
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Vepsäläinen, Jari; Otto, Kevin; Lajunen, Antti; Tammi, Kari
Computationally efficient model for energy demand prediction of electric city bus in varying
operating conditions

Published in:
Energy

DOI:
10.1016/j.energy.2018.12.064

Published: 15/02/2019

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Vepsäläinen, J., Otto, K., Lajunen, A., & Tammi, K. (2019). Computationally efficient model for energy demand
prediction of electric city bus in varying operating conditions. Energy, 169, 433-443.
https://doi.org/10.1016/j.energy.2018.12.064

https://doi.org/10.1016/j.energy.2018.12.064
https://doi.org/10.1016/j.energy.2018.12.064


Computationally efficient model for energy demand prediction of
electric city bus in varying operating conditions

Jari Veps€al€ainen a, *, Kevin Otto a, Antti Lajunen a, b, Kari Tammi a

a School of Engineering, Department of Mechanical Engineering, Aalto University, Espoo, Finland
b Faculty of Agriculture and Forestry, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland

a r t i c l e i n f o

Article history:
Received 11 May 2018
Received in revised form
16 November 2018
Accepted 11 December 2018
Available online 11 December 2018

Keywords:
Surrogate modeling
Simulation
Energy demand
Electric bus
Sensitivity analysis
Uncertainty

a b s t r a c t

The uncertainty of operating conditions such as weather and payload cause variations in the energy
demand of electric city buses. Uncertain variation in energy demand is a challenge in the design of
charging systems and on-board energy storages. To predict the energy demand, a computationally
efficient model is required for real-time applications. We present a novel approach to predict energy
demand variation with a wide range of uncertain factors. A factor identification is carried out to
recognize the range of variation in the operating conditions. A computationally efficient surrogate model
is generated based on a previously developed numerical simulation model. The surrogate model is
shown to be 10 000 times faster than the numerical model. The surrogate model output corresponds
with the numerical model with less than 1% error. The energy demand of the surrogate model varied
from 0.43 to 2.30 kWh/km, which is realistic in comparison to previous studies. Successful sensitivity
analysis of the surrogate model revealed the most crucial factors. Uncertainty in temperature, rolling
resistance and payload contributed most to the variation in energy demand. Variation in these factors
should be taken into account when predicting energy consumption and while planning schedules for a
bus network.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Most city buses are still diesel-powered, even though an electric
powertrain would offer superior efficiency, higher peak torque at
low speeds, zero tank-to-wheel emissions and lower noise levels
[1]. Diesel buses are still preferred because of the higher invest-
ment costs of electric buses, which are roughly double compared to
diesel counterparts [2]. The costs are dictated by the expensive
lithium-ion batteries and charging systems. The investment costs
can be lowered with optimal battery sizing and shared charging
infrastructure [3]. Electric city buses are often recharged at the
route terminuses or at bus stops to allow minimal battery size and
charging power [4]. Electric passenger vehicles on the other hand
are typically recharged overnight. In addition, passenger cars do not
operate on predetermined routes, have no driving schedules nor
need to have extra-auxiliary devices, such as pneumatic actuators
for doors. For these reasons, the electric vehicle studies can be used
as a reference point, yet separate analysis is needed for the energy

consumption of electric city buses.
The prediction of the energy consumption of electric vehicles

and buses have been investigated previously and can be divided
according to the given input factors. These input factors are
mission-related kinematic factors (i.e., driving aggressiveness,
stops/km and travel time) and vehicle-related factors (i.e., ambient
temperature, auxiliary power consumption, payload, and drive ef-
ficiency). Mission-related studies of electric passenger and light-
weight vehicles report higher energy consumption on highway
routes than on city routes [5e7]. The route characteristics and stops
per kilometer have also been reported to affect the consumption of
electric city buses [8e10]. In addition, the driving style has been
shown to have a notable impact on energy demand variation of
electric city buses [11].

Previous studies have also investigated the auxiliary and heating
device usage, which has a significant impact on energy consump-
tion [5,7,12]. Lajunen [13] further investigated the cost-benefits
regarding different electric and hybrid powertrains of buses with
varying operating routes. The powertrain design had a significant
effect on consumption, but the effect was also dependent on the
route and scheduling. De Cauwer, Van Mierlo and Coosemans [14]* Corresponding author.
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implemented a consumption prediction model using a longitudinal
dynamics model (LDM) of an electric passenger vehicle. A similar
LDMwas used by Asamer et al. [15] to study the impact of variation
in vehicle-related factors to the energy demand. They reported that
the drive efficiency, rolling resistance and auxiliary power demand
were the most crucial factors causing variation in energy demand.

