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Abstract—Received signal strength (RSS)-based device-free
localization applications utilize the communication between wire-
less devices for locating people within the monitored area. The
technology is based on the fact that humans cause changes in
properties of the wireless channel which is observed in the RSS,
enabling localization of people without requiring them to carry
any sensor, tag or device. Typically this inverse problem is solved
using an empirical model that relates the RSS to location of the
sensors and person, and utilizing either an imaging method or
a particle filter (PF) for positioning. In this paper, we present
an extended Kalman filtering (EKF) solution that incorporates
some of the beneficial properties of the PF but has a lower
computational overhead. In order to make the EKF work, we
also need to reconsider how the measurements are sampled
and processed, and a new processing scheme is proposed. The
developments are validated using simulations and experimental
data, and the results imply: i) the non-linear filters outperform
a popular imaging method; ii) the robustness of the EKF and
PF is improved using the proposed processing scheme; and iii)
the EKF achieves similar performance as the PF as long as the
new processing scheme is used.

Index Terms—received signal strength, wireless sensor net-
works, Bayesian filtering, positioning and tracking

I. INTRODUCTION

Interest towards non-invasive radio frequency (RF) sensing
has grown rapidly in the past decade. The technology is built
upon the fact that humans alter the propagation characteristics
of radio signals and at the receiver, these changes can be
quantified using the radio’s channel measurements. Research
has demonstrated the use of various radio signal measurements
for inference including: time delay [1], phase [2], and signal
strength [3]; and these have been used for various purposes
including: vital sign monitoring [1], activity and gesture recog-
nition [2], and localization [3]. In this paper, we consider
narrowband wireless devices that measure the received signal
strength (RSS) and we utilize the RSS for localization and
tracking purposes.

In RSS-based device-free localization and tracking (DFLT),
there are two widely used approaches for locating people:
fingerprinting [4], [5], and model-based approaches [3], [6].
Fingerprinting methods use a database of training data la-
belled with a person’s known locations. During runtime, the
current set of RSS measurements are compared to those in

the database to estimate the current location. Model-based
approaches use an a priori model for the changes in RSS
with respect to the locations of the sensors and person, and
localization is typically performed via imaging [3], [7] or se-
quential Monte Carlo (SMC) methods [6], [8]. Fingerprinting
methods are able to achieve high accuracy also in demanding
environments, but the training process is laborious and the per-
formance degrades exponentially as the environment is altered
[5]. Model-based approaches can be deployed quickly [9],
but the mismatch between the RSS model and measurements
results in degraded performance [10].

It is well known in the DFLT community that the model pa-
rameters tend to vary between different wireless links and that
the dispersion is larger the more cluttered the environment is
[11]. A recent work has shown that to overcome this challenge,
the model parameters can be estimated during run-time to
enable improved localization accuracy in challenging environ-
ments [10]. The work uses an imaging method for localization,
the estimates are enhanced using fixed-lag smoothing and
the model parameters are trained using a batch-processing
method. This problem could be addressed more formally using
Bayesian estimation where all uncertainties related to target
state and model parameters could be taken into account. So
far, particle filters (PF) are the only Bayesian filters that have
been proposed for DFLT and with these methods, smoothing
and parameter estimation are computationally very demanding.
This work introduces a non-linear Gaussian filter that is as
accurate as the PF but that is computationally much more
efficient, especially if smoothing and parameter estimation are
considered.

Specifically, we present an extended Kalman filter (EKF)
solution for tracking the kinematic state of the target in this
paper. In addition, we propose a new processing scheme that
enables us to resolve time ambiguities related to sampling
and processing and also allows us to solve the state evolution
more accurately. The development efforts are demonstrated
using simulations and validated with real-world experimental
data. The results imply that: first, the new processing scheme
increases robustness and accuracy of an existing PF solution;
second, the new processing scheme makes it possible to use
low-complexity non-linear Gaussian filters in DFLT; third, the



implemented EKF achieves similar performance as the PF
but with reduced computational overhead. The most attractive
feature of using low-complexity non-linear Gaussian filters
in DFLT is that they enable the use of Gaussian smoothers.
These smoothers can be used for approximating marginal
likelihoods and parameter posteriors which are needed by
various parameter estimation methods such as expectation-
maximization algorithms and optimization based methods [12,
Ch. 12]. This paper does not address Bayesian parameter
estimation but the paper builds a foundation for a system that
has such capabilities.

