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Abstract—Recognizing human attributes in unconstrained
environments is a challenging computer vision problem. State-
of-the-art approaches to human attribute recognition are based
on convolutional neural networks (CNNs). The de facto practice
when training these CNNs on a large labeled image dataset
is to take RGB pixel values of an image as input to the
network. In this work, we propose a two-stream part-based
deep representation for human attribute classification. Besides
the standard RGB stream, we train a deep network by using
mapped coded images with explicit texture information, that
complements the standard RGB deep model. To integrate
human body parts knowledge, we employ the deformable part-
based models together with our two-stream deep model. Ex-
periments are performed on the challenging Human Attributes
(HAT-27) Dataset consisting of 27 different human attributes.
Our results clearly show that (a) the two-stream deep network
provides consistent gain in performance over the standard RGB
model and (b) that the attribute classification results are further
improved with our two-stream part-based deep representations,
leading to state-of-the-art results.

Keywords-Deep learning; Human attribute recognition; Part-
based representation;

I. INTRODUCTION

Recognizing human attributes such as gender, age, hair
style, and clothing style in unconstrained environments is a
challenging problem since humans can appear in different
poses, under changing illumination and scale, and at low
resolution. Human attribute recognition has many potential
applications such as, including people search, person re-
identification, and human identification. In case of visual
surveillance recognizing fine-grained human attributes, to
be used as soft-biometrics, has gained much importance
due to many intelligent surveillance applications ranging
from the monitoring of railway stations and airports to
citizen-oriented applications such as monitoring assistants
for the aged people. Initially, most approaches for human
attribute recognition relied on face information with images
having high resolution aligned frontal faces. However, hu-
mans appear in different scales and viewpoints in real-world
situations, such as far-view video surveillance scenarios. In
such scenarios, recognition solely based on facial cues could
provide below-expected results, and cues from clothes and
hairstyle are likely to provide valuable additional informa-
tion. In this paper, we also investigate the problem of human
attribute recognition in real-world images.

In recent years, convolutional neural networks (CNNs)
have achieved an outstanding success, being the catalyst to

Figure 1. Human attribute classification results on two images from the
HAT-27 Dataset [1]. The probabilities from a certain attribute classifier
is provided for both the standard RGB deep network and our two-stream
deep network. The groun-truth labels are provided in blue text. An incorrect
classification is shown in red. Our two-stream deep network based approach
provides improved classification results compared to the baseline RGB deep
network.

significant improvement in performance on a wide range
of computer vision applications, including human attribute
recognition [2], [3], [4]. CNNs consist of a series of convo-
lution and pooling layers followed by one or more fully con-
nected (FC) layers. CNNs or deep networks are trained on
large amount of labeled training samples (i.e. ImageNet [5]).
The de facto practice when training these deep networks is to
take RGB pixel values of an image as input to the network.
State-of-the-art human attribute recognition approaches [6],
[7], [3], [4] either employ off-the-shelf pre-trained deep net-
works or fine-tuned them by transferring to the new domain
of fine-grained human attribute data. Previous works [2], [8]
have shown that deep features extracted from activations of
the fully connected layers of the deep CNNs are general
purpose image representations applicable to several visual
recognition tasks. The resulting deep features are then used
together with Support Vector Machines (SVMs) with linear
kernel classifier.

Before the recent revolution of CNNs, hand-crafted tex-
ture features such as local binary pattern (LBP) [9] were
shown to provide excellent performance for face [10], tex-
ture recognition [11], and gender recognition [12]. In a
recent study [13], LBP and its variant descriptors were
shown to provide texture classification performance similar
to deep CNN features. The classification performance of
LBP variants were especially competitive in the presence
of rotations and different noise types. Due to their success,
the problem of integrating LBP within deep learning archi-



tecture has been recently studied in the context of emotion
recognition [14] and texture classification [15]. Motivated
by these observations, we evaluate the impact of learning
robust texture description within deep learning architectures
for human attribute recognition. The resulting architecture
is a two-stream deep network where texture is used as a
second stream and fuse it with the standard RGB stream.