In the long term, the bus manufacturer and operator, the public
transport authority (PTA) and the public transport users benefit
from the quantification of the energy uncertainty. Better prediction
of variation in energy demand would improve the reliability of bus
schedules and reduce unnecessary overload of the electric grid due
to concurrent recharging events [16,17]. Overload peaks can also be
alleviated by installing more charging stations to share the charge
load amongst multiple chargers for significant savings in charging
costs [18]. The characterization of energy demand under uncer-
tainty can also help in sustainable route planning [19]. Thus, the
energy demand uncertainty is quantified here to minimize costs
and the environmental burden. Unnecessary over-dimensioning of
on-board energy storage leads to under-utilization of the battery
capacity and increased consumption because of the extra payload.
Furthermore, Reiter et al. [20] argued that the electric vehicle
battery capacity could be safely utilized more than the typical
70e85% to increase range, especially in rare worst-case events.

We present a novel approach to gain an insight into the energy
consumption of electric buses. The approach includes identification
of uncertain input factors, creation of fast-computing surrogate
model and sensitivity analysis. The uncertainty margins of 14 noise
factors affecting the energy demand are identified. The surrogate
model is developed from Monte Carlo simulations executed with a
dynamic electro-mechanical model of the electric bus. The electro-
mechanical model was developed previously [21], specifically to
study uncertainties in the energy demand. For the sensitivity
analysis, we extend the idea presented by Asamer et al. [15] to
electric buses with awider scope of input factors. We claim that the
approach increases the understanding of energy consumption, its
prediction, and possible variations under different driving condi-
tions and thus represents an innovation.

The paper consists of three parts. First, the original electric city
bus (ECB) model is presented, followed by the development of the
surrogate polynomial chaos expansion (PCE) model that is used for
the sensitivity analysis. After the sensitivity analysis procedure has
been explained, the factor uncertainty identification, model fidelity
and sensitivity analysis results are presented. Finally, discussion of
the research is followed by the conclusion.

2. Methods

2.1. ECB model

The previously developed ECB is openly available in Ref. [22] and
it is based on the model presented by Halmeaho et al. [23]. The
model is presented in Fig. 1 and it consists of Newtonian 1-DOF
mechanics, simplified powertrain, and a lithium-ion battery
model, described in Appendix A. The model is used to generate a
surrogate PCEmodel, to avoid extensive computation of the heavier

ECB and for future light-computation use in energy consumption
prediction. The PCE model is generated from uniformly distributed
Monte Carlo simulations (MCSs). The surrogate model fit and
sensitivity analysis are calculated with the UQLab toolbox for
MATLAB [24]. The uncertain input factors are called noise factors
(NFs). The 14 considered NFs are showed in Fig. 1, according to the
component they affect. The names of specific NFs and their un-
certainty margins are listed in Table 1.

2.2. Surrogate PCE model

The primary tool for input factor prioritization is sensitivity
analysis (SA). A sensitivity analysis can be performed locally (LSA)
by studying one factor at a time or globally (GSA), when all the
factors are studied at the same time. GSA approach was chosen,
because LSA is limited to linear regression models and lacks the
factor interaction and high-order effects provided by the GSA [25].
The GSA process phases are shown in Fig. 2, starting from the nu-
merical simulation model development and resulting with sensi-
tivity indices.

The previously developed simulation model, ECB, requires a
runtime of 70 s to simulate a 25-min driving cycle (Espoo 11 route)
on a powerful desktop computer. The Espoo 11 route driving cycle
variations are not considered here, yet have been previously
considered in the works of [26e28]. MCSs with the ECB model
require excessive computing, which is why a surrogate model is
developed. A surrogate model is a simplified analytical description
that approximates the original model [29]. There are many surro-
gate modeling techniques, yet PCE is selected for its simplicity and
accuracy [30]. The ECB model MðXÞ is a function of stochastic input
noise factors xi,

YD;R ¼ MðXÞ; (1)

where YD;R are the model responses (energy demand and regen-
eration). The margins of the 14 input noise factors X ¼ x1; x2;…; x14
need to be identified to set a realistic search space, before executing
the MCSs with the ECB model. The objective is to run as few MCSs
as possible, yet the multidimensional search space must be evenly
and thoroughly explored. A quasi-randomized Sobol’ sequence is
used as the space filling method to generate a joint, uniform dis-
tribution of the input factors [31]. Such low-discrepancy set of
points is required to achieve a uniform response surface to accu-
rately fit a PCE surrogate model.

