
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Yao, Zhen; Yan, Zheng
A trust management framework for software-defined network applications

Published in:
Concurrency and Computation: Practice and Experience

DOI:
10.1002/cpe.4518

Published: 25/08/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Yao, Z., & Yan, Z. (2020). A trust management framework for software-defined network applications.
Concurrency and Computation: Practice and Experience, 32(16), Article e4518. https://doi.org/10.1002/cpe.4518

https://doi.org/10.1002/cpe.4518
https://doi.org/10.1002/cpe.4518

A Trust Management Framework for Software-Defined Network

Applications

Zhen Yao1, Zheng Yan1,2*

1The State Key Laboratory on Integrated Services Networks, School of Cyber Engineering, Xidian
University, Xi’an 710071, China

2Department of Communications and Networking, Aalto University, Espoo 02150, Finland

*Corresponding author: Zheng Yan (zyan@xidian.edu.cn; zhengyan.pz@gmail.com)

Abstract
The emergence of Software-Defined Network (SDN) has brought unprecedented
innovation to current networks. SDN’s two most notable features are decoupling and
programmability. Decoupling makes network management centralized in a control
plane. Meanwhile, benefitted from the programmable characteristic of SDN, new
functions of networking can be easily realized. However, these features also introduce
new security issues to SDN. Through the programming interface provided by SDN,
software engineers can easily develop network applications to generate networking
policies for SDN’s control planes for the purpose of guiding network routing. But it is
hard to guarantee the security and quality of these new applications. Malicious or
low-quality applications could damage a whole network. To solve this problem, we
propose a novel trust management framework for SDN applications in this paper. It
can evaluate applications’ trust values based on their impact on the network
performance (such as time delay, packet loss rate, throughput, etc.). These trust values
further play a decisive role for managing and selecting applications in SDN. We
evaluate this framework’s performance through a prototype system implemented
based on a floodlight controller. The experimental results show the accuracy and
effectiveness of our design.

Keywords: Software Defined Network, SDN Application Security, Trusted Computing Platform,
Trust Management, Trust Evaluation.

1. Introduction
Traditional network architecture is a kind of distributed architecture, and the functions
of control and data forwarding are distributed in each router. This kind of network
architecture appears an increasing number of drawbacks. Above all, because of a
distributed control mode, network maintenance and operation are very complicated
for network administrators. Second, switching equipment of traditional networks
integrates control function and forwarding function, so network upgrade needs to
replace a large amount of underlying switching devices, which is a huge expense to
telecommunication operators. What’s more, in traditional networks, the deployment of
new network functions requires network administrators to separately configure each

device, this kind of working mode is hard to meet the demand of fast development of
telecommunication networks and Network Function Virtualization (NFV) [1].

Software-Defined Network (SDN) makes a great contribution to solve the above
problems. SDN was born at the Stanford University in 2006. It was built to improve
the management of Stanford campus networks [2]. Its core design idea is to decouple
the data forwarding and routing control functions of traditional Internet Protocol
networks to achieve centralized control, distributed forwarding and programmable
characteristics. Network centralized management brings a global network view [3] to
network administrators and makes network configuration no longer a huge workload.
Meanwhile, network’s update can be realized easily through SDN’s Application
Programming Interface (API). Once an application is adopted in the application plane
of SDN, SDN controllers can translate its offered policies to flow rules and
automatically distribute the rules to specific switches to implement specific
functionalities. SDN has drawn wide attention from both academia and industry. Until
now, it has become one of core technologies of 5G wireless communication networks
[33], and the implementation of NFV can depend on SDN’s architecture [37, 38].
Most of commercial switch vendors and telecommunications operators have begun to
produce or deploy SDN products [4].