The standard paradigm for human attribute recognition
assumes that person bounding boxes are provided both at
training and test time. In such a paradigm, deep features are
extracted from human bounding boxes. Beside the bounding
box, many approaches [16], [12], [6] rely on part-based
representations to counter the problem of pose normalization
for human attribute classification. These approaches either
use the deformable part models [17] or poselets [18] to
obtain part locations. The work of [12] proposes semantic
pyramids where parts of a person are automatically localized
using state-of-the-art face and upper-body detectors. In this
paper, we integrate the part-based deep representations, from
the deformable part models (DPMs) [17], in our two-stream
deep architecture. The DPMs based approach models the
person as a structured constellation of parts. The resulting
semantic part-based deep representations enable pooling
across pose and viewpoint.

As discussed earlier, deep features extracted from ac-
tivations of the fully connected (FC) layers of the deep
CNNs are typically used for image representation. Instead
of FC layers, activations from the last convolutional layer
of the deep networks have been shown to provide excellent
performance in recent works [19], [20], [21]. The convolu-
tional layers are known to be discriminative and semantically
meaningful. Further, they mitigate the need to use a fixed
input image size. Generally, deep convolutional features are
extracted at multiple scales from the convolutional layers of
the deep network. These dense local features are then pooled
either by VLAD [22] or Fisher vector (FV) [23] encoding
schemes. Most notably, the work of [19] extract multi-
scale features from the last convolutional layer of the deep
network and pool the resulting dense local features using
Fisher vector encoding to obtain an image representation
(FV-CNN). Despite employing multi-scale convolutional
features, the FV-CNN approach pool all the descriptors into
a single scale-invariant image representation.

A. Our Approach

We propose a two-stream part-based deep representation
for the problem of human attribute recognition in still
images. Our two-stream deep architecture combines the
standard RGB stream with a texture stream. The texture
stream is obtained by first extracting LBP based codes
from an image. The unordered LBP code values are then
mapped to points in a 3D metric space [14] to obtain texture
coded mapped images. The texture network stream is then
separately trained using these texture coded mapped images

as input to the deep network. Both the standard RGB stream
and the texture network streams are trained on the ImageNet
dataset.

To integrate the part-based knowledge, we employ the
deformable part models (DPMs) [17] to obtain human body
parts. Given an image, our approach then extract dense
multi-scale convolutional features from the last convolu-
tional layer of the RGB and texture deep networks. The
features are extracted for both the whole person and the
associated body parts. We then construct separate scale-
coded FV-CNN representations for both the whole person
and associated body parts. The scale-coded FV-CNN repre-
sentations from the two-streams whole person and body parts
are concatenated into a single feature vector for classification
(see figure 2).

Experiments are performed on the challenging Human
Attributes (HAT-27) Dataset [1] consisting of 27 different
human attributes such as crouching, young, elderly, bermuda
shorts, wedding dress, young, and female. Our results clearly
suggest that our two-stream based image representations
provide significant improvements compared to the standard
RGB deep network. Moreover, our two-stream part-based
deep representation provides further gain in classification
performance, leading to consistent improvement over the
state-of-the-art. Figure 1 shows attribute classification results
from the standard RGB network and our approach on two
example images.

II. RELATED WORK

Human attribute recognition is an active research problem
with several real-world applications [16], [3], [7], [24],
[25]. State-of-the-art human attribute recognition approaches
employ deep features and part-based representations. The
work of [16] proposed pose-normalized representations by
using deep features and semantic part detection using pose-
lets [18]. Khan et al. [3] proposed deep semantic pyramids
by employing deep features and pre-trained body part detec-
tors to construct pose-normalized image representations. The
work of [7] proposed a class activation map deep framework
by designing a new exponential loss function to measure
the appropriateness of the attention heat map which is an
intermediate result in the class activation map. The work
of [7] introduced an expanded part model by mining parts
and learning corresponding discriminative templates together
with their respective locations.

Recent years have seen deep convolutional neural net-
works or deep networks being the catalyst to significant
performance gains in many computer vision applications.
Deep CNNs are generally trained on a large amount of
labeled data and consist of a series of convolution and
pooling operations followed by fully connected (FC) layers.
Combining multiple feature streams within the deep learning
architecture has been recently studied. The work of [26]



proposed a two-stream deep architecture for action recogni-
tion where the spatial (RGB) stream is combined with the
motion (optical flow) stream. The work of [14] proposed
an approach for emotion recognition based on the standard
RGB stream and texture stream using texture coded mapped
images. The texture coded mapped images are obtained by
mapping the unordered LBP codes of an image to points in a
3D metric space. The mapping is performed by applying the
approximation of Earth Mover’s Distance (EMD), resulting
in a three channel mapped image. The deep network is
then trained by taking this three channel mapped image as
input. To the best of our knowledge, such a two-stream deep
architecture, combining RGB and texture information, is yet
to be investigated for human attribute recognition problem.

