
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Vo, Thanh
Efficient anticorrelated variance reduction for stochastic simulation of biochemical reactions

Published in:
IET Systems Biology

DOI:
10.1049/iet-syb.2018.5035

Published: 01/09/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Vo, T. (2018). Efficient anticorrelated variance reduction for stochastic simulation of biochemical reactions. IET
Systems Biology. https://doi.org/10.1049/iet-syb.2018.5035

https://doi.org/10.1049/iet-syb.2018.5035
https://doi.org/10.1049/iet-syb.2018.5035


IET Research Journals

Efficient Anticorrelated Variance Reduction
for Stochastic Simulation of Biochemical
Reactions

ISSN 1751-8644

doi: 0000000000

www.ietdl.org

Vo Hong Thanh1

1 Department of Computer Science, Aalto University, Finland and

The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Italy.

* E-mail: thanh.vo@aalto.fi

Abstract: We investigate the computational challenge of improving the accuracy of the stochastic simulation estimation by inducing

negative correlation through the anticorrelated variance reduction technique. A direct application of the technique to the stochastic

simulation algorithm (SSA), employing the inverse transformation, is not efficient for simulating large networks because its com-

putational cost is similar to the sum of independent simulation runs. We propose in this paper a new algorithm that employs the

propensity bounds of reactions, introduced recently in our rejection-based SSA (RSSA), to correlate and synchronize the trajec-

tories during the simulation. The selection of reaction firings by our approach is exact due to the rejection-based mechanism. In

addition, by applying the anticorrelated variance technique to select reaction firings, our approach can induce substantial corre-

lation between realizations, hence reducing the variance of the estimator. The computational advantage of our rejection-based

approach in comparison with the traditional inverse transformation is that it only needs to maintain a single data structure storing

propensity bounds of reactions, which is only updated infrequently, hence achieving better performance.

1 Introduction

Biochemical reactions at cellular level are inherently stochastic pro-
cesses. Their occurrences are random events occurring after many
random collisions between molecular species. The stochastic effect
is further amplified when the involved species have low copy num-
bers (often refereed to as population). It has been repeatedly shown
that the stochastic noise plays an important role in the develop-
ment of biological processes [1–4]. The noise may further propagate
between cells and lead to significant biological responses [5–7].
Stochastic chemical kinetics has been adopted as a promising frame-
work to investigate the stochastic behavior of biological reactions by
allowing explicit incorporation of stochastic noise into the descrip-
tion of biological systems.

The stochastic chemical kinetics framework keeps track a discrete
population of each species, forming the system state, and assigns
each possible reaction between species a probability to fire pro-
portional to its propensity, depending on the reaction kinetics and
its reactants [8]. The temporal dynamics of the system state can
be fully expressed by the chemical master equation (CME) and its
realizations can be obtained by the stochastic simulation algorithm
(SSA) [9]. The basis of SSA is a Monte Carlo sampling where
a reaction is randomly chosen with probability proportional to its
propensity to update the state. SSA is an exact simulation proce-
dure in the sense that it does not introduce approximation error in
the sampling of reaction firings. Many methods have been intro-
duced for implementing the Monte Carlo sampling step including
the well-known direct method (DM)[9, 10], the next reaction method
(NRM) [11] and their improvements [12–20] as well as others [21–
28]. The rejection-based SSA (RSSA), introduced recently by Thanh
et al. [29, 30], provides an alternative approach for an exact real-
ization of the next reaction firings. Its principle is to abstract exact
propensity of each reaction with an interval, denoted by a pair of
propensity lower bound and upper bound, encompassing all possi-
ble propensity values, and employ these bounds to select reaction
firings. The next reaction firing in RSSA is selected in two steps.
First, a reaction is randomly chosen according to its propensity upper
bound. Second, a rejection-based test is applied to the reaction to
verify the selection to ensure it fires with correct probability. Further

improvements for the basic RSSA procedure above are discussed in
recent work [31–35].