The ECB model MðXÞ is considered as a black-box and the
simulation data is used for the surrogate modeling instead of
analytical representation, which would be unnecessarily complex.
The PCE approximation is represented as

MðXÞzM
PCEðXÞ ¼

X
a2A

yajaðXÞ; (2)

where the surrogate PCE model M
PCEðXÞ is the sum of orthogonal

multivariate polynomials jaðXÞ with the respected coefficients ya,
for the given multi-indices a [32]. A multiple linear regression
model consist of 1-degree multivariate polynomials for each vari-
able. Nonlinear behavior can also be represented by adding more
degrees of freedom to describe the effect of each variable. To create
a finite model, polynomial degree-level of A is selected. This se-
lection is referred as truncation and the finite model as full-basis
model. The standard truncation scheme was used, which con-
siders all the variables of degrees less than A ¼ 10.

The accuracy of the surrogate model is measured with a k-fold
cross-validation. The k is the number of validation iterations. ForFig. 1. The electric city bus model energy and control flow topology.
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each iteration, a new temporary surrogate model (TSM) is generated
from a randomly selected subset of the simulated data. In the case
of k¼ 5, independent TSMs are generated using 80% of the simu-
lated data and the remaining 20% is used for validating the TSM in
question. The higher the k, the more accurate the error estimation
[33]. A special case of a k-fold cross-validation is the leave-one-out
cross-validation (LOOCV), which consists of as many TSMs as there

are data points [34]. The independent TSMs (M
PCE\i

) each leave one
observation out of the model. The predictions of the TSMs are
compared with the simulation data of the one excluded observa-
tion. The total error of the actual surrogate model is computed with
the predicted residual sum of squares (PRESS) [35]. The resulting
leave-one-out error εLOO of the model is

εLOO ¼
XN
r¼1

�
MðxrÞ �M

PCE\rðxrÞ
�2,XN

i¼1

�
MðxrÞ � bmY

�2
; (3)

where bmY ¼ 1
N
PN

i¼1MðxrÞ is the sample mean of the simulation
response.

Since the PCE is based on the MCSs, the PCE can never be more
accurate than the original model. However, in practical applica-
tions, perfect theoretic accuracy is not pursued. Typically, we are
more interested in achieving a “close enough” useful estimate with
as little training as possible, defined with an error estimate. The
error estimation is used to further truncate the surrogate model. To
limit the degree of polynomials, the least angle regression (LAR)
algorithm is employed to iteratively search for a more compact
solution. Typically, most of the higher-level interactions terms do
not affect the model response significantly and can be discarded.
The full-basis PCE is compared to an iteratively generated PCE
model with increasing order of degree. The algorithm is repeated
until a target accuracy is achieved or a maximum number of iter-
ations is reached [35]. In Fig. 3, the leave-one-error is shown as a
function of PCE models of increasing degree.

2.3. Sensitivity analysis

Once the surrogate model fit is satisfactory, Sobol's sensitivity
indices (SIs) are computed. The SIs were originally introduced by
Sobol’ [36] and later enhanced by Saltelli, Andres and Homma [37]
and Saltelli [38]. The objective of Sobol's SIs is to minimize the
number of tests required for first-order effect Si and total effect STi

Si ¼ V ½EðY=XiÞ�=VðYÞ; (4)

STi ¼ 1� V ½EðY=X�iÞ�=VðYÞ; (5)

where E is the expected value of output Y with different input
matrixes. The brute-force calculation of the SIs would require
excessive computing, which is why Saltelli et al. [31] present
shortcuts to the computation. Their method only requires N(pþ2)
computations whereas the brute-force method requires N2. Here p
is the number of factors and N the number of samples. To reduce
computation effort even more, the coefficients of the multivariate
polynomials of the PCE surrogate model can also be used to
calculate the SIs [25].

3. Results

3.1. Uncertainty identification

The identification of the input factor uncertainty is based on
measurements or literature data [5,15,39]. A worst- and best-case
scenario values are set for each factor by implementing one-
factor-at-a-time tests. The resulting margins for the 14 factors are
presented in Table 1, which are divided into tolerance noise and
extensive noise. Five of the factors were classified as tolerance
factors, which were the battery capacitance and capacity, the motor
resistance, permanent flux and inductance. The tolerance bounds
were set to ±10% except for the battery capacity which is unlikely to
be more than informed by the manufacturer but is possibly worse
due to production errors (e.g. contaminated materials, assembly
tolerances). Thus, the tolerance range for the battery capacity is set
from �10% to 0%. The rest of the factors are classified as extensive
noise, which are each examined individually.

Mass: the studied city bus is a light-weight aluminum frame
bus, with a curb weight of 8500 kg. The maximum load for the
vehicle is 6500 kg, resulting in a maximum total mass of 15 000 kg.