The remainder of the paper is organized as follows. In the
next section, related work is discussed. Thereafter, the problem
of tracking the kinematic state of the person is formulated
and models of the system are introduced. The methodology
of the paper is presented in Sections IV and V of which the
first concentrates on introducing the tracking algorithms and
the latter section concentrates on sampling and processing the
RSS measurements. The experiments and results are presented
in Section VI and thereafter, conclusions are drawn.

II. RELATED WORK

In RSS-based DFLT, the person is typically located and
tracked either using an imaging approach [3], [7], [10] or
SMC methods [8], [6], [13]. Radio tomographic imaging (RTT)
computes a propagation field image of the monitored area
[3], [7], the person is localized from the estimated image,
and then a Kalman filter (KF) is used for estimating the
kinematic state of the target [14], [10]. The SMC approach
is typically solved using a PF where the RSS measurements
are directly related to the person’s location using either an
empirical model [8], [13] or a theoretical propagation model
[6], [15]. RTT is computationally efficient, it is robust and it
provides a global estimate within the monitored area. As a
drawback, information can be lost in the two-step process to
first estimate the image and then the location and in addition,
discretization of the image inevitably degrades the localization
accuracy. The PF solution is more accurate if the RSS-model
describes the data well. However, the PF is computationally
more demanding, the estimates are local and the filter can
diverge. In this paper, we present an EKF solution that is as
accurate as the PF but that is computationally less demanding.

The networking requirements of a DFLT systems are well
known; the measurements should be gathered within limits of
the coherence bandwidth and coherence time of the wireless
channel [16]. To meet these limitations, DFLT system are
usually designed so that the transmission interval between
communications is minimized and typically the systems have
a transmission interval from a few milliseconds [10] to tens
of milliseconds [13]. The systems use time-division multiple
access (TDMA) or similar for exchanging packets [16], [17]
and at the end of the communication cycle, the measurements
are processed [6], [10]. In the filtering algorithm, it is com-
monly assumed that the measurements are taken at the same
time instant and that the environment does not change within
one communication round [6], [10], [13], [8]. This is a clear

simplification of the problem that is appropriate if the person
remains stationary or if the sampling rate is really high. In this
paper, we propose a new processing scheme that resolves the
time evolution correctly and we demonstrate that this improves
the performance of an existing PF solution and also enables
the use of low-complexity non-linear Gaussian filters when
tracking a moving target.

III. PROBLEM FORMULATION

A. Bayesian Filtering

The objective of RSS-based DFLT is to recursively estimate
position and velocity of the person using the measurements of
L wireless links. This problem can be formulated using a state
space model of the form

(1a)
(1b)

X =FxXp 1+ qr1
Zp = h(Xk) +ri

where x;, € R**! is the person’s state and z, € RI*!
the mean-removed RSS measurement vector, their noises are
assumed Gaussian, that is, qz—1 ~ N(0,Qx—1) and rj ~
N(0,Ry), £(-) is the dynamic model of the person, h(-) is
the RSS measurement model and k denotes the time. The mean
removed RSS is defined as z, = z; — z, where z;, is the RSS
of the nodes and z is the mean RSS vector computed during
an initialization procedure. The DC component contains no
information about location of the person and it is typically
removed from the RSS in DFLT [10], [8], [13], [6], [7]. We
refer to the mean-removed RSS measurements simply as the
RSS in the remainder of the paper.