The statistical results obtained by SSA will converge to the solu-
tion of CME in the limit of an infinite number of simulation runs;
however, due to limited computational resources, often a fixed num-
ber of simulation runs will be performed. The convergence rate in
the estimation of population of species by simulation is measured by
its variance, hence the confidence interval of the prediction. The esti-
mator in the case of independent SSA runs is not efficient because
its variance is proportional to the variance of each simulation run.
Variance reduction techniques have been introduced (see, e.g., [36–
38] for a comprehensive review of the techniques) to reduce the
variance of the estimator. The anticorrelated variance reduction, in
particular, is an attempt to improve the estimation by inducing nega-
tive correlation between the simulation realizations. The correlation
between simulations is achieved by transforming the same stream of
the random numbers used for the simulation. The theoretical anal-
ysis of such technique for the stochastic simulation of biochemical
processes with constant rates have been recently developed [39–41].
Even though the proposed strategy [41] is able to apply the anticorre-
lated variance technique to SSA based on the inverse transformation,
it is not efficient. In fact, the sampling strategy performing two sim-
ulation runs with the correlated stream of random numbers has the
same computational cost of running two independent SSA runs in
simulating large models. We investigate in this paper the efficient
use of the anticorrelated variance technique to induce dependence
between stochastic simulations of biochemical reactions to improve
both the accuracy of the estimation and its computational efficiency.
We tackle the computational challenge with a new algorithm that
employs the propensity bounds and the rejection-based approach
to correlate the simulations. We cope with the synchronization of
simulations when rejections of reactions occur in applying the anti-
correlated variance technique by decomposing the complex rejection
simulation procedure. Our algorithm is simpler to implement than
the strategies suggested by Schmelser and Kachltvlchyanukul [44]
where two random generators are used to synchronize the trajecto-
ries during the simulation. Our new algorithm reduces the variance
of the estimator, while it is still able to achieve better perfor-
mance in comparison with direct inverse transformation. We note
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our proposed strategy in this paper shares the same spirit with the
ones proposed recently in [42, 43], which are used to compute the
sensitivities of biochemical reactions.

The paper is organized as follows. Section 2 reviews the basics
of the stochastic approach for simulation and analysis of biochemi-
cal reactions. Section 3 presents our new algorithm for improving
accuracy of simulation estimation by the anticorrelated variance
reduction technique relied on the rejection-based stochastic simula-
tion approach. We first recall the background of the rejection-based
simulation framework with the concept of propensity bounds. Then,
we describe in detail our new approach to couple and to induce cor-
relation between simulated realizations. Section 4 benchmark our
algorithm to concrete to demonstrate its efficiency. The concluding
remarks are in section 5.

2 Stochastic simulation

We consider a well-mixed biochemical reactor volume of N molec-
ular species labelled Si for i = 1, . . . , N . The state X(t) of the
system at a time t is a N -vector X(t) = (X1(t), ..., XN (t)) where
Xi(t) denotes the population of species Si present in the system at
that time. Species can interact with other species to produce neces-
sary products for the development of the biological system through
M reactions denoted as Rj , j = 1, . . . ,M , each of which has a
general form:

Rj : v1jS1 + ...+ vnjSn
cj
→ v′1jS1 + ...+ v′njSn (1)

in which we call the species on the left side: reactants and the ones
on the right side: products. The rate of the reaction is specified by
the stochastic constant cj . The number of molecules of a reactant
consumed and the number of molecules of a product produced after
firing reaction Rj is determined by the non-negative integer vij and

v′ij , respectively, which are called stoichiometric coefficients. The

vector vj whose i-th is equal to v′ij − vij quantifies the net change in
the system state by firing reaction Rj . Thus, assume that the current
time t and the state X(t), and that a reaction Rj is scheduled to
fire later at time t+ τ . Then at the scheduled time t+ τ , the system
moves to a new state as X(t+ τ ) = X(t) + vj .

The stochastic chemical kinetics assigns to each reaction Rj ,
j = 1, . . . ,M , a propensity aj , defined such that, given the system
state X(t) at time t, the quantity aj(X(t))dt gives the probability
that Rj fires in the next infinitesimal time t+ dt. In general, the
propensity function aj is dependent on the state X(t) and the reac-
tion kinetics. The existence of the propensity function is called the
fundamental hypothesis of the stochastic chemical kinetics [9]. For
standard mass action kinetics, propensity aj of a reaction Rj exists
and is computed as:

aj(X(t)) = cjhj(X(t)) (2)

where cj is its corresponding rate constant and hj(X(t)) counts
the number of distinct combinations of reactants involved in the
reaction. For synthesis reaction, where species are introduced to
the system from an external source, the count of combinations of
reactants is set to hj(X(t)) = 1.

The probability distribution of the system state under the stochas-
tic chemical kinetics setting is fully described by CME; however,
an analytical analysis of CME, except for trivial cases, is difficult to
obtain due to the problem of high dimensional state space. SSA [9]
is often the choice to realize sample trajectories of the system state
X(t). In each simulation iteration, SSA drives the system to a reach-
able state by firing one reaction at a time. The reaction firing as well
as its firing time of SSA is obtained from sampling the joint probabil-
ity density function (pdf) p(τ, µ), defined such that, given the current
state X(t) at time t, p(τ, µ)dτ gives the probability that reaction Rµ

fires in the next infinitesimal time t+ τ + dτ . The analytical form

of p(τ, µ) [9] is given by:

p(τ, µ) = aµexp(−a0τ ) (3)

where a0 =
∑M

j=1
aj .

