first PC in each (scaled dry, wet and both seasons) is a similar process to the 
most important process in the unscaled analyses: the human components contrasted to the en-
vironmental components with the only difference being that in dry season, RES is a significant 
factor while it is not with the others. This process accounts for a third of the overall variance. The 
second and third PC, however, differ between seasonal weighting schemes.  

In the dry season, dPC2 is a process where income vulnerability increases as the score in all the 
other components increase. The same process is present in the wet season as the third most 
important process (wPC3). The interpretation here is that as the villages have better access to 
infrastructure, higher capacity and more water, they move from subsistence farming towards com-
mercial agriculture. The third process in the dry season (dPC3) is one where USE and ENV in-
crease with a modest decrease in CAP, ACC or RES, which suggests that rural villages (low 
human impact, low soil degradation) engage in subsistence rather than commercial agriculture. 
In the wet season, wPC2 describes the extent to which village locations having high internal water 
resources is accompanied by a decreased ENV score (higher disaster occurrence, soil degrada-
tion).  

Annual scale changes the identified processes. The second most important process is repre-
sented by increasing USE wth increasing RES, suggesting that higher internal water resources 
lead to higher share of irrigated farmland. Finally, the third retained PC is a process where ENV 
is represented alone, which is a function mainly of village location: whether rural or urban, or 
higher or lower disaster occurrence. 

Overall, the scaled PCA analysis reveals processes that could not be found with unscaled PCA 
by the inclusion of environmental components in addition to the human ones. Both analyses, 
however, agree that ACC, CAP and USE are the main drivers of water poverty, and is here inter-
preted as general state of development of the villages. The processes also put an emphasis on 
village, which is linked to the urban/rural dimension (i.e. access to markets, access to administra-
tion). 

The retained PCs described above translated to weights are shown in Table 3. PCA-derived 
weights for the unscaled WPI components are very close to the variance based weights presented 
in the previous section with the stark difference that RES and ENV are given effectively zero 
weight for dry and wet seasons. RES is shown as the most important component when both 
seasons are used, while ENV does not receive any weight. This reflects the retained PCs. PCA 
derived weights based on scaled components, reflected by the difference in PCs in Figure 4, are 
entirely different; ENV becomes the most important component. This highlights the effect of scal-
ing of components; unscaled components miss the important spatial aspect by neglecting the 
location of the village. The weighting schemes overall are more balanced and near the equal 
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weighting scheme where each component receives weight 0.2. This is due to low inter-component 
correlations in the case study components with only CAP and ACC being strongly correlated. 

WPI calculated from scaled both-season weights results in similar visual interpretation to variance 

based weights; the same areas are highlighted as more and less water poor. The mean difference 

between dWPI and wWPI is 12.3 index points. Interestingly, in a large number of villages dWPI 

and wWPI are within two index points, indicating that there are areas, mostly in Northern Laos, 

where increasing water availability in the wet season does not improve the water poverty situation 

in the villages. This further highlights the fact that water poverty is a socio-economic problem.  

 

 

Figure 4. Unscaled and scaled PCA component loadings for dry, wet, and both season data. The crossed 
out Principal Components were discarded according to the used rule of strictly retaining the number of PCs 
that explain more than 70% of total variance. 

 

4.3 Local analysis reveals hidden processes 

The PCA results above describe global (country-wide) processes that explain the general trends 
within Laos. What about spatial differences in the processes? This section provides results on the 
spatial extent, the bandwidth, of the local processes, what they are, and how local weights can 
contribute to interpretation of the WPI components.  
 
The bandwidth (BW) used for weighting of villages is an indicator of the strength of the extent of 
spatial vs. global process(es). Table 5 provides the cross-validation optimized BWs using un-
scaled and scaled WPI component scores.  There is little difference between dry and wet season 
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adaptive BWs at approximately one third of all villages. This is a large BW (several hundred kilo-
metres, depending on the location of the village), but it is statistically significant – there is local 
spatial variation. Dry season BW using scaled data is similar to the unscaled. However, in the wet 
season BW drops to 680 villages, and the optimal function changes from boxcar to exponential. 
Thus, the spatial dimension of the local processes is larger in the dry season than in the more 
varying environmental conditions of the wet season. 
 

Table 5. Optimal cross-validated adaptive bandwidths for scaled and unscaled component data. All of the 
bandwidths are significant with 0.01 confidence level under Monte-Carlo eigenvalue randomization test. 