The problem of tracking aims to construct the posterior
probability density function (PDF), p(x|z1.k), recursively
using the prediction and update stages [12, Ch 4.2]. The
prediction step calculates the prior PDF using the Chapman-
Kolmogorov equation

P(Xk|Z1:5-1) = /p(Xk|Xk—1)p(Xk—1|Z1:k—1)dxk—1, )

where it is assumed that p(xj_1|z1.x—1) is available from
the previous time step, p(Xp|xrp—_1) is a first order Markov
model and the state evolution is assumed known and defined
by Eq. (la). At time k, measurement z; becomes available
and the prior can be updated using the Bayes’ rule

P\Zg | Xk )P\ Xk |Z1:k—1
p(xilz1) = (z x5 )p(Xk| )

— 3
Tpanb)pCaelans_)dee” O

where the likelihood function p(zy|xy) is defined by Eq. (1b).
When f(-) and h(-) are linear and the noises Gaussian, Egs. (2)
and (3) can be solved using a KF. However, the optimal
KF solution is often intractable because the models are non-
linear and/or the noises are non-Gaussian. Thus, sub-optimal
methods are often required in Bayesian filtering such as the
EKF or PE.
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Fig. 1: On the left, z;, (-©-) and h(x)) (—) as a function of

time when a person crosses the link line twice. On the right,

2z, and h(xy) as a function of A.

B. Dynamic Model

In DFLT literature, a common choice for the dynamic model
is the second-order kinematic model [13], [14] for which the
single dimension dynamics and noise covariance are given by
[18, Ch 6.2]

1 7 13 1.2
_ — 2
F o= |:O 1:| ’ Q =q |:z,7_2 ) (4)
where ¢ is the power spectral density of the process noise

and 7 is the sampling rate. The state in the two dimensional
Cartesian coordinate system is defined as

Xk:[a:(k) ve (k) py(k) Uy(k)]

where p, (k) and p, (k) are coordinates of the person at time k,
and the velocity components are denoted as v (k) and vy (k).
Using (4), the dynamic model and noise covariance for xy
are defined as F = blkdiag(F, F), Q = blkdiag(Q, Q) and
blkdiag denotes the block-diagonal concatenation of matrices.
Now, Eq. (1a) can be written as

T

X = Fxp_1 + qp—1. &)

C. RSS Measurement Model

Consider link [ with transmitter (TX) ¢ and receiver (RX) j
that have sensor positions p; and p; in respective order and
generally the coordinates are defined as p = [p, py}T. The
excess path length defines the minimum distance a radio signal
travels that is altered by a person located at py at time &k and
it is given by

Ay(k) £ [lpi — prll + lp; — Pl = IPi = psll, (6

defining an ellipse with TX and RX located at the foci. The
person’s location can be parametrized using A;(k) and it has
been proposed that it is related to the RSS of link / via [8]

hi(x) £ peB/A (7)

where ¢ defines the maximum RSS change when the person
is in between the TX-RX pair and ) controls the rate of decay

with respect to A;(k). Considering the measurements of all L
links, the complete measurement vector is

h(xp) = [ha(xp), he(xi)] ", ®)

and the measurement covariance is Ry =
diag([07,, 072, ..., o07p]), where diag denotes a
square diagonal matrix. In Fig. 1, z; and h(xj) shown for a
single link as a person crosses the link-line twice, that is, the
straight imaginary line connecting the TX-RX pair.

IV. TRACKING ALGORITHMS

Given models of the system and assuming the noises Gaus-
sian, it is straightforward to implement a tracking algorithm
for the RSS-based DFLT problem. In the following, we
first present the extended Kalman filter solution. Then, the
commonly used particle filter approach is presented [8], [13],
[6] and thereafter, a Kalman filter solution used for example
in [10], [14] is given. All three solutions are presented so that
the reader can easily understand on which parts the filtering
algorithms differ and on which part they are the same.