In Eq. 3, integrating p(τ, µ) over τ from 0 to ∞ shows that the
reaction firing reaction Rµ defines a discrete probability aµ/a0;
summing p(τ, µ) over reaction index µ from 1 to M gives that the
firing time τ follows an exponential distribution Exp(a0). These
observations are the foundation for the implementation of SSA,
For each simulation iteration, propensities aj for j = 1 . . .M are
computed. Then, the reaction firing time τ is computed:

τ =
1

a0
ln

(

1

r1

)

(4)

and the reaction firing Rµ is realized:

µ = smallest reaction index such that:

µ
∑

j=1

aj > r2a0 (5)

where random numbers r1, r2 ∼ U(0, 1). SSA advances the time to
t+ τ and moves the system to a new state X(t+ τ ) = X(t) + vµ
accordingly. The simulation repeats until a predefined ending time is
reached.

2.1 Simulation analysis

A conventional approach to analyze the dynamics of X(t) at a given
time t due to stochastic noise in biochemical reactions is to perform
many runs of SSA to generate its realizations. Specifically, let K
be the number of simulation runs. Let Xr , r = 1 . . .K, be real-
izations of state X∗ obtained by repeatedly performing K runs of
SSA under the same simulation conditions. By the law of large num-
bers, the statistical properties of the ensemble of K realizations Xr ,
r = 1 . . . K, obtained by SSA will converge to the ones by solving
CME.

To be concrete, let us concentrate on estimating the statistical
mean E[X] of state X given the ensemble of K simulation real-
izations. Consider the case when the samples Xr with r = 1 . . .K
are realized by K independent runs of SSA. Let <X> be the sample
mean of state X obtained from the ensemble of K simulations. It is
calculated as:

<X> =

∑K
r=1

Xr

K
(6)

The sample mean <X> is an unbiased estimator of the true mean
and it is ensured to approach the true mean E[X] under the condition
that K approaches infinity, i.e., limK→∞ <X> = E[X]. However,
in practice, the number of simulation K is often fixed due to limited
computational resources. To measure the convergence and accuracy
of the estimator <X>, the standard deviation, i.e., the square root of
the sample variance, is often used. Let V ar[<X>] be the variance of
the estimator by K independent runs of SSA. We have

V ar[<X>] =
V ar[

∑K
r=1

Xr]

K2
=

∑K
r=1

V ar[Xr]

K2
=

V ar[X]

K
(7)

in which the second equality is obtained using the fact that Xr , r =
1 . . .K, are independent and the last derivation is obtained because
Xr is an exact realization of X . Because the variance V ar[X] of
X is often unknown, in practice it is approximated by the (unbiased)

sample variance s2 as

s2 =

∑K
r=1

(Xr − <X>)2

K − 1
(8)

∗we omit the time t when it clear from the context
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2.2 Anticorrelated variance technique

The anticorrelated variance technique is an approach to reduce the
variance of the estimator by inducing negative correlation between
Xr , r = 1 . . .K. We consider here the case in which the correla-
tion is introduced between two realizations, but it can be extended
to multiple realizations [39]. Assume that K trajectories are divided
into groups of two (antithetic) realizations denoted Xr and X−r

where r = 1, . . . ,K/2. Assume also that Xr and X−r are neg-

atively correlated, i.e., their covariance cov(Xr, X−r) < 0. The
estimator based on the anticorrelated variance technique is:

<X>
A =

∑K/2
r=1

(Xr +X−r)/2

K/2
(9)

Note that <X>
A is also an unbiased estimation for the true mean.

The variance of the estimator by anticorrelated sampling, however,
is smaller than the one of independent sampling. Specifically, we
have

V ar[<X>
A] =

V ar[
∑K/2

r=1
(Xr +X−r)]

K2

=

∑K/2
r=1

(V ar[Xr] + V ar[X−r] + 2cov(Xr , X−r))

K2

<

∑K/2
r=1

(V ar[Xr] + V ar[X−r])

K2
= V ar[<X>]

(10)

because cov(Xr , X−r) < 0.
The correlation by the anticorrelated variance technique can be

applied directly to SSA based on the inverse transformation. Let
F (x) be the cumulative distribution function (cdf) of a random vari-

able Z. Then the two random numbers generated as Zr ∼ F−1(v)
and Z−r ∼ F−1(1− v) in which F−1(x) denotes the inversion of
F (x) and v ∼ U(0, 1), are negatively correlated. In Algorithm 1, we
outline the implementation of the anticorrelated variance technique
into SSA, which we call anticorrelated variance SSA (AV-SSA),
to sample two realizations Xr and X−r by using the inverse
transformation.

The main simulation loop of AV-SSA is in lines 2 - 13. For each
iteration, two random numbers r1 and r2 ∼ U(0, 1) are generated.
These random numbers are used to sample the next state for Xr by
SSA. Then, they are transformed using the anticorrelated variance
technique (line 6) to sample the the next state for X−r .