  Bandwidth Function 

Unscaled 
  

Dry season 2810 boxcar 

Wet season 2500 boxcar 

Scaled 
  

Dry season 2710 boxcar 

Wet season 680 exponential 

 
The PCs were interpreted as processes as in the global analysis, and results of scaled GWPCA 

analysis are shown in Table 6. Maps of the components and their associated loads are given in 

Figure 7 and Figure 8 in Supplement B to this article. The three retained local PCs explain be-

tween 73.6% and 88.4% of the local variance in the dry season and between 70.9% and 83.3% 

in the wet season, depending on location. In interpreting the GWPCA, only the components with 

higher than 0.3 load are included. 

Similar and different processes can be found in the local analysis as was found in the global one 

in Section 4.2. The most important processes (PC1) in north and central-north Laos, on both dry 

and wet seasons, is the same poverty related process involving the human components ACC, 

CAP and USE.  In the same area, the second most important process (PC2) is related to either 

ENV alone (dry and wet season, the location based process identified in global analysis as well), 

RES alone (wet season, this was not seen in the global analysis) or ENV and USE together (dry 

season) with a positive relationship. The third identified process in the north and central-north is 

related to income vulnerability (USE). However, there are important differences: in the north, 

dUSE and dACC have a positive relationship (vulnerability decreases as safe water infrastructure 

is present), whereas in in central-north Laos, the relationship is opposite. These opposite rela-

tionships are interpreted as the northern villages being dominated by subsistence farming (less 

dependent on water for their income), while in central-north along the fertile river valley, villages 

engage more in commercial farming. In central-north Laos, a negative relationship exists also 

between dUSE and dENV, which suggests that commercial farming is practiced in more devel-

oped areas rather than in the rural villages. In addition, both north and central-north areas exhibit 

also a negative relationship between dCAP and dUSE. In the wet season, the last identified pro-

cess (wPC3) is characterized by increasing wUSE and wENV. The process is interpreted as op-

posite from the dry season: decreasing environmental pressure and decreasing income vulnera-

bility, which may be due to rural villages engaging in subsistence farming.  

Interpretation of the processes in central-south and south is more challenging due to many sub-

areas rather than general trend in the components. The central-south may be divided into two 

parts; riverbanks of Mekong, and the “inland” of the country, to the Vietnamese border. In the 

most important process of the “Mekong area”, dUSE and dRES contrast dENV while in the “in-

land” area dUSE and dCAP contrast dENV. These are interpreted as describing agricultural pro-

cesses; the more developed (lower environmental integrity) the village is, the higher proportion of 

population engage in commercial farming. The second and third process in central-south is a mix 

of different components contrasting and supporting one another, and where generalizations can-

not be made. However, it does seem that there are processes that may counterbalance each 

other in the “Mekong” area, since dUSE and dENV show both negative and positive relationships 

in different PCs. 



0 

Table 6. Results of GWPCA for the three retained PCs and the identified processes. The processes are broken down to four regions with each process reported under that region. 
Red color signify positive relationship with the lead item (the highest loaded component, always positive), while blue colour signifies negative relationship. The components are 
marked mixed if in the region and in the process there are too many involved to identify a representative component. See division of regions in Figure 1.  

    Area North Central-North Central-South South 
Sea-
son 

Compo-
nent 

Pro-
cess Lead Second Third Lead Second Third Lead Second Third Lead Second Third 

D
R

Y
 S

E
A

-

S
O

N
 PC1 

1 dACC dCAP - dACC dUSE dCAP dENV dUSE dCAP dRES dCAP - 

2 dCAP dACC dUSE       dUSE dENV dRES       

PC2 1 dENV - - dENV dUSE - mixed mixed mixed dENV dUSE - 

PC3 
1 dUSE dACC - dUSE dENV dACC dUSE dENV mixed dUSE dENV - 

2 dUSE dCAP - dUSE dENV dCAP mixed mixed mixed       

                              

W
E

T
 S

E
A

S
O

N
 

PC1 
1 wCAP wACC - wACC wCAP wUSE wCAP wACC - wENV wCAP mixed 

2 wACC wCAP wUSE       wCAP wENV wUSE mixed mixed mixed 

PC2 
1 wENV - - wRES - - wENV wCAP wACC mixed mixed mixed 

2 wRES -         wUSE mixed mixed       

PC3 

1 wUSE wCAP - wENV wUSE - wUSE wENV - wUSE wENV wRES 

2 wUSE wACC wENV       wENV mixed mixed       

3 wUSE wENV -                   
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Similar division between “Mekong” and “inland” can be seen in the wet season as well, suggesting 

that these areas are structurally very different. The inland area is, again, very mixed process-

wise, however the first PC describes a process where wCAP and wENV support one another 

against vulnerability (wUSE): increasing capacity to manage water increases in areas of higher 

environmental integrity, while the same areas may be more dependent on water for income. The 

Mekong area is more clear in PC interpretation: wPC1 shows a positive relationship in wCAP and 

wACC, which directly relates to the socio-economic situation in villages, and wPC2 represents 

urban/rural divide with increasing wENV affecting negatively on wCAP and wACC. This village 

location-based process have been identified in the north as well. In the “Mekong” area, wPC3 

represents the subsistence/commercial farming divide which has also been identified in the north 

and in the global PCA.  