1.1 Motivation
As a new technology, SDN greatly contributes to network innovation, but it also
brings new security challenges [5, 32]. As introduced above, SDN has two specific
characteristics [31]. One is that the control plane of SDN is centrally responsible for
the management of a whole network. The other is that the emergence of the
application plane of SDN makes the network programmable. However, SDN’s
centralized control makes its controllers more vulnerable to Denial of Service attacks
or Distributed Denial of Service attacks (DoS/DDoS) [6]. Current solutions to
mitigate DoS/DDoS attacks mainly include DoS/DDoS detection [8-11], controller
optimization [12, 13] and loading balance [14]. Because the controller holds a large
amount of information about entire network structure, once it is invaded, the leakage
of network information will cause a big harm [7].

In this paper, we focus on the security issue of the application plane. The SDN
controllers can easily enable the 3rd party applications installed into the SDN
architecture, but they have no ability to distinguish the applications’ eligibility,
legality and trustworthiness by themselves [5]. Besides that, a poorly designed or
buggy application could unintentionally bring a series of vulnerabilities to the SDN
system. In short, the application plane mainly faces three security problems: 1) Lack
of certification and authorization: It lacks a robust authentication and authorization
mechanism for applications, especially for a large number of third-party applications.
2) Fraud traffic insertion: Malicious or buggy applications could generate erroneous
harmful flow rules and routing policies, but compromised applications are hard to be
detected. 3) Conflicts between applications: each application generates lots of flow

rules, but it’s hard to guarantee that there are no conflicts between these rules [40].
Therefore, how to deal with the conflicts among applications is another challenge of
SDN security.

In order to solve the application plane’s security issues, the controllers must have the
ability to identify whether the applications are trustworthy, or there are some
additional functions in SDN to assist the controllers to make correct justification on
this. In the literature, some role-based application authorization methods were
proposed to deal with application policy conflicts and to manage applications [15-18].
In [21, 22], authors focused on improving the resilience of controllers to both buggy
and malicious applications. In [19-20, 23, 36, 39], authors added a new function into
an SDN system to distribute privileges to SDN applications. However, the above
methods are deficient in establishing trust relationships between applications and
controllers. In particular, the role-based method is not fine-grained [15-18].
Applications’ impact on the data plane of SDN was ignored in the past work [21, 22].
Therefore, how to reasonably evaluate SDN applications according to their actual
impact on networks becomes a significant issue [41, 42]. Based on the evaluation on
applications, it is possible and capable for a SDN system to distinguish applications
and manage them.

1.2 Main Contributions
In this paper, we propose a new Trust Management Framework (TMF) for SDN
applications. It evaluates each application’s trust value based on its performance. This
trust value can be used to solve applications’ conflicts and detect malicious
applications. Our system mainly contains two modules: Network Performance
Monitor (NPM) module and Trust Evaluation (TE) module. The NPM module
consists of a number of probes that are configured to monitor the performance of flow
rules issued by different applications when they are fulfilled in the data plane. These
monitoring results will be sent to TE module with corresponding tags that indicate the
applications that cause the represented network performance and the time when the
network is affected. After collecting the above data and the feedback from other
application users (i.e., other controllers), the TE module calculates the application’s
current trust value and sends the trust value to the control plane and the application
plane. The controllers manage the applications based on their trust values. Meanwhile,
a Conflict Detection (CD) module is newly embedded into the control plane to detect
whether a new flow rule issued by an application conflicts with existing policies. In
order to guarantee the robustness and trustworthiness of this system, we introduce
Trusted Platform Module (TPM) [29] into our proposed framework. TPM is applied
to guarantee trust relationships among different modules in the system. In particular,
we apply a trust sustainment and control mechanism based on TPM, e.g., a protocol as
described in [28, 29], to ensure trustworthy performance monitoring and data
collection for the purpose of high-quality trust evaluation. This protocol is designed to
verify and further sustain the trust relationships among devices by attesting the device
configurations and ensuring expected configurations are applied during device

cooperation by embedding trust conditions into TPM. Furthermore, we develop a
prototype system using a floodlight controller based on the framework design. The
performance evaluation results demonstrate the accuracy and effectiveness of our
system.