Algorithm 1: Anticorrelated Variance SSA

1: initialize state Xr = X−r = x0 and time tr = t−r = 0
2: repeat
3: generate two random numbers r1, r2 ∼ U(0, 1)
4: for (each trajectory k ∈ {r,−r}) do

5: if (k == −r) then
6: set r1 = 1− r1 and r2 = 1− r2
7: end if
8: compute propensity aj(X

k), for j = 1 . . .m, with state

Xk and total propensity ak0 =
∑m

j=1
aj(X

k)

9: compute τ = (1/ak0) ln(1/r1)
10: select minimum index µ such that

∑µ
j=1

aj(X
k) > r2a

k
0

11: update Xk = Xk + vµ and time tk = tk + τ
12: end for
13: until (tk ≥ Tmax for all trajectories k ∈ {r,−r})

The number of random numbers for each simulation step of AV-
SSA is two, while in the case of independent SSA runs is four. Thus,

the performance of AV-SSA is better than the independent SSA runs
in simulating small models because for these models the computa-
tional cost for random number generation significantly affects the
simulation runtime. A drawback of AV-SSA when simulating large
models is that its performance is the same as running two inde-
pendent SSA runs because the simulation in this setting is largely
contributed by the cost of selecting the next reaction firings and
propensity updates.

3 Anticorrelated variance reduction with
rejection-based approach

We present in this section an efficient simulation algorithm that
uses the anticorrelated variance technique to reduce the variance of
the estimator based on the rejection-based SSA (RSSA) [30]. We
rely on propensity bounds of reactions to couple the simulations
and then employ rejection-based procedure to verify the selection.
To cope with rejections of reactions, we decompose the rejection-
based selection procedure in the original RSSA procedure into
simple steps. Our algorithm is not only easy to implement, but also
has better performance than the strategy described in the previous
section.

3.1 Rejection-based simulation background

We recall the basics of RSSA [30], which is introduced recently
to reduce the number of propensity calculations during the simu-
lation. The mathematical framework for the simulation of RSSA is
the rejection-based sampling technique. Employing such a rejection-
based mechanism allows RSSA to exactly sample the pdf p(τ, j|x, t)
in Eq. 3.

For its simulation purpose, RSSA abstracts propensity of each
reaction Rj , j = 1, . . . ,M , into an interval [aj , aj ], enclosing the

exact value of the current propensity aj(X(t)). The propensity
bound [aj , aj ] are derived by constraining the current state X(t)

to an arbitrary interval [X,X ]. Having these propensity bounds, the
selection of the next reaction firing and its time in RSSA is per-
formed as follows. A candidate reaction Rµ for firing is randomly
chosen proportionally to its propensity upper bound aµ. The can-
didate Rµ is realized such that it is the smallest reaction index
µ satisfying:

∑µ
j=1

aj > r1 · a0 in which r1 ∼ U(0, 1) and a0 =
∑m

j=1
aj . The candidate then goes through a rejection-based test

with success probability aµ(X(t))/aµ to rectify the selection. The
implementation of the rejection-based test requires to compute the
exact propensity aµ(X(t)), but RSSA tries to avoid this by exploit-
ing the propensity lower bound with noting that if Rµ is accepted
with probability aµ/aµ, then it is also accepted with probability

aµ(X(t))/aµ. To implement this, let r2 ∼ U(0, 1) be a random
number. RSSA checks whether the condition r2 ≤ aµ/aµ holds.

If it is the case, then Rµ is accepted to fire without computing the
exact propensity aµ(X(t)). Otherwise, the exact propensity has to
be evaluated and the check r2 ≤ aµ/aµ is performed. If the can-
didate reaction Rµ is accepted after the rejection-based test, RSSA
generates its firing time. Otherwise, a new candidate is selected and
a new rejection test is performed.

Let k be the number of consecutive trials until the candidate reac-
tion Rµ is accepted. The firing time τ of the accepted candidate Rµ

is obtained by sampling the Erlang distribution Erlang(k, a0) in
which the shape parameter is k and the rate parameter a0. In fact,
the firing time τ of an accepted candidate is chosen to be the sum of
k independent exponentially distributed numbers with the same rate
a0. The correctness proof for the chosen distribution of the reaction
firing time in RSSA is discussed in detail in Thanh et al. [30]. This
fact allows us to decompose the rejection-based selection process of
RSSA and we will exploit it to synchronize the generation of samples
when applying anticorrelated variance technique.
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Fig. 1: Our of synchronization in the simulation of Xr and X−r

due to different number of trials leading to acceptance of reactions.

3.2 Anticorrelated realizations with rejection-based
simulation

There are two problems that need to be addressed for using the anti-
correlated variance technique with the rejection-based approach: the
coupling of realizations and the synchronization of these realizations
during the simulation. The coupling requires to efficiently corre-
late the realizations. The synchronization of realizations is easy to
achieve for inverse transformation; rejections make it harder because
the number of steps leading to the acceptance of the candidate reac-
tion varies between realizations. We discuss in the following our
approach to solve these issues.