Finally, in the south, the dominant dry season process (dPC1) is where dRES and dCAP correlate 

positively. This appears to describe the Bolaven Plateau, which is an important agricultural area. 

The second and third PC counter-balance: in dPC2, dUSE and dENV contradict, while in dPC3 

they are supporting. This is most likely due to interaction between the indicators that make up 

ENV and USE, with possible reasons being the subsistence/commercial farming or urban/rural 

divide. For the southern wet season, the wPC1 and wPC2 are broken into small areas with mixed 

components with the only general process that may be indentified is the area in the south away 

from Mekong, where wENV and wCAP showing positive relationship. The third process, wPC3, 

however, shows a uniform process in the entire southern Laos where wUSE and wENV increase 

as wRES decreases. This may be interpreted as describing a situation where more rural villages 

engaging in subsistence agriculture are located in areas receiving more rain coupled with shorter 

dry spells. 

The described processes can be summarized by computing local weights using the local compo-

nent loads and variances from GWPCA. The weights summarize how strongly each WPI compo-

nent is “present” in the retained PCs. There is a strong agreement between the weights shown in 

Figure 5 and the lead components (plots shown in Supplement B). Dry season differences in WPI 

in northern Laos can largely be explained by CAP, USE and ENV. These three components cor-

relate well with the three main themes of processes identified: poverty (socio-economy, CAP), 

rurality or degree of development (income vulnerability, USE) and location (environmental integ-

rity and disasters, ENV). RES receives near-zero weight in the North, consistent with the obser-

vation that it is irrelevant to the WPI processes in the area. WPI differences in the central-north 

and the capital region appear to be explained by dUSE and dENV and dACC. This is similar to 

the north with the exception that here emphasis is put on presence of infrastructure rather than 

capacity level of villages. In the wet season wRES and wACC are the most important (highest 

weighted) components, highlighting the importance of access to infrastructure. In addition, also 

wUSE and wENV are relevant in different locations of the central-north and capital region. Central-

south and south are described by the same components apart from the southernmost tip of the 

country: dRES, dUSE and dENV in the dry, and wCAP, wUSE and wENV in the wet season. 

Here, as a source of differences between villages, dRES highlights the importance of the amount 

of water in the dry season, and wCAP the importance of location or rurality (road access).   

In addition to the weights, Figure 5 also presents a local WPI computed from the local weights. 

An interesting result is that the general structure of higher and lower WPI areas in the global PCA 

WPI are preserved in the local WPI. The preservation of the structure has also been found by 

Harris et al  (2011) for simulated data. The univariate distribution of WPI computed from the five 

different weighting schemes are shown in Figure 6. An interesting property identified from the 

figure is that the distribution of WPI weighted by different analytical methods are of the same 

shape, but whose ranges differ. A major advantage of the analytical weighting is that it highlights 

differences between villages by resulting in a wider range of WPI values – and in this sense, local 

WPI creates the widest distribution.  
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Figure 5. Local WPI component weights for dry (a to e) and wet (g to k) seasons. Locally weighted WPI is 
shown in plot f) for dry season and plot l) for wet season. Weights below 0.2 (equal weights) are shown in 
brown and weights above that threshold are shown in green. For the colour reference, see the online version. 
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Figure 6. WPI density curves of a) dry and b) wet season. WPI computed by classic additive equal weights, 
variance based weights, PCA derived weights (from scaled single and both season data) and local weights. 
For the reference to colour, see the online version. 

 

5 Discussion 

No other studies have been conducted in Laos using WPI as a tool, apart from the international 

comparison (Lawrence et al. 2002). The comparison study, however, was conducted on a global 

scale, while this study focuses on village-level water poverty with a very different set of indicators. 