The superiority of the proposed trust management framework system can be
summarized as follows: 1) High Accuracy and Fine-graininess: For some applications
with the same functions but different performance, the trust value evaluated by our
system can well reflect their performance differences. 2): Dynamic and Real-time: the
application’s trust value evaluated by the TMF is not static, but changed according to
its real-time impact on the network performance, which can be used to figure out
malicious or forged applications. 3) Robustness and Trustworthiness: Due to the
adoption of a trust sustainment and control mechanism based on TPM that is
embedded into the NPM probes and the NPM module, the network performance data
can be guaranteed as trusted, and further the trustworthiness of trust evaluation on
each application can be ensured. Specifically, the contribution of this paper can be
summarized as below:
• We propose a trust management framework for SDN applications that can

evaluate application trust in order to mitigate application policy conflicts and
detect malicious applications.

• We implemented a prototype system and design a series of experiments to test the
accuracy and the efficiency of our framework.

The rest of this paper is organized as follows. In Section 2, we briefly review related
work. Then, we introduce the preliminary knowledge about our proposed TMF in
Section 3. The TMF design including system architecture and technical details is
described in Section 4, followed by performance evaluation in Section 5. Finally, a
conclusion is summarized in the last section.

2. Related Work
The programmable feature makes SDN face to a new challenge on how to manage the
network applications to avoid maliciously utilizing this specific feature. In this section,
we review related work about SDN application conflict detection and resolution and
SDN application management.

2.1 SDN Application Conflict Detection and Resolution
SDN applications generate lots of flow rules when they are installed into controllers,
and flow rule conflicts are inevitable. In this part, we review existing work related to
application policy conflict detection and resolution. FortNox [15] is the software
extension of a Nox controller (a kind of SDN controller) that provides flow rule
conflict resolution based on the roles of applications. FortNox provides an algorithm
to check flow rule contradictions in real time. When FortNox’s rule conflict detection
engine finds some conflicts between different applications, it chooses the flow rules
produced by the application that has a higher security level set by the FortNox system.

Digital signature is used in FortNox to check applications’ security levels. Three
application roles are defined in this system with different security levels from high to
low: administrators, security-related Openflow applications, and non-security-related
Openflow applications. Based on the above work, the FortNox team also developed
another security system called SE-floodlight [16], which was designed to solve the
security issue of floodlight controller’s applications. Similarly, the way that
SE-floodlight resolves application conflicts is also to choose the application with a
higher security role level. Obviously, the above methods are not fine-grained.

FRESCO [17] performs as a secure application development platform by combining
with a NOX OPENFLOW controller. The basic framework of FRESCO consists of an
application layer and a security enforcement kernel. The application layer provides
four main functions: script-to-module translation, database management, event
management and instance execution. The emergency of FRESCO makes it possible
for a network manager to design or quickly develop a security application with a
script language. In this work, they also use the method proposed in [15, 16] to
mitigate rule conflicts, which is obviously not fine-grained.

In [18], the authors made efforts to solve policy conflicts between applications. They
implemented a fully-functioned SDN controller called PANE that allows a network’s
administrator to safely delegate his authority using its APIs. Furthermore, they
proposed a new algorithm for consolidating hierarchical policies and utilized this
algorithm to accomplish application policies conflict resolution. This work takes
advantage of policy atom to run a policy in an isolated environment. They used a tree
structure to store flow rules. The nodes in the tree store the routing information of
flow rules (e.g., IP number, port number, protocol, etc.). Its root node stores the flow
rules’ instructions. When a new policy is coming, the controller detects whether there
are new conflicts by checking each node in the existing policy tree (from leaf nodes to
root node). In this work, policy conflicts are resolved by dividing the usage level of
applications.