Our work is inspired by recent two-stream based
works [14], [15], [27] on emotion and texture recognition.
In this work, we evaluate the impact of the two-stream deep
architecture, combining RGB and texture information, for
human attribute recognition problem. We train a second
CNN stream using texture coded mapped images together
with the standard RGB CNN stream and construct the scale-
coded FV-CNN representations from the two-stream deep
network. Additionally, we also integrate the human body part
information by employing deformable part-based models
together with our two-stream deep network. To the best of
our knowledge, we are the first to propose a two-stream part-
based deep representation for human attribute recognition.

III. TWO-STREAM PART-BASED DEEP FEATURES

Here, we describe the construction of our two-stream part-
based deep image representation. We start by describing our
two-stream deep network. Afterwards, we describe our two-
stream scale-coded FV-CNN full person body representation.
Finally, we present how to integrate body part information
to construct scale-coded FV-CNN body part representation.

A. Texture Coded Two-Stream Deep Architecture

Here, we describe our texture coded two-stream deep
architecture for investigating to what extent texture coded
deep networks complement the standard RGB based deep
networks. Our two-stream deep architecture uses RGB pixel
values to train RGB stream and texture coded mapped
images to train texture stream. The two streams are trained
on the ImageNet ILSVRC-2012 dataset [5]. Our two-stream
network is based on the VGG-M architecture [28], which is
similar to the Zeiler and Fergus network [29]. The VGG-
M architecture takes as input an image of 224× 224 pixels
and consists of five convolutional layers followed by three
FC layers. The first convolutional layer of the deep network
employs smaller stride (1) and receptive field (or the filter
size) with 96 convolution filters. The second convolutional
layer uses a larger stride (2 compared to 1) with 256
convolution filters. The third, fourth and fifth convolutional
layers comprises of 512 convolution filters.

To train the texture stream, texture coded mapped images
are constructed as in [14], [15]. The underlying texture
representation of texture coded mapped images is based
on Local Binary Patterns (LBP) [9]. The LBP descriptor
captures the local gray-scale distribution by describing the
neighborhood of a pixel in an image by its binary deriva-
tives, resulting in a short code. The short LBP codes are
binary numbers (0 or 1) depending on a threshold, where
each LBP code can be considered as a micro-texton. LBP
codes can be computed over any neighborhood size with
typical computations performed over a 8 pixel neighborhood,
resulting in a binary string of eight-bit numbers between 0
and 255. Given an image Im(act, bct) of size H ×W , with
(act ∈ {0, ...,H − 1}, bct ∈ {0, ...,W − 1}). Here, (act, bct)
represent the coordinates of the center pixel of a circular
local neighborhood (Pt,R), where Pt denotes the number
of sampling points. Here, R > 0 is the radius of the circular
local neighborhood. The LBP code (a Pt-bit word) is then
computed as:

LBPPt,R(act, bct) =

Pt−1∑
pt=0

s(Im(apt, bpt)−Im(act, bct))2
pt,

(1)
where the thresholding function s(t) is defined as:

s (t) =

{
0 for t < 0
1 for t ≥ 0.

(2)

In the standard texture classification task, the final image
representation is obtained by constructing a histogram as a
LBP code distribution over the whole image region. When
training CNNs using LBP codes, a straight-forward strategy
is to train the deep network by using LBP code values
as input to the network. However, such a straightfroward
strategy is infeasible since the unordered LBP code values
are unsuitable for the convolution operations, equivalent to a
weighted average of the input values, performed within CNN
models. To counter this issue, the work of [14] proposes
to train CNN models by mapping the LBP code values to
points in a 3D metric space using Multi Dimensional Scaling
for emotion recognition. Within the 3D metric space, the
Euclidean distance approximates the distance between LBP
code values. The resulting transformation allows the LBP
code values to be used within CNN models, since the code
values can now be averaged together using convolution op-
erations, while approximately preserving the original code-
to-code distances. In [14], Earth Mover’s Distance (EMD)
was used as a measure of the difference between two LBP
codes to account for differences in spatial locations of pixel
codes. For more details, we refer to [14].