We correlate the simulation of states Xr and X−r by defining
the global propensity bounds that confine all the values of reaction
propensities in the two realizations. Specifically, for each reaction
Rj , j = 1 . . .M , we compute a lower bound aj and an upper bound

aj such that aj ≤ akj ≤ aj for all k ∈ {r,−r}. Although it is pos-

sible to derive these global propensity bounds as the maximum and
minimum values from each realization, this approach requires to
maintain two separated data structures. We choose a simpler solu-
tion that only needs to handle a single data structure. More in details,
we compute the propensity bounds aj and aj by defining a fluctu-

ation interval [X,X] that bounds all populations of each species in

both the realizations Xr and X−r , i.e., Xi ≤ Xr
i , X

−r
i ≤ Xi for

each species Si with i = 1, . . . N . It is done by defining the fluctua-

tion interval as [Xi, Xi] = [(1− δi)X
min
i , (1 + δi)X

max
i ] where

Xmin
i = min(Xr

i , X
−r
i ) and Xmax

i = max(Xr
i , X

−r
i ), respec-

tively, and 0 < δi < 1 is a predefined parameter. In practice, a value
of parameter δi chosen between 10% - 20% for δi often gives the
good performance. Repeating this procedure on each species, we
are forming a fluctuation interval [X,X ] that bounds all species
in the reaction network. The propensity bounds aj /aj are then

derived by minimizing/maximizing the propensity function aj on

such fluctuation interval [X,X].
Knowing the lower bounds aj and upper bounds aj of reactions,

we can apply the rejection-based approach to select reaction firings

to update the state Xk for k ∈ {r,−r}. However, the difference in
the number of steps leading to the acceptance of the candidate reac-
tion raises a difficulty for the synchronization of realizations. Let us
consider an example described in Figure 1. In the figure, the state
Xr is updated after 4 trials while the second state X−r moves to
a new one after 3 trials. In addition, the state X−r even moves out
of the fluctuation interval, hence a new fluctuation interval has to
be defined, while the Xr does not require to define a new one. The
complicated situation is due to the complex rejection-based selection
for the next reaction in the ordinary RSSA algorithm encompass-
ing many steps. Candidate reactions are selected for the rejection
test, but only accepted ones considered, while all rejected candi-
dates are ignored. Once the candidate reaction is accepted its time
is generated.

We cope with the synchronization problem by decomposing the
multistep rejection-based selection into single steps. We rely on the
fact that the time for each trial of a candidate reaction is exponen-
tially distributed with rate a0. Specifically, for each trial, we will
select a candidate reaction Rµ and assign to it the time τ , generated
from an exponential distribution Exp(a0). The candidate is then
inspected through a rejection-based using the exact propensity value
evaluating with the corresponding state. In particular, the candidate

Rµ will be accepted to fire and to update the corresponding state

Xk , k ∈ {−r, r}, with success probability aµ(X
k)/aµ. After the

update, if there existing a new state that is no longer consistent with
current fluctuation interval, then a new fluctuation interval is updated
and new propensity bounds of reactions are computed. In this way,
the simulation of realizations X−r and Xr will be synchronized.

We outline in Algorithm 2 the detailed implementation of our
Anticorrelated Variance RSSA. To facilitate the update of species
and involving reactions when its population move out of the fluctu-
ation interval, we maintain the set UpdateSpeciesSet (initialized to
empty in line 7), which contains species that should update their fluc-
tuation interval due to the reaction firings, and a Species-Reaction
(SR) dependency graph [30], which is a directed bipartite graph
showing the dependency of reactions on species, to retrieve the reac-
tions affected by species. To build the SR dependency graph in line 2,
we inspect through each pair of species Si and reaction Rj and add
a directed edge from Si to Rj to the graph if a change in the popula-
tion of species Si induces a change in the propensity aj of reaction
Rj .

The simulation loop for selecting reaction firings is in lines 9 - 31.
For each iteration, three random numbers r1, r2 and r3 ∼ U(0, 1)
are generated. The random number r1 is used to generate the wait-
ing time (line 13) while r2 and r3 are used to select the candidate
reaction and validate it through a acceptance-rejection test (lines 15
- 24). The random numbers are then transformed to produce the anti-
correlated realization. If the firings of reactions cause the population
of species Si moving out of its fluctuation interval, the species will
be added to UpdateSpeciesSet for further processing.

The computation of the new fluctuation interval when there
is existing a species moving out of its fluctuation inter-
val is implemented in lines 32 - 38. First, a species Si ∈
UpdateSpeciesSet is retrieved and its new fluctuation interval is
computed. Then, the reactions affected by species Si, denoted by
the set ReactionsAffectedBy(Si), are extracted from the SR depen-
dency graph. Each reaction Rj ∈ ReactionsAffectedBy(Si) will be
retrieved to compute for new propensity bounds.