In the above existing work, the majority methods to solve flow rule conflicts are
based on the roles of applications that are distributed by their proposed system or
network administrators. To a certain extent, the role-based method can solve the
conflicts between applications, but it is not fine-grained. For example, when the roles
of conflicting applications are same, which application’s flow rules should be selected
becomes a new problem.

2.2 SDN Application Management
We review some papers related to SDN application management herein. Hayward et
al. designed a scheme to allocate permissions to network applications, which sets
limitations on application operations [19]. They defined a set of permissions to which
applications must subscribe during initialization with controllers and introduced an
Operation Checkpoint that implements permission check prior to authorizing

application commands. This work’s main contribution is to provide a method for
network administrators to add, remove, change and query application permissions.

Christian et al. presented a web-based northbound interface, which is secure,
controller independent, and supports the deployment of external applications [20]. In
their work, an encrypted channel is used to communicate between SDN applications
and controller. Meanwhile, they also proposed a trust management and resource-based
access control model for SDN applications. They introduced a certificate authority to
distribute privilege to SDN applications and managed them based on their certificates.

PermOF, a fine-grained permission system was presented in [23], which applies
minimum privilege on applications. This system mainly considers two aspects: the
most effective set of permissions and an isolation mechanism deployed to enforce
permission control. It gives an action permission classification to each application and
provides an isolation mechanism to enforce the permissions at an API entry.

Wang et al. proposed a permission management and authentication scheme called
PERM-GUARD for SDN applications [36]. It employs a permission authentication
model and introduces an identity-based signature scheme for the controller to verify
the validity of applications’ flow rules. In this work, they defined 16 kinds of
permissions for each application. In [39], Wu et al. presented an access control model
named Access Control Protector (AC-PROT) for SDN applications . AC-PROT
employs an attribute-based signature scheme for SDN applications and defines 16
kinds of privilege levels for SDN applications. In the above methods [19-20, 23, 36,
39], the application’s privilege is distributed by network administrators, which is
different from our work presented in this paper. We manage applications according to
their trust values that are evaluated based on application impact on networks.

Chandrasekaran et al. re-designed the controller architecture of SDN to make the
controllers and the network resilient to application failures [21]. They presented
LegoSDN that embodies described functions by providing two techniques. The first
one is AppVisor – an isolation technique used in Operating Systems to separate
address space of SDN applications from each other and controllers. The second one is
NetLog – a network-wide transaction system that supports atomic updates and
efficient roll backs. In this architecture, each application is run in an isolated Java
Virtual machine (JVM), and it is handled by NETLog intensively. Once there are
crashes in the applications, the NETLog will support the whole network back to a
normal work status based on concerned roll-back strategies. This work focused on
how to mitigate application failures’ impact on networks. But it did not propose a
detailed policy to manage applications.

Shin et al. provided a new controller called ROSEMARY [22], which has high
resistance to malicious or buggy applications. They designed a micro network
operating system called micro-NOS architecture. In this system, each application runs

in a sandbox. The system distributes a specific privilege to each application based on
monitored resource consumption of the controller caused by applying the application.
This work is advanced, but the authors focused on the influence of application on the
control plane and ignored their impact on the data plane. Although some applications
are less detrimental to the controller, they may cause paralysis of the underlying data
plane.

We list application management methods and their management basis together with
ours in [19-20, 22-23, 36, 39] in Table 1. To sum up, the existing work related to SDN
application management focuses on applications’ impact on controllers, and the
management of applications mostly depends on third-party authorization. But how to
reasonably determine applications’ privilege level and how to detect the application
that has a negative effect on the data plane in real time have not been well
investigated in all above studies. In this paper, we attempt to propose a trust
management framework to evaluate the trust of SDN applications in order to solve the
above open issues.