B. Scale-coded Two-Stream Deep Representation

The texture coded two-stream deep architecture, described
above, is trained on the large scale ImageNet dataset. The



Figure 2. An overview of our proposed two-stream part-based deep image representation. The RGB network stream takes RGB image as input and is
used to construct scale-coded FV-CNN representations from full body and human body parts. The texture network stream takes mapped coded texture
image as input and is also used to construct scale-coded FV-CNN representations from full body and human body parts. The four scale-coded FV-CNN
representations are concatenated into a long feature vector which is then input to linear SVMs.

pre-trained RGB and texture network streams are then used
to construct image representations for human attribute recog-
nition. Given an image, multi-scale convolutional features
are extracted from the last (fifth) convolutional layer of the
RGB and texture networks. The multi-scale features are
extracted from person bounding boxes (available at both
training and testing time). Afterwards, a Gaussian Mixture
Model (GMM) is fitted to the distribution of dense multi-
scale convolutional features. For each person bounding box
PB, we extract a set of features:

Ft(PB) = {xs
i | i ∈ {1, . . . ,K}, s ∈ {1, . . . ,M}} ,

where i ∈ {1, . . . ,K} indexes the K feature locations in
person box PB, and s ∈ {1, . . .M} indexes the M scales
extracted at each location. Similar to [21], we construct a
scale-coded representation ht(PB) for each person bound-
ing box PB by encoding features in group of extracted
feature scales (S = {1, . . . ,M}):

ht(PB) ∝
K∑
i=1

∑
s∈St

cd(xs
i ). (3)

where cd : <p → <q represents a feature coding scheme
which maps the input feature space of p dimensions to
the final image representation (person bounding box) space
of q dimensions. In the scale-coded image representation,
feature scales are divided into several scale subgroups
St that partition the whole set of extracted scales (i.e.

Figure 3. Visualization of body parts (in blue) on example images from
the HAT-27 dataset.

⋃
t S

t = {1, . . . ,M}). The multi-scale convolutional fea-
tures are divided in three scale groups (t ∈ {sm,md, lg}):
small, medium and large scale features. The three scales
are partitioned as in [21]. The multi-scale convolutional
features are then pooled using Fisher vector (FV) encoding
scheme. The final representation preserves the coarse scale
information and is obtained by concatenating these three
encodings of the person bounding box. Separate scale-coded
image representations are obtained for both RGB and texture
streams (see figure 2).
Extension to Part-based Representation: To incorporate
body part information, we employ the deformable part
based framework [17]. The DPM based approach has been
previously used to automatically detect parts for fine-grained
classification [30], scene recognition [31], painting classi-
fication [32]. The DPM approach comprises of root filter
and a deformable collection of moveable parts. The DPM
framework represents both the root and parts by a dense grid



Figure 4. Example images from the HAT-27 dataset. The dataset consists of 27 different human attribute categories such as crouching, young, elderly,
bermuda shorts, wedding dress, young, and female.

of non-overlapping cells. A 31-dimensional HOG [33] his-
togram is constructed for each non-overlapping cell. Within
the DPM framework, the detection score for each window
is computed by concatenating the root filter, the part filters
and the configuration deformation cost of all corresponding
parts.

The standard DPM framework exploits the bounding box
information available during the training stage. However, no
ground-truth part locations are available during the training
stage and the part locations are therefore treated as latent
information. The learning is performed using Latent SVM
(LSVM) formulation. To obtain the human body parts, we
train the DPM detector on the human class of the PASCAL
VOC dataset [34]. We employ 8 parts for trained human
DPM model. The trained human DPM model is then applied
to human attribute images. We first crop each person instance
using the provided bounding box information and then apply
the trained human DPM model on the whole human. Fig-
ure 3 shows visualization of body parts (in blue) on example
images from the HAT-27 dataset. The discriminative part
regions, obtained using the trained human DPM model, are
cropped from an image and rescaled over a range of scales
before passing through our RGB and texture streams (see
figure 2). Similar to whole human body, the multi-scale
convolutional features from the human body parts are pooled
into a scale-coded Fisher vector (FV-CNN) representation.
Separate scale-coded body part representations are obtained
for both RGB and texture streams (see figure 2).