A. Extended Kalman Filter

Given that F is linear and h(-) non-linear, the prediction
(92)-(9b) and update (9c)-(9f) steps of the first order additive
noise EKF are [12, Ch 5.2]

x,; = Fx;_1, (9a)
P, =FP; F" +Q;1, (9b)
Sk = Hy(x; )P, HL(x;) + Ry, (9c)
K, =P, HI(x;)S;", (9d)
x, = x5, + Ki (z — h(x;)), %e)
P, =P, — K;S;K}. (9f)

The elements for the Jacobian of h;(xy) given in (7) are
defined as

|:6hl @}T _ hi(xx) ( PT, — Pk PR, — Pk )
e 0Py A \lpn —pell - Ipr —prll )
the Jacobian for link [ is
Hix) =[50 0 4 0], (10)
and the complete Jacobian for the L links is
T
Ha(xi) = [(Ha(xi))T, ., (Ho(xx)] (11

It is to be noted that the measurements of the L links can
be sampled at different time instances and the filter recursion
can be performed link at a time since the measurements are
assumed independent. The recursion is performed as follows:
i) propagate x, and P, at time k ii) update the elements
of Hy(x; ) and h(x, ) corresponding to the links sampled
at time k before the update stage; iii) only the I/th row of
H, (x}, ), z, h(x, ) and [th diagonal element of Ry, are used
when updating link /; and iv) x;  and P, are updated using
(9e) and (9f) after each iteration.



TABLE I: Measurements, models and filtering equations

PF [
zy, (1b)
F and Q in (5)

EKF KF
yi (19)

Measurement

Dynamic model

Meas. model h(x;) and R (8) | H and N (20)
Prediction Step (14a) (92)-(9b)
Update Step (14b) (9¢)-(9) l (21a)-(21d)

B. Particle Filter

The PF approximates the posterior PDF using a set of
weighted particles [12, Ch 7]

M
p(Xk|Z1.1) = Zw}cé (x;C — X;C) , (12)
i=1

where w}, and x§ are the weight and state of particle 4, 6(-)
is the Dirac delta function, M is the number of particles and
SM. wi = 1. The weights in (12) are defined as

Pz |x})p(X X))

4(X X011 Z1:k)

% i

wh o< wh_| : (13)

where q(x%|x,_,,Z1.k) is the importance density. The se-
quential importance resampling (SIR) filter is commonly used
in DFLT literature and the algorithm can be implemented by
choosing the prior density p(x%|x: ;) as importance density
q(x%|x4.x_1,21.k), and applying the resampling step at every
time index [19]. Because resampling is applied at every time
step, wj, = -+ Vi simplifying (13) to w}, o p(zx|x}). Thus,
the prediction and update stages of the SIR filter can be
performed for each particle 7 as

X, ~ p (xelxh_1) (142)
L _ iY)2
=1 "

where z;(k) is the RSS measurement for link [ at time k& and
hi(+) is given in (7). After (14a) and (14b) are calculated for
each particle at time step k, the weights are normalized to sum
to unity using w} = wj />, w}, resampling is performed
thereafter and the approximate posterior PDF is given by (12).
The readers are referred to [12] and [19] for more details on
PFs.

C. Kalman Filtering Solution

The problem at hand can be formulated so that the measure-
ment model is also linear using radio tomographic imaging.
In RTI, a discretized propagation field image of the monitored
area is computed and then the person is located from the
estimated image. Thereafter, a KF can be used to estimate
the kinematic state of the target. In the following, we first
present RTT and thereafter, the KF algorithm is summarized.

In RTI, the RSS of the L links are modeled using [3]
7z, = Abg + g, (15)

where A € REXYN s a weight matrix that relates the spatial
loss field b, € RV*! to the RSS z;, € RLXL r; is the

measurement noise defined in (1b) and N is the pixel number.
The minimum mean square error estimate (MMSE) for the
model in (15), with Gaussian prior and noise is

by = (ATR'A+B) 'ATR 'z,  (16)
where B is the covariance matrix of the image. The element
of A for link [ and pixel n is [10]

1
—=exp (—Aun/A)
7z &P A/

where d; = ||pr, — Pg, || is the link length, A;,, the excess
path length and X\ controls size of the weighting ellipse. Note
the similarity of Egs. (17) and (7). The covariance matrix R
is diagonal with elements o2 and B for pixels m and n is
defined as [3]

{Ayin = A7)

{B}m,n = U}? exp (7dm,,n/ds) ) (18)
where o7 is the pixel variance, dy, ., = ||Pm — Pn| distance
between the pixels and d; is a user defined space constant.
From the estimated image by € RY*!, the person can be
localized by finding pixel n with highest intensity

Vi = [px(n) py(n)]T ,where n = arg max br, (19
and p, and p, denote the pixel coordinates. Now, (1b) can be
re-written for RTI as

(20)

1 0 00
yr = Hxy + ng, where H_{O 0 1 O}

and the measurement noise covariance is N = 0,2112.