Headwind: the wind speed and direction in Espoo is analyzed
with open source data provided by the Finnish Meteorological
Institute (FMI) for each day of the year 2016 [40]. In Fig. 4a, thewind

Table 1
List of considered input factors with their identified uncertainty range and worst-case value. The factors 4e10 and 14 affect to the battery pack, 1e3 to the vehicle and 11e13 to
the electric drive (PMSM). Another division is to extensive factors (1e9) and tolerance factors (10e14). Extensive noise has unique characteristics and distributionwhereas the
tolerance noise only fluctuates around a specified nominal value.

N Factor Description Range Unit Worst-case

1 MASS Total mass of the vehicle [8500, 15000] kg High
2 HW Headwind that causes aerodynamic drag [-10, 10] m/s High
3 RRC Rolling resistance coefficient [0.006, 0.02] e High
4 Ta Ambient temperature that affects the battery, HVAC and air density [-30, 35] �C Low
5 Tb Temperature of the battery pack [15, 30] �C Low
6 SoC Battery state-of-charge in the beginning [100, 50] % Low
7 BR Internal resistance growth of the battery due to aging [100, 200] % High
8 BAge Battery capacity fade due storage and cycle aging [0, 20] % High
9 AUX Auxiliary power for hydraulics, pneumatics and user devices [2, 7] kW High
10 MR Internal resistance of the motor, tolerance bounds [50, 60] mU High
11 MI Inductance of the motor, tolerance bounds [0.9, 1.1] mH Low
12 MF Flux induced by magnets, tolerance bounds [0.36, 0.44] Wb Low
13 BC Battery transient behavior capacitance, tolerance bounds [90, 110] % High
14 BQ Battery capacity, tolerance bounds [90, 100] % Low

Fig. 2. The global sensitivity analysis process for a computationally expensive simu-
lation model. The development of the simulation model here refers to the previously
developed ECB model presented in Fig. 1.
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speed is shown as a function of direction, 0� representing north.
The measurement sample time was 10min and the samples are
presented with purple circles. The maximum wind speed was

12.2m/s and the average standard deviation between every three
samples was 0.4m/s and 14�. However, the nature of the wind is
ever-changing and in the worst-case scenario the wind could be
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facing the bus throughout the route. Given the gusts of wind and
the varying course of the route, the headwind margins are set
to �10m/s and 10m/s.

Rolling resistance coefficient: the rolling resistance coefficient
is determined by tire wear and pressure, terrain and ambient
temperature [42]. In the best-case the rolling resistance is 0.006
with a smooth asphalt and new tires during summer time. In the
worst-case there is shallow snow on the road and the tires are
worn, represented with a rolling resistance coefficient of 0.02.

Ambient Temperature: the temperature fluctuation in Espoo
was analyzed with open source data acquired from the Finnish
Meteorological Institute [40]. The upper and lower temperature
bounds were estimated based on data from 2012 to 2016, as dis-
played in Fig. 4c. The minimum and maximum temperatures
were�26.2 and 31.6 �C, respectively. The range of temperature was
rounded up to �30 �C as minimum and to 35 �C as maximum.
Furthermore, the power consumed by the heating, ventilation and
air conditioning (HVAC) system is depended on ambient tempera-
ture [43] and humidity [44]. Since the HVAC system is not sepa-
rately modeled, the temperature dependent HVAC power is
estimated and interpolated according to Lajunen and Tammi [41];
as shown in Fig. 4b. The effect of humidity is included in this
approximation. Liu et al. [45] confirm a similar consumption-
temperature dependency behavior of passenger EVs. Suh et al.
[46] also report near 30 kW HVAC power consumption in real-
world electric bus tests. In addition, the air density is increased at
low temperatures, which increases aerodynamic drag. The air
density fluctuates 25% because of the ambient temperature
variation.

Battery Temperature: the LiFePO4 battery pack of the bus can
heat up to 60 �C without cooling [47]. The liquid cooling system
reduces the effect of ambient temperature changes and high load
situations in the battery pack [48]. Nevertheless, the battery tem-
perature fluctuates between 15 and 30 �C, according to measure-
ments on a real-world electric city bus.

Battery State-of-Charge (SoC): In the best-case, the battery is
initially full and in the worst-case only 50% of the battery SoC is
remaining. The worst-case battery SoC was determined as the

minimum charge needed to complete the mission when other
input factors were also set to their worst-case value.

Battery Resistance: Ecker et al. [49] have estimated that at the
end of resistive life the internal resistance of a lithium-ion battery
has doubled, which was also noted by Rogge, Wollny and Sauer
[50]. The internal resistance variation margins are thus 100% and
200% of the original value. In addition, the initial value of internal
resistance also grows exponentially as temperature decreases.