Let us sketch the proof for the exactness of the marginal distribu-
tion of states X−r and Xr , respectively, by Algorithm 2. We have
for each selection loop in lines 9 - 31, a candidate reaction Rµ is
selected with probability aµ/a0 (line 15) and its waiting time is
generated following an exponentially distributed Exp(a0) (line 13).
During the rejection test in lines 16 - 24, the candidate reaction Rµ

is checked through the rejection test by the exact propensity eval-
uating with the corresponding state. In particular, let us consider
the state X−r . The candidate reaction Rµ is accepted with prob-

ability aµ(X
−r)/aµ. So, the probability that a candidate reaction

is selected and accepted to update X−r is aµ(X
−r)/a0. Let k−r

be the number of trials until a candidate reaction is accepted. The
firing time of the accepted reaction is the sum of k−r exponential
random numbers with the same rate Exp(a0), hence following an
Erlang Erlang(k−r, a0) distribution. From this point, the correct-
ness argument of RSSA in Theorem 1 in Thanh et al. [30] is adapted
to prove Rµ selected correctly with desired probability. This ensures

the exact marginal distribution of X−r and respectively, Xr .

4 Numerical examples

We report in this section the applicability and efficiency
of our proposed algorithm in two biological examples: the
gene expression model and the gemcitabine model. All the
algorithms were implemented in Java and are made freely
available at https://anticorrelatedvariance-rssa.

sourceforge.io. The benchmark in this section is performed
on a Intel i5-540M processor.

4.1 Gene expression model

The gene expression model [45] describes an important regula-
tory process in which the genetic information is transcribed and
then translated into its encoded protein. It composes‘of two steps
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Algorithm 2: Anticorrelated Variance RSSA

1: initialize state Xr = X−r = x0 and time tr = t−r = 0
2: build species-reaction (SR) dependency graph
3: for each species Si with i = 1 . . . n define a bound [Xi, Xi]

such that Xi ≤ Xr
i , X

−r
i ≤ Xi

4: compute propensity bounds aj and aj for reaction Rj with j =
1, . . . ,m

5: set a0 =
∑m

j=1
aj

6: repeat
7: set UpdateSpeciesSet = ∅
8: generate three random numbers r1, r2 and r3 ∼ U(0, 1)
9: for (each trajectory k ∈ {r,−r}) do

10: if (k == −r) then
11: set r1 = 1− r1, r2 = 1− r2 and r3 = 1− r3
12: end if
13: set τ = (1/r1) ln(1/a0)
14: update time tk = tk + τ
15: select minimum reaction index µ s.t.

∑µ
j=1

aj > r2a0
16: set accepted = false
17: if (r3 ≤ aµ/aµ) then

18: set accepted = true
19: else
20: compute aµ(X

k)
21: if (r3 ≤ aµ(X

k)/aµ) then
22: set accepted = true
23: end if
24: end if
25: if (accepted = true) then

26: update Xk = Xk + vµ
27: for all (species Si where Xk

i /∈ [Xi, Xi]) do
28: set UpdateSpeciesSet = UpdateSpeciesSet∪

{Si}
29: end for
30: end if
31: end for
32: for all (species Si ∈ UpdateSpeciesSet) do

33: define a new [Xi, Xi] such that Xi ≤ Xr
i , X

−r
i ≤ Xi

34: for all (Rj ∈ ReactionsAffectedBy(Si)) do
35: compute propensity bounds aj and aj
36: update total upper bound sum a0
37: end for
38: end for
39: until (tk ≥ Tmax for all trajectories k ∈ {r,−r})

that are transcription and translation. Transcription process starts
when the RNA-polymerase (RNAP) binds to the promoter region
of the gene and activate it to produce RNA. During the transla-
tion, RNA molecules bind to ribosomes and translate to produce the
corresponding protein.

Table 1 describes the two steps of the gene expression model. It
consists of 5 species and 8 reactions. ProteinP is encoded by its gene
G. The RNA of the transcription is denoted by M . The transcrip-
tion was modeled by reaction R1 where gene G transcribes to M ,
which is then translated into protein P by reaction R2 or degraded
by reaction R3. A protein P can interact with other protein to form a
reversible dimer P2, represented by reactions R5 and R6. The degra-
dation of the protein is expressed by reaction R4. The dimer P2 can
bind to gene G to enhance the activation of the gene which modeled
by reactions R7 and R8. The initial condition of the gene expression
model is: #G = 1, 000, and #M = #P = #P2 = #P2G = 0.
The stochastic rates for reactions are: c1 = 0.09, c2 = 0.05, c3 =
0.001, c4 = 0.0009, c5 = 0.00001, c6 = 0.0005, c7 = 0.005 and
c8 = 0.9.

Table 2 gives the estimated population of three species P , P2

and G at time t = 200. To compare the estimation of the popula-
tion of species by algorithms, we fix the total number of simulations

Table 1 Gene expression model

Reaction

R1: G → G+M R2: M → M + P

R3: M → ∅ R4: P → ∅

R5: 2P → P2 R6: P2 → 2P

R7: P2 +G → P2G R8: P2G → P2 +G

to 1000. For SSA, 1000 independent simulation runs are performed.
For AV-SSA and AV-RSSA, we performed 500 simulation runs in
which each run simulation two correlated realizations. In addition,
the fluctuation interval of species in AV-RSSA is defined by ±10%
around the minimum and maximum of states. The table shows that
the standard deviation of the estimation by anticorrelated variance
reduction has been reduced. Specifically, the standard deviation in
estimation species P2 by AV-SSA and AV-RSSA is reduced by 35%.
In Figure 2, we plot the standard deviation in the estimation of the
population of species at different time points. The similar reduction
in the standard deviation by AV-SSA and AV-RSSA is also observed
during time.