The RTI + KF approach and non-linear filters use the
same dynamical model whereas the measurement models are
different; the non-linear filters directly relate the RSS to the
person’s location whereas the RTI + KF approach first uses
RTT to locate the target and thereafter, the KF is used to track
the kinematic state. Thus, the prediction step of the KF can
be done using Egs. (9a)-(9b) and the update step is given by
[12, Ch 4.3]

Sy =HP, H" + Ny, (21a)
K, =P, H'S !, (21b)
xp =%, +Kp (y;C — Hx;) , 21c)
P, =P, — KiSiK}. (214d)

The models and filtering equations are summarized in
Table I for the three approaches. Note that measurement noise
covariance are different for the filters, R, is related to the RSS
for the non-linear filters, whereas for the RTI + KF solution
Ny is related to the error of locating the target from the image.
In the subsequent sections, the RTI + KF solution is referred
shortly as KF.
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Fig. 2: An example of the token passing protocol

V. SAMPLING AND PROCESSING

In RSS-based DFLT, the transceivers are programmed to
transmit and receive packets from other sensors of the network.
Typically, the communication schedule follows a token passing
protocol where one sensor transmits at a time while the others
are in reception mode. After transmission, the turn is assigned
to the next node in the schedule following the sensor IDs in
sequential order. In the packets, the nodes include the most
recent RSS associated with the transmissions of others’. An
example of the token passing protocol is illustrated in Fig. 2
using a network of five nodes and as an example, the payload
of the transmission of node 5 at k = 5 is

Z5(5) = [25,1(1) 25_’2(2) 25’3(3) Z5’4(4) O] ,

where z; ;(k) denotes RSS of the packet that is transmitted by
node j and received by node ¢ at time k.

Let the wireless network consist of .S nodes, then, when the
last node in the schedule transmits at time k the payload of

the packet is
zs(k) = [25,1(h-5+1) z52(h—5+2) zs,5-1(k-1) 0].

Typically a base station listens to the ongoing transmissions
and it stacks the packets to form a measurement matrix

Z(k) = [z1(k—s+1)T zs(k)T}T (23)

before processing. The elements of Z are defined at time £ as

0 21,2(k—25+2) 21,8(k—=S)

29,1(k—S+1) 0 22,5(k—S)
Z(k) = . .
25,1(k—S+1)  252(k—S+2) -+ 0

In the following, we first present how time evolution is
considered in related works and thereafter, we propose an

alternative formulation that accounts for the time evolution
precisely.

A. Batch Processing

Ideally, all nodes could transmit and receive simultaneously
so that the elements of Z(k) would be sampled at the same
time index and the propagation channel could be considered
stationary within one communication cycle. This is not re-
alistic with simplistic narrowband radios that do not have
MIMO capabilities and typically Z(k) is given as expressed
in (23). We refer to this scenario as batch processing and in
the tracking algorithms, Z(k) is converted to a L = S? x 1
dimensional column vector and denoted as z(k). In batch
processing, the elements of z(k) are assumed to be sampled at
the same time instant so that the sampling rate is 7 = S - 7,
where 7, is transmission interval of the nodes. This is a clear
simplification of the problem but which is commonly made in
related works [8], [13], [6]. This simplification is justified if
the sampling rate is very high or if the person is stationary.