Battery Cycle Age: The battery ages with charge-discharge cy-
cles, excessive currents, elevated temperatures [51] and storage
time [52,53]. Lithium-ion batteries degenerate after each charge-
discharge cycle and with time [48]. After 20% decrease in the ca-
pacity the solid electrolyte interphase (SEI) has advanced so far that
the battery might short-circuit internally and should no longer be
used in automotive applications [53e55]. According to Rogge,
Wollny and Sauer [50]; if either the capacity fade of 20% or the
internal resistance is doubling is reached first, the battery is not safe
to use anymore.

Auxiliary Power: The doors of the bus are operated with a 6 kW
air compressor. In addition, hydraulic power is needed for power
steering and braking systems which consume approximately
1.5 kW continuously. Other auxiliary devices have an estimated
average power of 1 kW. Given these characteristics, the best
possible situation is estimated as average continuous auxiliary
power of 2 kW. In the worst-case the doors are opened frequently
and the auxiliary device power is maximum, leading to an estimate
of 7 kW power consumption in the worst-case scenario.

3.2. Efficiency of surrogate PCE model

The PCEmodel wasmainly developed to increase computational
efficiency. High computational efficiency is imperative for sensi-
tivity analysis withmultiple factors and in real-time applications. In
the context of electric vehicle modeling, Genikomsakis and
Mitrentsis [56] introduced a computation speed benchmark
method. They performed 60 model evaluations to determine the
average computation speed of a simulation model. The fastest
computation speed they achieved on an electric vehicle model that
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estimates energy consumption was over 50 000 times faster than
real-time.

In order to define the computational gain between our ECB and
PCE models, we evaluated both models 60 times. The average
computing times for the ECB and PCE model on a 1548 s route were
38.16 s and 0.0038 s, respectively. In comparison, the ECB model
was 40 times faster and the PCE model over 400 000 times faster
than real-time. The experiment desktop computer had an Intel(R)
Xeon(R) CPU @ 3.40 processor with 32 GB of RAM.

Model accuracy and computational efficiency are equally
important for real-time prediction of energy consumption. The
leave-one-out cross-validation error was less than 1% when
comparing the ECB and PCE model outputs. The comparison was
carried out with 1500 reference simulations with different com-
binations of input factor values. In conclusion, the developed sur-
rogate model is both computationally efficient and is able to
accurately predict energy consumption in various operating
conditions.

3.3. Sensitivity analysis

The sensitivity of the surrogate model was examined with
uniformly distributed factors within the uncertainty margins given
in Table 1. The studied system responses were energy consumption

and energy regeneration. Distributions of the responses are shown
in Fig. 5. The energy consumption distribution resembles a
Gaussian distribution, with a skew to the decreased consumption.
The distribution of regeneration is oppositely skewed, as expected.
At worst, none of the energy consumed was recovered through
regenerative braking, although up to 54% of the energy spent was
regenerated at best. On average, 28.0% of the consumed energy was
regenerated with a standard deviation of 8.7%, as shown in Table 2.
Bj€ornsson and Karlsson [57] reported an average regeneration of
27% with real-world driving data in Sweden that was analyzed with
an electric vehicle model. Soylu [8] also observed a 27% average
regeneration of the traction powerwith a hybrid electric bus, with a
maximum of 52% energy regeneration in the most favorable con-
ditions. Electric city buses tend to have higher regeneration rates
than other vehicles due to their operation cycle with multiple bus
stops. The simulated energy consumption varied between
0.43 kWh/km and 2.30 kWh/km with an average of 1.20 kWh/km.
The coefficient of variation (CV) was over 25% for both responses,
which is the ratio of the standard deviation to the mean. The CV is a
dimensionless value, which allows comparison of variates with
different datasets. The CV of both responses, energy demand and
regeneration, indicates to notable uncertainty [58].

To achieve low cross-validation errors, only 1000 data points
from the MCSs were necessary in the surrogate PCE model gener-
ation. The fully descriptive surrogate model would have required
15504 polynomials, but the truncated sparse PCE model had
maximumdegree of 5. The sparsemodels are constructedwith only
118 and 155 polynomials for consumption and regeneration
models, respectively. The truncation usually implies that the
interaction between the factors is low and that the effects are
mostly linear or quadratic.

The sparse PCE model sensitivity analysis resulted with Sobol'
indices for first-order and total effects. Only factors which
contributed more than 0.5% to total variation were included in the
analysis. In Fig. 6, the six most significant noise factors contributing
to the energy consumption variation are shown, with their
respective error bars. The ambient temperature, rolling resistance
and payload variation contributed 88.2% of the total variation in
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Fig. 6. Sobol’ indices of total (blue) and first-order effects (beige) of the six most significant noise factors contributing to the total energy consumption variation. The error bars of
each of the factors are presented in red.