Figure 3 shows the performance of algorithms in simulating the
gene expression model. For each simulation of this model, the

average number of reaction firings is 3.43× 106. AV-SSA saves

6.86× 106 random numbers in comparison with SSA. By saving
these random numbers, AV-SSA is 1.2 times faster than SSA The
performance of AV-RSSA is the best. In simulating this model, AV-
RSSA only performs 3664 propensity updates (approximately equal
to 0.1% in comparison with SSA). The huge update cost reduction
make AV-RSSA be 1.8 and 1.5 times faster than SSA and AV-SSA,
respectively. In Figure 4, we plot the total simulation time of algo-
rithms with different values of standard deviation of G. We apply the
sequential estimation [46] to simulate the model until the estimated
standard deviation of species G is less than a prescribed value. We
note that in the figure we did not show the CPU time of SSA with
prescribed standard deviation of G less than 3 because SSA could
not finish in reasonable time in comparison with other algorithms.

4.2 Gemcitabine model

Gemcitabine (2,2-difluorodeoxycytidine, dFdC) is an anti-cancer
chemotherapy drug. It has been used to treat different types of cancer
including non-small-cell lung cancer, pancreatic cancer, bladder can-
cer, and breast cancer [47]. Gemcitabine produces clinical effects by
incorporating its triphosphate metabolite (dFdC-TP) into DNA lead-
ing to the inhibition and blocking of DNA synthesis. It also shows
side effects and growing resistance. The gemcitabine model [48]
has been developed to understand the mechanisms of resistance to
gemcitabine efficacy. The model details mechanisms for the race
between gemcitabine and natural nucleoside triphosphate dCTP for
DNA incorporation. It also includes the mechanisms of resistance
by considering the role of ribonucleotide reductase (RR), deoxycyti-
dine kinase (dCK) and human equilibrative nucleoside transporter1
(hENT1).

We use Gemcitabine model developed by Kahramanoğullari et
al. [48]. The model consists of 22 species and 29 reactions which
are listed in Table 3. The reactions R1 - R4 abstract the trans-
portation of dFdC and 2,2-difluorodeoxyuridine (dFdU) into the cell.
The reactions R5 - R10 and R11 - R16, respectively, model the
transformation of dFdC and dFdU into these corresponding active
metabolites. dFdC is phosphorylated by deoxycytidine kinase (dCK)
to monophosphate dFdC-MP and then phosphorylated to form its
active metabolites dFdC-DP and dFdC-TP, respectively. Similarly,
the corresponding phosphorylated forms of dFdU are monophos-
phate dFdU-MP, diphosphate dFdU-DP and triphosphate dFdU-TP.
Reactions R17 - R18 model the deamination of dFdC into dFdU
by cytidine deaminase (CDA). The incorporation of dFdC-TP and
dFdU-TP into DNA to inhibit the DNA synthesis and to block cell

IET Research Journals, pp. 1–9

c© The Institution of Engineering and Technology 2015 5



Table 2 Estimated population of species in Gene expression model at time t = 200 by 1000 simulation runs.

Algorithm G P P2

SSA 17.70 ± 4.15 11281.44 ± 96.78 100764.99 ± 583.72

AV-SSA 17.88 ± 3.05 11276.96 ± 67.81 100772.11 ± 395.71

AV-RSSA 17.73 ± 3.08 11276.43 ± 70.79 100737.50 ± 378.16
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Fig. 2: Standard deviation of population of species in Gene expres-

sion model by 1000 simulation runs.
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Fig. 3: CPU time of algorithms in simulating a trajectory of the

Gene expression model.

proliferation in the early DNA synthesis chain is modelled by reac-
tions R19 - R20. The competition cascade that results in the incorpo-
ration of dCTP into DNA are modelled by the reactions R21 - R24

model. Finally, the inhibitory mechanism of is modeled by reactions
R25 - R29. We refer to Kahramanoğullari et al. [48] for the details
of the Gemcitabine model and the kinetics parameters. The initial
condition used in our simulation is #dCK = 1000, #RR = 1000,
#dCMPD = 1000, #CDP = 2000, #dFdC-out= 100000.

In Figure 5, we plot the standard deviation in the estimation of the
population of species by the independent SSA and the anticorrelated
variance approach. For this experiment, the simulation is performed
until the time t = 24. The total number of simulation runs is fixed
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Fig. 4: CPU time of algorithms in simulating Gene expression

model with prescribed standard deviation of G.

1000. The figure shows that the standard deviation of the estimation
by anticorrelated variance reduction is reduced varying from 20% to
50%.