The two other WPI studies made in the Lower Mekong Basin (Guppy 2014; Ty et al. 2010) agree 

in that rural mountainous villages are more water poor than ones located in fertile lowlands. While 

WPI cannot be extended outside of the data sources, it is likely that similar processes govern 

water poverty also in undeveloped neighbouring countries of Cambodia, Myanmar and rural Vi-

etnam. For a more informed discussion, a regional analysis of water poverty with data from the 

neighbouring countries should be conducted. 

Laos is a mostly rural country with a low urbanization rate, and hosts only a few significant sized 

urban centers, mostly provincial capitals, in addition to the capital city Vientiane. Therefore, no 

significant differences were identified among the urban centers: the areas around them generally 

engage in commercial farming, have high WPI and their socio-economic character is comparably 

good. Rural areas are much more heterogenous. Bolaven Plateau and southern Xayabury dis-

tricts have very high WPI’s. In other areas, proximity to urban centers or location along major 

roads correspond to higher WPI, which is may be due to better access to markets and lower 

poverty levels. These villages have also higher development status than more remote villages. 

However, the index values derived in this study are largely based on census data which are six 

to twelve years old, and it has been shown in other research that there has been significant pro-

gress in poverty levels since the data was collected (Coulombe et al. 2016; Najdov and 

Phimmahasay 2016). In addition, due to limitations in data, CAP is also biased to lower scores in 

the wet season, because river transport could not be considered. It is known to be an important 

replacement for road access. In future research, newer and alternative data sources should be 

used to allow for a more thorough temporal assessment than is possible simply over the seasons. 

The village-level data should additionally be coupled to province and national level data.  

Regarding PCA and PCA-based weighting, it was found that they provide a useful data-driven 

means of highlighting sources of variation. The PCs, in addition to weighting, uncover interesting 

patterns that drive water poverty, which were tentatively interpreted here as processes. GWPCA 

extends the approach further by allowing inspection of local differences in these processes rather 

than dataset-wide trends found using standard PCA. Local weights derived from the local vari-

ances and component coefficients seem to be a promising exploratory tool in interpreting the 

large amount of data produced by GWPCA, and may be a useful addition to the visualization 

methods (see Section 2.2) suggested by the developers of the method. Translated into practice, 

local processes identified using GWPCA potentially allow targeting policies in certain regions to 

address specific processes that drive water poverty. 
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The results of GWPCA analysis also reveal that, despite being locally weighted, the WPI ranks 

are comparable to those of global analysis. It is identified as a future research topic to assess 

whether locally weighted WPI could be statistically sound alternative, despite weights changing 

for each observation, based on location. 

6 Conclusion 

The Water Poverty Index was computed for 8215 villages in Laos, and it was found, consistent 

with expectations, that water poverty is largely a management issue in Laos: resource availability 

generally is not a problem and the largest cause of variation is in the socio-economic components 

ACC, CAP and USE. The lowest scoring components (ACC and USE) are the ones where im-

provement is most important. Spatially, the area along the Mekong river (and especially the capital 

region) on the Thai border is less water poor, while the mountainous areas on the Vietnamese 

and Chinese borders are more water poor (Figure 3). Temporal differences were also identified, 

with most important feature being the observation that in villages with low dWPI, increase in wWPI 

is also low. Process-wise, three main themes driving water poverty in Laos were identified 

throughout the analysis: socio-economic status and capacity of management, purpose of agricul-

ture (commercial/subsistence), and village location (urban/rural, disaster occurrence).  

If PCA is to be used in weighting, it is recommended to perform it on mean-variance scaled com-

ponents to facilitate examining processes that drive water poverty – differences in variance of 

unscaled components otherwise mask the processes to some extent. GWPCA can be further 

used to investigate local processes, giving more detailed information on the spatial differences, 

as a first step towards helping policy makers to target specific causes of water poverty in specific 

regions.  
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SUPPLEMENT A – Component and indicator processing 

 

Before applying PCA to the components to compute the weights, the applicability of PCA was 

assessed for each WPI component using the determinant of correlation matrix between indica-

tors, together with Fligner-Killeen test of sphericity. The aim of this step is to ensure that indicators 

within an individual component measure different things and to avoid double counting (redundant 

indicators) (Hajkowicz 2006). The Fligner-Killeen test is used instead of the Bartlett’s test used by 

Jemmali and Sullivan (2014) and Cho et al (2010) due to significant non-normality in univariate 

indicator distributions. Additionally, the Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

(MSA) was addressed as outlined by Hair et al (2006). MSA indicates whether there are significant 

intercorrelations among variables to make PCA an appropriate method to use.  