Table 2
The metrics of the PCE surrogate models for consumption and regeneration. The
leave-one-out errors indicate a sufficient fit with the results acquired with the
original ECB model.

Metric Consumption Regeneration

Full model evaluations 1000 1000
Full basis size 15504 15504
Maximal degree 5 5
Sparse basis size 118 155
Leave-one-out error 0.003 0.016
Mean value 1.20 kWh/km 28.0%
Standard deviation 0.32 kWh/km 8.7%
Coefficient of variation 26.9% 31.2%
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energy demand. The impact of these three factors to the total
variation, with ECB and PCE model runs, is displayed in Fig. 7. The
more the sample points are spread out at a specific factor value, the
less it dominates the consumption variation. However, if the mean
consumption of samples with lower factor value is different than
with high values, the factor does contribute partially to the
response variation.

Three of the most significant contributors to variation in energy
regeneration were rolling resistance, battery state-of-charge and
headwind, shown in Fig. 8. These factors account for 89.5% of the
variation in the regenerated energy. The ECB and the PCE results of
each test run for these factors is shown in Fig. 9. Interestingly, the
rolling resistance affects the variation in energy demand quite
linearly yet the influence on energy regeneration has slightly
increasing exponential behavior towards low RRC values. The effect
of headwind exhibits exponentially decreasing influence at nega-
tive wind speeds. In addition, the available energy regeneration is
only depended on the battery state-of-charge when the charge is
over 90%.

The Sobol' metrics in Table 3 of both energy consumption and
regeneration show that the residual of the analysis is smaller in the
consumption analysis. The residual refers to the variation in energy

demand that cannot be explained by the factors included in the
analysis. Hence, the smaller the residual the more accurate the
analysis. The error confidence interval of all factors, for both energy
demand and regeneration, was 99%. The confidence interval is a
measure of reliability, which is analyzed for each factor individu-
ally. The tolerance noise factors influence less than 0.1% to both
system responses.

4. Discussion

Our simulations with a lightweight bus had a variation in energy
demand of 0.43e2.30 kWh/km on a single route. Previous studies
report a simulated route-dependent variation in the energy de-
mand of an electric city bus of 0.9e1.42 kWh/km [41] and
1.24e2.48 kWh/km [59] for light- and heavyweight bus structures,
respectively. In our recent study, the energy consumption varied
from 0.85 to 2.95 kWh/km in 15 routes, where the lowest con-
sumption was observed in average conditions and the highest in
worst-case conditions [60]. Theweight, aerodynamical drag, rolling
resistance and auxiliary power (including HVAC) were considered.

The main factor driving the variation in consumption was the
ambient temperature. The form of the temperature-consumption
relation (Fig. 7) is caused by the HVAC power in Fig. 4b. However,
the temperature changes also affect aerodynamic drag, through
variation in the air density. Even so, the authors estimate that well
over 95% of the impact of the ambient temperature variation is due
to the HVAC system, since the aerodynamic drag is one degreemore
dependent on wind speed than on air density.

Bottiglione et al. [61] report that air conditioning increases the
fuel consumption of a hybrid electric bus by 142% in real-world
conditions. As demonstrated in Fig. 4b, the power consumed by
the heating power at extremely cold temperatures is greater than

Fig. 9. Three of the most significant energy regeneration contributors: The rolling
resistance coefficient (RRC), the battery state-of-charge (SoC) and the headwind (HW).
The regression of RRC and HW is nearly linear and the SoC contribution is linear in the
range of 90e100% initial charge, due to battery overcharge protection.

Table 3
The metrics of the Sobol' global sensitivity indices. Low residuals indicate that the
surrogate model is reliable. The large influence of extensive noise factors show that
tolerance noise is not significant.

Metric Consumption Regeneration

Residual 0.69% 6.05%
Extensive Factors 99.26% 93.85%
Tolerance Factors 0.05% 0.1%
Confidence Interval 99% 99%
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Noise factor
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Fig. 8. Sobol’ indices of total (blue) and first-order effects (beige) of the three most
significant noise factors contributing to the total variation in energy regeneration. The
error bars of each of the factors are presented in red.

Fig. 7. Three of the most significant variation in energy demand contributors: The
ambient temperature (Ta), rolling resistance coefficient (RRC) and payload (MASS). The
parabolic relation of ambient temperature is caused by HVAC's temperature de-
pendency presented in Fig. 4b.
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that consumed by air conditioning during summertime in Finland,
which indicates that our result is reasonable. Especially the heating
system power is a challenge in electric vehicle and bus design,
because of the lack of excess heat produced by an internal com-
bustion engine.