B. Sequential Processing

The dynamics of the person can be taken into account more
accurately, if the measurements are processed according to
their true time of transmission. In this case, the sampling
rate is 7 = T, and the measurement vector is defined as
z, £ row;{Z}. The downside of using z. is that the RSS
measurements are taken at different time samples and that the
vector is an average description of the propagation channel
within that communication round. The better alternative is to
use z; = col;{Z}, that is, the ith column of Z. The elements
of z; are associated to the same time instant as long as the
measurements are delayed so that at time &, the measurements
of time k—S+1 are used. As an example, when the last node
in the schedule transmits at time k, z;(k — S + 1) becomes
available at the base station. We refer to this sampling scenario
as sequential processing and z(k) is now an L = S x 1
dimensional column vector. As an example, z(k) for the first
node is defined as

z(k) = [0 zp1(k-5+1) Zs1(-541)]

VI. EXPERIMENTAL VALIDATION

In this section, performance of the filters are evaluated using
the different processing procedures described in Section V.
Followed by the experimental setup description, the filters
are numerically evaluated and the effect of sampling rate is
analyzed. Thereafter, performance of the filters is investigated
using experimental data gathered in an open indoor environ-
ment. In the experimental results section, the RSS is modeled
using (7) and it is assumed that the parameters for each link are
known. The parameters are derived using the known location
of the person and the training algorithm described in [10].
In the following sections, we do not present experimental
results for an RTI method that processes the measurements
sequentially since this would require an alternative approach
for estimating the images then the one given in (16).
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Fig. 3: The experimental setup. In the figure, the wireless
nodes are illustrated with B and the links using . The
target is presented with © and trajectory with —.

A. Experimental Setup

The used wireless sensors are Texas Instruments CC2531
USB dongles operating at the 2.4 GHz ISM band and the
sensors communicate in TDMA fashion as explained in [17].
The experiments are conducted using 30 sensors that are
deployed as illustrated in Fig. 3 to cover an area of 70m?.
The target moves along the trajectory shown in the figure with
a constant speed of 1 m/s. In the numerical results section,
measurements z;(-) are generated with (7) using ¢ = —5,
A = 0.03 and corrupted by i.i.d. Gaussian noise with variance
02 = 1. The power spectral density of the process noise is
set to ¢ = 1. The parameters of RTI + KF are: o7 = 0.002,
ds =2, O’?L = 0.5 and the pixel size is set to d, = 0.2 m. The
filters are initialized using known position and velocity of the
person and diagonal elements of P are set to 0.1. The PF uses
M = 1000 particles.

With each sampling rate, sampling scenario and filter com-
bination, 100 Monte Carlo simulations are performed. The
filters are evaluated using the root-mean-square error (RMSE)
of position €,, and velocity €, estimates. As an example, the
RMSE for position is defined as

1 & ,
E};(ep(k)) 7

where the distance error at sample k is calculated as e, (k) =
V02 (k) = (k)% + (p, (k) — by (F))2. in which p, and p,
denote the true coordinates and the hat accent indicates the
estimate. In addition, we use the ratio of measurement within
a defined threshold for examining robustness of the filters. The
metric is defined as

P% = Kzn/K . 100%,

TABLE II: Performance of the filters (7 = 0.1 s)

ép [m] €y [m/s] Py [m]
Batch KF 0.133 0.434 100.0
Batch EKF 0.052 0.310 100.0
Batch PF 0.047 0.331 100.0
Recursive EKF 0.032 0.303 100.0
Recursive PF 0.033 0.308 100.0

where K is the total number of estimates and K, is the
number of estimates within one meter of the true location.
Typically, the filter has diverged to the incorrect trajectory if
the estimate is a meter or further from the true position.

B. Numerical Results

In Fig. 4, the evaluation metrics are illustrated as a function
of communication cycle length, and in Table II, the results
are summarized for 7 = 0.1 s. As shown in the figure, the
EKF and PF yield comparative accuracy when the filters do
not diverge (py, = 100%) whereas the KF has notably higher
RMS errors due to the limited resolution of the discretized
images. On the other hand, the KF is most robust of the three
filters and it never diverges since the images provide a global
estimate.