 

Table 7. Correlation and factorability tests for the components of dry season and wet season WPI. RES, 
ACC, CAP, USE and ENV signify the WPI components Resources, Access, Capacity, Use and Environment, 
respectively. 

  dRES dACC dCAP dUSE dENV wRES wACC wCAP wUSE wENV 

Determinant of  
Correlation Matrix 

0.96 0.90 0.35 1.00 0.92 0.98 0.90 0.25 0.99 0.90 

MSA 0.48 0.43 0.67 0.50 0.57 0.49 0.43 0.73 0.50 0.57 

                      
Fligner-Killeen  
test 

                    

chi2 7849.87 574.32 6292.62 7470.99 1550.02 15328.02 574.32 156.84 3556.10 287.16 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Degrees of  
Freedom 

2.00 2.00 3.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 

 

 

The results for each component is shown in Table 7. The Fligner-Killeen test shows that there are 

significant non-zero correlations present in each component. However, the determinant of corre-

lation matrix shows that this is problematic only in CAP, with values of 0.35 and 0.25 in dry and 

wet seasons respectively. As mentioned in Section 2 of the main text, PCA can also be used to 

derive new, uncorrelated indicators from the original CAP selection. The MSA for CAP is 0.67 for 

dry and 0.73 for wet season, falling in the acceptable range of 0.50 or above, meaning that we 

can meaningfully perform PCA on the four selected indicators in CAP (Hair, et al., 2006). For this 

study, we consistently retain, in each analysis, the number of PCs that explain more than 70% of 

total variation. Therefore, two PCs (the new uncorrelated variables) were retained, explaining a 

total of 80.5% of total variance within CAP indicators.  

MSA analysis shows that RES and ACC components for both dry and wet seasons are below 

0.50 and thus fall in the unacceptable range. Hair et al (2006) suggest that in order to increase 

MSA, we should eliminate indicators from the component. An alternative is to reject the compo-

nents RES and ACC entirely, as Jemmali and Sullivan (2014) and Cho et al (2010) did in their 

analyses. In this study the first alternative is adopted due to RES being the component that varies 

most between the seasons. Therefore, water availability per capita was removed from RES be-

cause of its score distribution – 91.5% of villages score 100 in the dry season and 99.2% in the 

wet season. This indicates that the quantity of water is an issue only in a limited number of vil-

lages, which is consistent with the study by Ty et al (2010) in Cambodia-Vietnam. Presence of 

irrigation facilities was removed from ACC because USE already includes a variable of irrigation 

penetration. Elimination of the aforementioned indicators increased MSA to 0.50 for both RES 

and ACC. 

The same analysis of correlations and MSA was also conducted for the aggregated component 

scores to make sure that the weights can be calculated using PCA. Fligner-Killeen test was sig-

nificant (p-value < 0.01) and thus there are significant correlations among components of both 

dWPI and wWPI with both determinants of correlation matrices being 0.68. MSA for both fall in 
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the acceptable range, being 0.535 for dry and 0.524 for wet season. This confirms that PCA can 

be meaningfully performed on WPI components to compute the weights. Table 8 shows the cor-

relation matrix of the dry and wet season WPI components. Of these components, only ACC and 

CAP show significant correlation, with the rest being below 0.2 level.  

 

Table 8 Correlation matrix between components for dry (d-) and wet (w-) season. RES, ACC, CAP, USE 
and ENV signify the WPI components Resources, Access, Capacity, Use and Environment, respectively. 

  dRES dACC dCAP dUSE dENV 

dryRES 1.000 -0.129 -0.164 -0.158 0.097 

dryACC -0.129 1.000 0.472 0.114 -0.041 

dryCAP -0.164 0.472 1.000 0.088 -0.012 

dryUSE -0.158 0.114 0.088 1.000 -0.045 

dryENV 0.097 -0.041 -0.012 -0.045 1.000 

  wRES wACC wCAP wUSE wENV 

wetRES 1.000 -0.042 -0.001 -0.004 -0.049 

wetACC -0.042 1.000 0.480 0.166 -0.059 

wetCAP -0.001 0.480 1.000 0.122 -0.002 

wetUSE -0.004 0.166 0.122 1.000 -0.042 

wetENV -0.049 -0.059 -0.002 -0.042 1.000 
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SUPPLEMENT B – GWPCA figures 

 
 
Figure 7. The first three highest loaded components in the retained local principal components and their 
loading coefficients for dry season scaled GWPCA. Items with a load smaller than 0.3 are excluded and 
shown in white. 
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Figure 8. The first three highest loaded components in the retained local principal components and their 
loading coefficients for wet season scaled GWPCA. Items with a load smaller than 0.3 are excluded and 
shown in white. 
 