The second most significant factor was the RRC and it was also
the most significant factor influencing the variation in energy
regeneration. However, the impact of RRC was linear to consump-
tion yet slightly exponential to energy regeneration; changes in low
RRC values increased the regenerated energy more than changes in
high RRC values. The effect of a HW decreased slightly more with
negative wind speeds. This behavior can be explained by the lim-
itation of motor performance under heavier loads, which resulted
in higher utilization of the mechanical brakes. Therefore, more
energy is wasted when the motor reaches its performance limit
during deceleration.

The RRC and HW also experienced sparse points of decreased
regeneration with all values. This “snowflake effect” was caused by
the 90% SoC regeneration limit set in the ECB model. The regener-
ation limit is set to prevent overcharging and overheating of the
battery. Thus, if the SoC was 90% or higher at the beginning, at least
a portion of the route was drivenwithout regeneration. The battery
SoC had no effect when the starting SoC was lower than 90%
because the individual measurements align horizontally with
respect to regeneration, as shown in Fig. 9. If the SoC limitation
were excluded, the minimum regeneration on the route would
have been 10%.

Furthermore, it is recommended that the charge-discharge cy-
cles would circle around 50% SoC to increase the lifetime of the
batteries [53,62]. However, too shallow depth of discharge (around
10% DSOC) might even expedite the degradation of LiFePO4 batte-
ries [63]. Thus, the optimal depth of discharge needs to be further
investigated for optimal battery dimensioning.

The small difference between the first-order and total effects of
the energy demand (Fig. 6) implies that the interactions of the
factors are low. This was expected, since the energy consumption is
dominated by a few factors whose physics are more additive than
multiplicative. In comparison, the high-order effects had some
minor contribution to the variation in energy regeneration (Fig. 8).
Theminor high-order effects in all of the factors are caused by small
correlations that even the most sophisticated quasi-random se-
quences such as the Sobol' sequence cause.

More factor interaction is observed in the variation of energy
regeneration (Table 3) because of the regenerative braking
controller, which disables regeneration if the battery is too full.
Furthermore, the amount of mechanical braking depends on
different loads, which results in minor unknown variations in the
model. It is also important to note that the variation in both the
energy demand and regeneration variation was caused mainly by
extensive noise factors rather than tolerance noise factors.

At the beginning of the study, there were challenges in the
uncertainty propagation since it led to failure modes during the
MCSs. The problemwas resolved by a worst-case scenario analysis.
Battery capacity was the main reason for failure modes in worst-
case testing and is thus crucial in terms of reliable operation. On
the other hand, oversizing the battery causes additional costs,
which are around V300-V600 per kWh for passenger cars [64] and
even higher for the lithium titanate (LTO) or lithium iron phosphate
(LiFePO4) batteries often used in electric buses, which cost around
V800 per kWh [16]. Optimal charging strategy can lengthen the
battery life by up to a factor of two or even three [53]. However,
small battery and tight operation schedules, which are intuitively
desired, increase power demand costs and higher load on the
electric grid [65]. Therefore, in future works the optimization of the
battery capacity and charging station positioning under uncertain

driving conditions when schedule abnormalities occur is
imperative.

The battery dimensioning can be carried out with the developed
surrogate model that is 10 000 more computationally efficient than
the original ECB model (Fig. 1). The PCE surrogate model is of close
approximation to the ECB model (Fig. 5), which is confirmed by
over 99% confidence interval (Table 3). The minimum number of
iterations to achieve the desired accuracy was determined empir-
ically by testing the model fit with after every 100 MCSs. However,
in some cases the model error saturates before the desired accuracy
is achieved. Model error saturation refers to a situation where the
increase of MCS iterations no longer increases accuracy. Further-
more, the relation between the energy demand and regeneration
distributions was as expected, since they were skewed in opposite
directions: higher regeneration was more probable and so was
lower consumption.

The results of the study were in line with the expectations.
However, every study has its limitations. As mentioned earlier, the
selected input factors do not account for all of the variation in the
outputs. Therefore, the analysis will be more complete when
various mission-related factors such as traffic and the driving cycle
are considered. However, such dynamic factors do not have theo-
retical worst-case values, and thus cannot be analyzed indepen-
dently, like the vehicle-related factors analyzed here. Furthermore,
the developed PCE model is intended for a specific purpose and it
behaves as expected in its defined input space. Extrapolation per-
formance was not studied. In addition, the presented model only
considers one route and should be retrained for other routes.

5. Conclusion

The energy demand sensitivity of an electric city bus was suc-
cessfully investigated with a novel, fast-computing surrogate
modeling approach. First, the uncertainty in 14 input factors was
identified on the basis of literature and measurements. The margin
identification and worst-case analysis were imperative to ensure
realistic results and to avoid failure modes in simulations. Then, the
input factor uncertainty was propagated using quasi-randomized
Monte Carlo simulations with a previously developed electro-
mechanical electric city bus model. The simulated data was used
to develop a surrogate model to predict energy demand and
regeneration 10 000 times faster than the original model. The
surrogate model was compared to the original ECB model with a
leave-one-out cross-validation that resulted in less than 1% error.