There are two clear advantages of processing the measure-
ments sequentially. First, the measurement ambiguity is re-
solved, that is, zj and h(xy) represent the same time instance.
This is not true with the batch estimator since z;, are taken over
the entire communication cycle and it is assumed that h(xy) is
taken at a single time instant within that communication cycle.
The second advantage is that the dynamics of the person can
be taken into account more accurately since the sampling rate
is higher and the estimates can be updated more frequently.
In more rigorous terms, the posterior PDF estimates of the
EKF and PF approximate the true state more accurately when
time ambiguity is resolved, and the prior PDF of the non-
linear filters is more accurate when the time interval of the
prediction step is small.

The proposed processing scheme makes the EKF implemen-
tation more robust as shown in Fig. 4. As an example, the EKF
encounters divergency issues already when 7 > 0.3 s using
batch processing whereas 7 > 1 s when sequential processing
is used. Such an enhancement is mandatory to make the EKF
work in real world applications as we will demonstrate in the
next section. It is to be noted that the PF solution is much
more robust to modeling errors since it does not approximate
the filtering distribution using a Gaussian approximation but
instead, it uses a set of weighted particles. The particle
approximation is superior to the Gaussian approximation if
the posterior PDF is multimodal, severe non-linearities exist
and unexpected modeling errors are encountered.

C. Experimental Results

Results of the experiment are summarized in Table III and
as shown, the EKF is unable to track the person in this
experiment when batch processing is used. Divergence of the
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Fig. 5: Estimation accuracy with the three
positioning and velocity errors in (c).

TABLE III: Performance of the filters

ép [m] €y [m/s]
Batch KF 0.354 0.635
Batch EKF — —
Batch PF 0.145 0.595
Recursive EKF 0.129 0.569
Recursive PF 0.122 0.538

filter is mainly caused by batch processing and the reasons
elaborated above, but also modeling errors have a significant
impact. The PF is much more robust to such errors and the
filter is able to track the target successfully in this experiment
outperforming the KF solution. When sequential sampling is
used, the positioning accuracy of the PF solution improves
slightly. More importantly, the EKF is also able to track the
target and performance of the filters is demonstrated in Fig. 5.
As shown, the non-linear filters are able to the track the

filters. The coordinate estimates in (a); the velocity estimates in (b); and the

person with high accuracy, the EKF and PF yield very similar
performance and in the figures, the lines of the filters overlap
one another in most parts. In the figure, the lag caused by
batch processing and computing the images over the entire
communication cycle is clearly visible in the KF solution. The
non-linear filters are advantageous in this regard since they can
directly relate the measurements to the person’s kinematic state
and timing ambiguities can be resolved.

The average computation times of the filters per communi-
cation cycle are KF: 1.1 ms, EKF: 10.9 ms and PF: 30.2 ms
using a Matlab implementation and a standard laptop equipped
with a 2.70 GHz Intel Core i7-4800MQ processor and 16
GB of RAM. All filters can easily be implemented in real-
time since in the experiment, one communication cycle takes
87 ms on average. However, if computational resources are
limited one may prefer an EKF over a PF. On the other hand,
if our aim was to estimate the model parameters of the links
simultaneously or Bayesian smoothing was used to enhance



the state estimates with a given latency, the EKF solution
would be more tractable because in these problems the PF
is computationally very demanding. For example, the SIR
particle smoother requires resampling the state histories but
also keeping the full sample histories [12, Ch. 11].

VII. CONCLUSIONS

In this paper, a new processing scheme for RSS-based DFLT
is presented which enables us to resolve time ambiguities
related to processing of the measurements. In addition, it
allows us to take the time evolution into account more ac-
curately. It is shown that the new processing scheme increases
robustness of a PF solution, the de facto Bayesian filter used
for tracking in RSS-based DFLT. In addition, the processing
scheme makes it possible to use low-complexity non-linear
Gaussian filters in DFLT and in the paper, we present an EKF
solution. The simulations and experimental results imply that
the EKF achieves comparative performance as the PF in terms
of tracking accuracy but the computational overhead of the
EKF is significantly lower. The EKF solution enables new and
interesting research directions related to Bayesian smoothing
and parameter estimation, and these topics will be explored in
our future research.
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