Table 1. Comparison of Application Management Methods and Management Basis

Scheme Methods Basis

OPCheckpoint [19] Permission List
15 kinds of permissions for each

application

Secure-North [20]
Application access

control
Application’s certificates,

RoseMary [22] Role-based 3 kinds of application authorization roles

PermOF [23] Privilege List 18 kinds of privileges for each application

PERM-GUARD
[36]

Identity-based 16 kinds of identities for each application

AC-PROT [39] Privilege List 16 kinds of privileges for each application

Our Scheme Trust-Based Trust Value

3. Background Knowledge and Preliminaries
In this section, we introduce the background knowledge of this paper work. We firstly
describe the structure of SDN and Openflow’s flow table. Then, we introduce the
trusted computing platform to explain the mechanism of TPM.

3.1 SDN Structure and Openflow

Fig.1. The architecture of SDN

As shown in Figure 1, the mainstream structure [2] of SDN includes three layers: data
plane, control plane and application plane. The data plane is made up of simple
interconnecting switches, and these switches forward data packets based on flow
tables sent from the controllers in the control plane through a southbound interface.
The control plane can be described as a brain of SDN. It is mainly responsible for
making routing policies, arranging the data plane’s resources and maintaining network
topologies. In a mature SDN architecture [13], the control plane is made up of
controller clusters instead of a single controller. A controller cluster includes a master
controller [35] that is mainly responsible for data plane management and some
common controllers that assist the master controller to manage the network. It is

 Controller Controller
 Controller

 Controller

Controller
cluster 3

Controller
cluster 2

Controller
cluster 1

Loading
balance

Routing
policy

Intrusion
detection

Other
network

APP

Northbound
interface

Southbound
interface

Application
plane

Control plane

Data plane

Network 1 Network 2 Network 3

Master
Controller

Master
controller

Master
controller

worth noting that these controller clusters are not isolated from each other. A
controller can be a member of several controller clusters and a master controller may
act as a common controller role in another controller cluster. This kind of design can
make full use of each controller’s processing power to mitigate DoS/DDoS attacks on
the control plane. The application plane consists of various applications. These
applications are mainly designed to achieve some specific network functions, such as
loading balance, firewall, intrusion detection, network monitoring, and so on. A
northbound interface is responsible for the communications between the control plane
and the application plane.

Currently, Openflow [24] is the most popular communication protocol used between
SDN’s controllers and switches/routers. In this protocol, forwarding data packets in
the data plane should follow flow tables. Figure 2 shows a structure of the flow table
in Openfow version 1.5. Among them, Match Fields and Instructions are the main
parts. Other parts are responsible for measurement, restriction and other auxiliary
work. The structure of Match Fields is also shown in Figure 2. They are used to
distinguish different kinds of data packets based on their IP addresses or other routing
information. The Instructions field describes what actions should be taken for packets.
These actions include required actions and optional actions. The required actions
include output packets, drop packets, and set the queue of packets. The optional
actions include set-Field (modify values in matching fields), change-TTL,
Push-Tag/Pop-Tag and other operations.

Fig.2. The structure of the flow table in Openflow version 1.5

3.2 Trusted Computing Platform (TCP)
Trusted computing is a technology to secure a computing system [25]. As we known,
physical trust is the most reliable. Trusted computing can ensure that a computing
system is physically trusted by applying a secure chip. By verifying a computer’s
hardware, operating system software, and application software step by step, trusted
computing can ensure that a computing platform can always operate as expected. If the
platform wants to be trusted always, it must have an ability to report its state
information in the condition that its identity information and private information
cannot be revealed. So, trusted computing must have the following abilities. First, it
can protect the platform’s sensitive information from being compromised. Second, it
can measure and evaluate the integrity of the platform’s entities or components based
on the characteristics of the platform. Third, it can authenticate another platform’s
status based on its characterization.