IV. EXPERIMENTS

In this section, we provide results of our approach for
human attribute recognition. As discussed earlier, bounding
boxes of person instances are provided at both train and
test time in human attribute recognition. Thus the task is

to predict the human attribute class associated with each
person bounding box. We first provide details about our
experimental setup and the human attribute dataset used
in our evaluation. Afterwards, we present a comprehensive
comparison of our approach with the baseline followed by
a comparison with state-of-the-art methods in literature.
Experimental Setup: To train our two-stream deep network,
we employ the Matconvnet library [35] and train the CNN
models on the ImageNet ILSVRC-2012 dataset [5]. The
ImageNet dataset consists of 1000 object classes and 1.2
million training images. During the training of two network
streams, the learning rate is set to 0.001, a weight decay that
acts as a regularizer and helps reducing the training error of
the model is set to 0.0005. The momentum rate is associated
with the gradient descent method used to minimize the
objective function and is set to 0.9 during the training.
The pre-trained two-stream deep network is then used
as feature extractors for human attribute recognition. We
compare our two-stream part-based deep approach with the
baseline standard RGB deep network based on (a) features
from the FC layers (FC-CNN) and (b) scale-coded Fisher
vector (FV-CNN) representations. To construct FC-CNN
representations, we remove the last FC layer (FC8) of the
network which performs 1000-way ImageNet classification,
and instead use 4096 dimensional activations from the FC7
(second last) layer as image features. The resulting image
features are L2-normalised and input to a linear kernel.
Throughout our experiments, we fixed the weights (no fine-
tuning) of both the baseline RGB network and our two-
stream deep network for fair comparison.

To construct the scale-coded FV-CNN representations, we
extract the convolutional features from the output of the
last convolutional layer (conv5) of the deep network. The
512-dimensional dense convolutional features are extracted



female frontalpose profilepose turnedback upperbody standing runwalk crouching sitting armsbent elderly middleaged young teen
Standard RGB (FC-CNN) 84.1 93.0 53.1 78.8 98.3 97.0 70.8 25.3 66.5 92.1 31.0 62.3 53.8 23.5

Two-Stream (FC-CNN) 88.6 95.0 63.1 82.4 98.7 97.8 75.5 24.5 76.4 94.4 36.9 63.8 59.2 28.2
Two-Stream + Parts (FC-CNN) 93.2 96.3 69.6 90.7 98.6 98.1 76.6 22.2 73.3 95.0 57.2 73.0 69.6 32.4

Standard RGB (FV-CNN) 90.5 95.4 62.5 85.9 97.4 98.4 79.2 33.2 77.9 95.1 52.4 72.0 71.3 37.0
Two-Stream (FV-CNN) 91.6 95.7 68.3 88.4 97.9 98.6 81.1 33.5 80.3 95.8 55.1 75.0 73.4 39.1

Two-Stream + Parts (FV-CNN) 94.1 96.7 72.1 91.8 98.4 98.8 81.7 31.9 79.3 95.8 58.7 76.7 74.1 38.1

kid baby tanktop tshirt casualjacket mensuit longskirt shortskirt smallshorts lowcuttop swimsuit weddingdress bermudashorts mAP
Standard RGB (FC-CNN) 46.0 21.0 36.0 63.0 43.1 65.1 53.3 36.6 38.9 72.1 56.4 77.9 53.0 59.0

Two-Stream (FC-CNN) 54.1 26.2 41.7 70.0 47.8 69.8 54.8 40.0 50.0 78.3 57.2 71.1 55.0 63.0
Two-Stream + Parts (FC-CNN) 64.2 29.6 48.4 74.5 50.2 73.9 60.4 48.0 56.3 84.7 60.4 75.5 58.3 67.7

Standard RGB (FV-CNN) 63.5 23.5 50.5 78.2 59.1 65.9 52.4 49.6 57.6 78.9 56.1 67.6 50.8 66.7
Two-Stream (FV-CNN) 66.2 26.0 52.3 79.7 61.5 67.5 55.6 54.0 58.8 80.9 57.7 69.7 54.3 68.8

Two-Stream + Parts (FV-CNN) 67.2 28.9 53.0 80.0 62.8 74.0 58.5 55.1 60.3 85.3 58.6 76.3 55.7 70.5

Table I
BASELINE COMPARISON (IN MAP) OF OUR TWO-STREAM PART BASED APPROACH WITH THE STANDARD RGB DEEP NETWORK. THE COMPARISON IS

PRESENTED FOR BOTH THE FC BASED FEATURES (FC-CNN) AND SCALE-CODED FV-CNN REPRESENTATIONS. OUR TWO-STREAM APPROACH
CONSISTENTLY OUTPERFORMS THE STANDARD RGB NETWORK. FURTHER GAIN IN PERFORMANCE IS OBTAINED BY INTEGRATING THE BODY PART
INFORMATION. FOR FAIR COMPARISON, WE USE THE SAME NETWORK ARCHITECTURE TOGETHER WITH THE SAME SET OF PARAMETERS FOR BOTH