Figure 6 depicts total CPU time of algorithm in simulating the
Gemcitabine model. For this experiment, there are, in average,

1.25× 107 reaction firings. For this model, the reduction in the
number of random numbers by AV-SSA, however, does not have a
large effect in its performance in comparison with independent SSA.
In contrast, the significant reduction in propensity computations
makes AV-RSSA to be the best. Specifically, AV-RSSA performs

about 2.284 propensity updates. Thus, it is 2.2 and 1.9 times faster
than SSA and AV-SSA, respectively.

4.3 FcǫRI signaling pathway

The high-affinity IgE receptor, known as FcǫRI, is a high-affinity
receptor for the antigen-specific immunoglobulin E (IgE). The recep-
tor is a tetramer consisting of three subunits: an α chain (FcǫRIα),
a β chain (FcǫIβ), and two disulfide bridge connected γ chains
(FcǫRIγ). The α chain serves as the binding site for IgE, while the
others involve in initiating and amplifying the downstream signal-
ing. The crosslinking of the IgE-antigen complex and the aggre-
gation of the FcǫRI leads to degranulation and release of allergic
mediators from the immune system [49]. The FcǫRI signaling path-
way due to its role controlling allergic reactions has been studied
extensively [50].

We use the FcǫRI model developed by Liu et al. [51], which is
developed to analyze the mechanisms of Syk phosphorylation in the
FcǫRI signaling pathway. The model contains 380 species and 3862.
We refer to the original work [51] for the details of the model and
kinetics parameters.

Table 4 gives the estimated population of some selected species
and Figure 7 depicts the performance of algorithms. The results are
obtained from 1000 simulating runs of the model with the end-
ing time t = 0.5. We have remarks about the results of algorithms
in simulating this model. First, the anticorrelated variance tech-
nique can help to reduce the variance of the estimation. Second, the
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Table 3 Gemcitabine model

Reaction

R1: dFdC-out → dFdC R2: dFdC → dFdC-out

R3: dFdC-out → dFdU R4: dFdU → dFdU-out

R5: dFdC + dCK → dFdC-MP + dCK R6: dFdC-MP → dFdC

R7: dFdC-MP → dFdC-DP R8: dFdC-DP → dFdC-MP

R9: dFdC-DP → dFdC-TP R10: dFdC-TP → dFdC-DP

R11: dFdU + dCK → dFdU-MP + dCK R12: dFdU-MP → dFdU

R13: dFdU-MP → dFdU-DP R14: dFdU-DP → dFdU-MP

R15: dFdU-DP → dFdU-TP R16: dFdU-TP → dFdU-DP

R17: dFdC → dFdU R18: dFdC-MP + dCMPD → dFdU-MP + dCMPD

R19: dFdC-TP → dFdC-TP-DNA R20: dFdU-TP → dFdU-TP-DNA

R21: ∅ → CDP R22: CDP + RR → dCDP + RR

R23: dCDP → dCTP R24: dCTP → CTP-DNA

R25: dCTP + dCK → dCTP-dCK R26: dCTP-dCK → dCTP + dCK

R27: dFdC-DP + RR → dFdC-DP-RR R28: dFdC-TP + dCMPD → dFdC-TP-dCMPD

R29: dFdC-TP-dCMPD → dFdC-TP + dCMPD

Fig. 5: Standard deviation of population of species in Gemcitabine

model by 1000 simulation runs.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

SSA AV-SSA AV-RSSA 

T
o

ta
l 

C
P

U
 T

im
e

 (
s)

 

Fig. 6: CPU time of algorithms in simulating Gemcitabine model

until time t = 24 with 1000 simulation runs.

performance of AV-SSA through the direct application of the anti-
correlated variance technique by inverse transformation is similar
to independent SSA. Third, the performance of AV-RSSA, which
uses rejection-based approach to imposes the correlation, is signifi-
cantly better than AV-SSA. Specifically, AV-RSSA is about 5 times
faster than AV-SSA. Such the performance gain achieved by AV-
RSSA comes from the reduction in the propensity update cost where
in order to form a simulation trajectory AV-RSSA performs only 229
updates, while AV-SSA has to perform 2.8× 105 updates.

5 Conclusions

We presented in this paper a new algorithm that improves the vari-
ance of the stochastic simulation by employing the anticorrelated
variance technique. We employ the propensity bounds of reactions,
introduced recently in RSSA, to correlate the trajectories during
the simulation. We synchronize the realizations by decomposing the
complex acceptance-rejection selection in the original RSSA proce-
dure into single steps. Our algorithm can produce exact simulation
trajectories with substantial correlation between these trajectories,
hence reducing the variance of the estimator, while still achiev-
ing better performance in comparing with the standard simulation
approaches. In this paper we only investigated the case of two
correlated realizations, but our approach is possible to extends for
many correlated realizations using hybrid strategy [39] based on the
simultaneous rejection-based simulation strategy [31]. Our approach
can also be applied to speed up the estimation by the multi-level
approach [52], which is promising for further improvements.
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