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Ingress
Port

Ether
Destination

(Dst)

Ether
Type

Vlan
Id

Vlan
Priority IP Src IP Dst IP

Protocol
IP ToS

Bits
TCP/UDP
Src Port

TCP/UDP
Dst Port

Ether
Source
(Src)

Fig.3. The structure of Trusted Computing Platform

Fig.4. A trust measurement chain

In order to provide the platform security-related capabilities as described above,
Trusted Computing Group (TCG) defined TCP’s structure in Trusted Platform Module
in TCG-1.2 [34]. As shown in Figure 3, TCP is made up of ten modules including
cryptographic related components, storage modules and some system protection
components that ensure TCP to work stably for a long time. Trusted computing is able
to provide a secure computing platform because it uses a trust chain delivery
mechanism. As illustrated in Figure 4, when a trusted platform is established, TCP’s
Trust Building Block (TBB) module creates a credible root to serve as trusted
computing start. Then, core root trusted measurement module verifies Root Trusted
Measurement (RTM) and Powers on Self-Test (POST) code in BIOS (Basic

Input/Output

Cipher
coprocessor

Cipher
generator

HMAC
engine

Random
number

generator

SHA-1
engine

Power
detector

Opt-in
Switch

Execution
engine

Non-volatile
storage

Volatile
storage

TBB creates a credible root

RTM code

POST Code2

BIOS Extension Code4

Operating System Boot
Code6

Operating System Code8

Application Code10 PC
R

[8-23]
PC

R
[0-7]

1

3

5

7

9

Execution flow

Metrics flow

Input/Output System). Meanwhile, the system stores the measurement summary in
Platform Configuration Register (PCR). In the premise that current part and code are
credible, TPM then assesses the security of next part or upcoming code and saving the
measurement value into PCR. Entire startup sequence follows the principle of "first
measure, then execute" [26, 27]. In this way, TCP starts with BIOS extension code,
then verifies the operating system loader, finally to upper applications, and it gives
each part executive power after it is proved to be credible. In TCP, a computer’s all
parts are verified level-by-level, the trust train is delivered from bottom to top, and it
extends trust from the root to the entire platform.

TCP’s measurement log stores each stage’s codes, detailed measurement information
of configuration status and history records of PCR values. If an attacker tampers
configuration information or executes malicious codes, the log will store a new
measurement value. During a platform operation process, the status information in the
measurement log is provided to platform users for verification, so that the users can
make a judgment on whether the platform is credible according to the credibility report
that includes the measurement log and the corresponding PCR values.

4. System Design
This section presents the proposed trust management framework. Firstly, we introduce
system structure and each module’s functionalities. Then, we describe technical
details of the TMF in terms of trust based flow rule selection, trustworthy network
performance monitoring, data collection with tags and trust evaluation.

4.1 System Architecture

Fig.5. The structure of trust management framework

Figure 5 shows the system structure of the proposed Trust Management Framework
(TMF). The SDN system is constructed with three layers: application plane, control
plane and data plane. As mentioned in Section 3, network policies are generated in the

Application PlaneApps

Control PlaneCD Module

Data Plane
Switches & Routers
with NPM probes

Flow rulesNorth Interface

South Interface Flow tables

NPM Module

TE Module

Trust
sustain
ment
& control

Monitorin
g result
collection

NSM probe authentication
Trust value
issuing and
Feedback
collection

TMF SDN system

Trust request

application plane and embodied in the control plane. The control plane generates data
forwarding commands based on a selected flow rule to update the flow tables that are
used to instruct data forwarding in the data plane. We add a Conflict Detection (CD)
module in the control plane to detect whether new policy conflicts appear. The CD
module decides which flow rule should be selected and applied based on the trust
values of applications. The data plane mainly comprises forwarding devices such as
routers and switches. Besides forwarding data flows, it also collects network data and
sends network status to the control plane. The network performance data can be
collected by embedding network performance monitor probes into the network
devices in the data plane.