THE STANDARD RGB AND OUR TWO-STREAM DEEP NETWORKS.

after rescaling the image at 21 different scales s ∈ {0.5 +
0.1n | n = 0, 1, . . . , 20}. For vocabulary construction,
we employ a Gaussian Mixture Model (GMM) with 16
components. Consequently, Finally, the scale-coded Fisher
vector representations (FV-CNN) discussed in section III-B
are constructed for both whole body and body parts and
using both RGB and texture network streams. The resulting
scale-coded FV-CNNs for whole body and body parts and
from RGB and texture network streams are concatenated
into a single final representation which is then input to the
linear kernel SVM classifier.

We follow the same evaluation protocol proposed by the
authors of the dataset [1]. The classification performance
is measured in average precision (AP) as area under the
precision-recall curve. The overall final performance is then
measured by taking the mean average precision (mAP) over
all human attribute categories in the dataset.
Dataset: We perform comprehensive experiments on the
challenging Human Attributes Dataset (HAT-27) [1]. The
dataset comprises of 9344 images of 27 different human
attributes such as long skirt, armsbent, crouching, frontal
pose, casual jacket, wedding dress, young, and female.1

We follow the same evaluation protocol proposed by the
authors of the dataset [1]. The classification performance
is measured in average precision (AP) as area under the
precision-recall curve. The overall final performance is then
measured by taking the mean average precision (mAP) over
all human attribute categories in the dataset. We employ the
train and test splits provided by the respective authors [1].
Figure 4 shows example images from the HAT-27 dataset.

A. Baseline Comparison

Table I shows the baseline comparison on the HAT-27
dataset. Our baseline is the standard RGB VGG-M deep
network. It is worth to mention that we use the same
VGG-M network architecture together with the same set of

1HAT-27 is available at: https://sharma.users.greyc.fr/hatdb/

parameters for both the standard RGB and our two-stream
deep networks. The FC-CNN approach from the standard
RGB deep network obtains a mAP score of 59.0%. Our FC-
CNN approach from the two-stream deep network provides
a significant gain of 4.0% over the Standard RGB (FC-
CNN), with a mAP score of 63.0%. Our Two-Stream (FC-
CNN) approach improves the results on 25 out of 27 human
attribute categories. A significant gain in performance is
achieved especially for small shorts (+11%), profile pose
(+9%), sitting (+9%), kid (+8%), and tshirt (+6%) action
categories, all compared to the Standard RGB (FC-CNN)
approach. Furthermore, integrating the body part informa-
tion in our Two-Stream (FC-CNN) approach improves the
classification results with a mAP score of 67.7%.

All scale-coded FV-CNN image representations pro-
vide improved results compared to their respective FC-
CNN counterparts. The Standard RGB (FV-CNN) approach
achieves a mAP score of 66.7%. Our Two-Stream (FV-
CNN) approach outperforms the Standard RGB (FV-CNN)
method by achieving a gain of 2.1% in mAP. The results
are further improved by integrating part-based information
with a mAP score of 70.5%. In conclusion, our baseline
experiments clearly suggest that the proposed two-stream ap-
proach provides consistent improvements over the baseline
standard RGB deep network. A further gain in classification
performance is achieved by integrating body part knowledge
together with our two-stream approach.

B. Comparison with the State-of-the-art

Finally, we compare our approach with state-of-the-art
results reported in literature on the HAT-27 dataset. Most
state-of-the-art approaches report classification results based
on very deep networks (VGG-16 or VGG-19) [39]. We
therefore also combine our Two-Stream + Parts (FV-CNN)
approach with the pre-trained VGG-16 deep network fea-
tures. Table II shows the state-of-the-art comparison on the
HAT-27 dataset. The expanded part-based model (EPM)
approach [36] that learns a collection of discriminative



female frontalpose profilepose turnedback upperbody standing runwalk crouching sitting armsbent elderly middleaged young teen
EPM [36] 85.9 93.6 67.3 77.2 97.9 98.0 74.6 24.0 62.7 94.0 38.9 68.9 64.2 36.2
RAD [37] 91.4 96.8 77.2 89.8 96.3 97.7 63.5 12.3 59.3 95.4 32.1 70.0 65.6 33.5