In addition to factor identification and surrogate model devel-
opment, the sensitivity of energy demand and regeneration under
uncertain conditions was analyzed. The mean energy demand was
1.20 kWh/km with a standard deviation of 0.32 kWh/km and on
average 28% of the kinetic energy was recovered through regen-
erative braking. The ambient temperature, rolling resistance and
payload uncertainty contributed most to the variation in energy
demand. Extreme ambient temperatures require more power from
the HVAC system, which by itself accounted for more than half of
the variation in energy demand. The variation in energy regener-
ation was determined by rolling resistance, battery state-of-charge
and headwind. The results indicate that the HVAC power, tire, road
and weather variations require further studies to reduce the vari-
ation in energy demand.

In future work, the surrogate model presented here will be
validated with real-world measurements. The validated surrogate
model can be employed to optimize battery size, predict energy
demand variation in real-time and to plan charging system capacity
utilization. The approach presented here provides an understand-
ing of the factors that drive electric vehicle energy consumption.
This understanding of specific cases is crucial, since the
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competitiveness of electric vehicles is limited because of range
anxiety. Moreover, in the case of electric city buses, range anxiety
can lead to battery over-sizing, which unnecessarily increases in-
vestment costs and the gross weight of electric buses.
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Nomenclature

Abbreviations
AUX Auxiliary power
BR Battery internal resistance
BAge Battery aging
BC Battery transient behavior capacitance
BQ Battery capacity
ECB Electric City Bus emodel
GSA Global Sensitivity Analysis
HVAC Heating, Ventilation and Air Conditioning
HW Headwind
LAR Least Angle Regression
LOOCV Leave-one-out Cross-Validation
LSA Local Sensitivity Analysis
MASS Mass of the bus
MCS Monte Carlo Simulation
MF Flux induced by motor magnets
MI Inductance of the motor
MR Internal resistance of the motor
NF Noise Factor
PCE Polynomial Chaos Expansion
PTA Public Transport Authority
RRC Rolling Resistance Coefficient
SA Sensitivity Analysis
SI Sensitivity Index
SoC Battery state-of-charge
Ta Ambient Temperature
Tb Temperature of the battery pack
TSM Temporary Surrogate Model

Variables
A Maximal Polynomial degree
M Model
M Model approximation
N Number of simulated observations
Y Response/Output
X Input factor matrix
ya Multivariate coefficient
εLOO Leave-one-out error
ja Multivariate polynomial
m Sample Mean
Si Sensitivity index, first-order effect
STi Sensitivity index, total effect

Subscripts
D Demand (of energy)
R Regeneration (of energy)
Y Response, Output

Superscripts
i Single column of the matrix, representing the

observations of one factor
� i All other columns of the matrix, exept i
r Individual iteration
PCE Polynominal Chaos Expansion
PCE=r Polynominal Chaos Expansion model iteration

Appendix A

The ECB model has a virtual driver, which is given a measured
velocity profile. The speed and current controllers adjust the motor
power so that the desired driving behavior is achieved. Themotor is
coupled to the tires with differential gear and a fixed ratio gear,
which produces tractive force Fx according to

mv$dvx=dt ¼
X

Fx � Fres �mvg sin q

Fres ¼ Fr þ Fd

Fr ¼ frmvg

Fd ¼ 0:5CdraAvðvx þ vhwÞ2

ra ¼ pa=RaTa
where

vx is the vehicle velocity
vhw is the head wind
g is the gravitational acceleration
q is the road angle
mv is the mass of vehicle
Fres are the resistive forces
Fr is the rolling resistance force
Fd is the aerodynamic drag force
fr is the rolling resistance coefficient
Cd is the drag coefficient
Av is the cross-sectional area of the vehicle
ra is the air density
Ta is the ambient temperature
pa is the air pressure
Ra is the specific gas constant

The battery model is described with

ub ¼ uoc � Rintib

uoc ¼
Xn
k¼0

�
ck � ð1� SOCÞk

�

SOC ¼ 1� ð1=QrÞ$
ðt
0

ðibÞ dt

where

ub is the battery equilibrium potential
uoc is the open-circuit voltage
ib is the battery current
Rint is the internal resistance
Qr is the coulombic capacity of the battery
SOC is a nonlinear approximation of the voltage as a function of
state-of-charge
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ck is the kth polynomial of SOC as it is fitted to a measured
LiFePO4 cell behavior
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