The Trust Management Framework contains two modules: Network Performance
Monitor (NPM) module and Trust Evaluation (TE) module. The NPM module is
composed of a number of probes that are configured to monitor the performance of
flow rules issued by different applications when they are carried out and fulfilled.
These probes (either hardware or software or both) are located in suitable places of
the data plane in the network and are trusted by the TMF for fulfilling the network
performance monitoring (by applying the trust sustainment and control mechanism
based on TPM). They monitor the network performance in terms of throughput rate,
packet loss probability, time delay and so on when a flow rule is applied. These
monitoring results will be sent to the TE module with corresponding tags that indicate
the corresponding application that issues the flow rules. By collecting the above
monitoring results and also the feedback from other application users (e.g., different
controllers), the TE module calculates the trust values of the applications that issue
the flow rules. These trust values will be stored in TE module’s database, meanwhile,
they are regularly updated as long as the applications are running in the control plane.
Once the trust value of an application is generated or updated based on its
performance evaluation, it will be sent to the control plane’s CD module in order to
help it manage applications and assist it to select flow rules, even facing any conflicts
caused by different applications.

We assume that any applications in the application plane can authenticate themselves
with the control plane, e.g., by applying a public key cryptosystem. The data collected
by the probes are signed and cannot be denied by their providers. The identity
management of the system is based on Public Key Cryptosystem. The public key of
the system entity represents its unique identifier. Note that TMF can be located inside
the control plane or in a trusted third party and be shared by a number of control
planes.

Figure 6 shows the main procedure of system process. The procedure can be
described as follows:
Step 1: Before an application is installed in the application plane, the control plane
checks the trust value of this application. If this application’s trust value is sufficiently

high (e.g., higher than a threshold that is set 0.5), this application can be deployed.
Otherwise, the application should be discarded.

Fig.6. Trust Management Procedure

Start installing an application into the
control plane

The control plane checks the trust
value of the application

 If the trust value is
higher than the threshold N

The control plane
discards the
applicationThe CD module checks flow rule

conflicts

Y

 If conflicts exist

The CD module calculates the priority
of new and old flow rules(P_New and

P_Old), and compares them

Y

If P_New > P_Old

The new flow rules are written into the
control plane’s flow table and
distributed to the data plane

Y

N

N

The new flow
rules are
discarded

Probes monitor new flow rules’
network performance and provide

them to the TE module with the
application’s ID

The TE module evaluates the trust of
the application

The TE module feeds back the trust
value to the application and the control

plane

Step 2: Once an application is installed, the CD module checks if there are conflicts
between new flow rules and old rules. If there are no conflicts, the new flow rules will
be written into the control plane’s flow table and distributed to the data plane.
Otherwise, the CD module should calculate the priorities of both new and old flow
rules (P_New and P_Old) and should select the flow rules with a higher priority.
Step 3: The NPM probes monitor the network performance of new flow rules after
they are distributed from the control plane to the data plane and send the performance
data to the TE module with the corresponding application’s ID, as well as the time of
collection. Then the TE module evaluates the trust value of this application and
feedbacks it to the control plane for application management.

4.2 Trust Based Flow Rule Selection
Before an application provides its network requirements and desired network
behaviors (i.e., network policies) to the control plane, it should first send a request to
the TE module. Then the TE module checks the trust value of this application and
issues this value to the application and/or the control plane. If this is a new application,
the TE module gives it an initial trust value. When the application sends its policy (i.e.,
flow rules) to the control plane, it must sign the flow rules with its private key and
attach its certified trust value (issued by the TE module, i.e., signed by the TE
module). The CD module checks whether the flow rules conflicts with the existing
policies. The conflict detection principle is that several flow rules have the same
match field but different instructions. We define P_New represents the priority of the
new flow rule provided by the new application and P_Old represents the priority of
the old flow rule provided by another old application. In the process of conflict
resolution, the system follows the following rules: If P_New > P_Old, the old flow
rule is replaced by the new one. If P_New < P_Old, the new flow rule will be rejected.
If P_New = P_Old, it will be handled by a network administrator to make a final
decision or keep the old flow rule. Then the control plane converts the selected flow
rules into the controller’s flow table and sends them to the flow table in the data plane.
In the whole process that the flow rules are carried out, the NPM module monitors the
performance of their execution until they are carried out and fulfilled.