SM-SP [12] 86.1 92.2 60.5 64.8 94.0 96.6 76.8 23.2 63.7 92.8 37.7 69.4 67.7 36.4
D-EPM [4] 93.2 95.2 72.6 84.0 99.0 98.7 75.1 34.2 77.8 95.4 46.4 72.7 70.1 36.8

SC-BODF [21] 92.0 95.7 62.9 86.9 95.1 98.8 80.3 31.6 87.0 95.5 54.7 74.6 72.9 39.3
Deep SMP [3] 93.7 95.6 67.0 85.2 96.0 98.4 83.6 32.1 86.6 95.1 55.1 76.6 75.3 44.8

Deep VLAD [38] 97.5 97.4 83.0 96.6 98.6 99.1 80.0 30.8 87.9 97.3 69.0 80.1 73.9 38.4
this paper 95.4 97.1 75.1 93.0 98.8 98.9 83.9 41.6 85.2 96.4 66.4 78.6 77.7 44.5

kid baby tanktop tshirt casualjacket mensuit longskirt shortskirt smallshorts lowcuttop swimsuit weddingdress bermudashorts mAP
EPM [36] 49.7 24.3 37.7 61.6 40.0 57.1 44.8 39.0 46.8 61.3 32.2 64.2 43.7 58.7
RAD [37] 53.5 16.3 37.0 67.1 42.6 64.8 42.0 30.1 49.6 66.0 46.7 62.1 42.0 59.3

SM-SP [12] 55.9 18.3 40.6 65.6 40.6 57.4 33.3 38.9 44.0 67.7 46.7 46.3 38.6 57.6
D-EPM [4] 62.5 39.5 48.4 75.1 63.5 75.9 67.3 52.6 56.6 84.6 67.8 79.7 53.1 69.6

SC-BODF [21] 70.5 31.3 56.5 80.4 62.8 69.2 62.0 52.9 66.4 84.7 63.5 72.5 65.2 70.6
Deep SMP [3] 74.9 39.8 55.9 81.5 62.2 74.1 59.7 53.1 62.4 85.8 63.0 75.7 58.3 71.5

Deep VLAD [38] 71.0 31.9 65.5 88.8 60.7 75.6 62.5 50.0 69.2 89.1 55.0 75.1 77.7 74.2
this paper 75.1 37.2 58.1 83.2 66.3 80.7 64.6 57.0 64.7 89.9 68.3 83.5 64.7 75.0

Table II
COMPARISON OF OUR APPROACH WITH STATE-OF-THE-ART METHODS ON THE 27 HUMAN ATTRIBUTES (HAT-27) DATASET. OUR APPROACH

IMPROVES THE STATE-OF-THE-ART BY ACHIEVING A MAP SCORE OF 75.0%.

templates appearing at specific scale-space positions obtains
a mAP score of 58.7%. The D-EPM approach [4] combines
the expanded part model with deep features and achieves
a mAP score of 69.6%. The semantic pyramid (SM-SP)
approach of [12] employing body part detectors together
with spatial pyramids achieves a mAP score of 57.6%. The
deep features variant of the semantic pyramid (Deep SMP)
approach [3] obtains a mAP score of 71.5%. The appearance
part based dictionary approach (RAD) [37] achieves a mAP
score of 59.3%. The scale-coded bag of deep feature ap-
proach (SC-BODF) of [21] combines the scale-coded deep
representations with FC features of Very deep (VGG-19)
network. The Deep VLAD approach of [38] combines the
deep features with the VLAD encoding scheme and obtains
a mAP score of 74.2%. Our approach improves the state-
of-the-art by achieving a mAP score of 75.0%.

C. Conclusions

In this paper, we evaluated the impact of two-stream deep
architecture for the problem of human attribute recognition.
In our two-stream deep architecture, we trained a second
stream using texture coded mapped images together with
the standard RGB stream. Afterwards, a scale-coded Fisher
vector representation is constructed from the two-stream
deep network. Furthermore, we also integrated the body part
information by employing deformable part-based models
together with our two-stream deep network.

Experiments on the challenging HAT-27 dataset clearly
demonstrate that our two-stream deep architecture provides
complementary information to standard RGB deep model
of the same network architecture. The integration of part
based information together with our two-stream network
leads to further gain in classification performance, leading
to consistent improvements over the state-of-the-art.
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