Herein, the priority of the application policy is calculated based in the trust value of
the application. In a simple way, 𝑃" = 𝐹(𝑇"), where 𝑇" denote application 𝑖’s trust
value, 𝑃" is 𝑖’s priority value. The bigger value of the 𝑇", the higher the 𝑃" is.
Notably, 𝑃" could be also impacted by other factors, not only trust, thus function 𝐹
could take other inputs (such as application authority level, importance level, etc.)
into account in order to generate an accurate priority value of an application.

4.3 Trustworthy Network Performance Monitoring and Data Collection
In order to ensure that the Network Performance Monitor (NPM) probes can work and
collect network data as expected, we apply Trusted Platform Module (TPM) [28-30]
into them. TPM’s working mechanism was introduced in Section 3. It can verify

platform’s trustworthiness based on its hardware and operating configurations.
Applying this feature, we use the NPM Module to manage the trust of NPM probes by
applying the trust sustainment and control mechanism [28, 29]. Once the probe is
attacked or intruded, the NPM module will be informed. Meanwhile, we also use
digital signature to guarantee the trustworthiness of collected network performance
data. When the monitored data is collected from a probe, the TE module checks with
the NPM module to ensure that the data-providing probe is in a trusted status.
Concretely, the probe sends its network performance monitoring data and its public
key to the TE module by signing the data with its private key. The TE module verifies
the signature and checks the trustworthiness of the probe by providing its public key
to the NPM module. If the probe is in a trusted status, its provided data can be
considered in the trust evaluation; otherwise, the TE module will discard the data if
the probe’s authentication with the NPM module fails (e.g., in a situation that the
probe is attacked).

Fig.7. Procedure of trustworthy network performance monitoring

Figure 7 shows the procedure of trustworthy network performance monitoring and
data collection. Herein, we apply the trust sustainment and control mechanism as
described in [28, 29] based on our previous work [30]. The procedure can be
described as follows:
Step 1: The NPM module sends a data collection request with a trust challenge to a

Verify the digital
signature of the

NPM data

Take appropriate
safety measures

Platform
configuration

changes violated
trust conditions

Trust conditions
verification and

registration

Trust credentials
verification

NPM probe TE moduleNPM probe’s TPM NPM module

1. Data collection request with trust challenge

2. Response with probe device configurations

3. Request for trust relationship establishment with
trust conditions

4. Confirmation of trust relationship establishment
with trust conditions embedded into TPM

Mutual trust conditions verification and assurance

Trustor
(Trustee)

Send NPM data and public key

Notify the distrusted
configuration changes

Notify NPM that distrusted configuration
changes on the probe

Send the
public keys of
trusted
probesTrustee

(Trustor)

NPM probe.
Step 2: After the probe receives this message, it responses with its device
configurations (trust credentials).
Step 3: Then the NPM module performs verification on trust credentials. If the
verification is successful, the NPM module will request trust relationship
establishment by providing its trust conditions (e.g., no platform configuration
changes and no additional software allowed to install, etc.).
Step 4: When the NPM probe gets the request, it verifies and registers the trust
conditions by embedding the trust conditions into its TPM. After that, it confirms the
trust relationship establishment with the NPM. With this way, the trust relationship
from the NPM module to the NPM probe is established.
Step 5: Optionally, the trust relationship from the NPM probe to the NPM module can
be also established if needed following a similar way. If the platform configurations
appear changes that violate the trust conditions, the NPM probe’s TPM will notify the
NPM probe and further the NPM module about the distrusted configuration changes.
The NPM module will correspondingly take an appropriate safety measures, e.g.,
breaking down the connection with this NPM probe and informing the TE module to
discard the data collected by this probe.

4.4 Tag of Data Collection
For aggregating the data collected by different probes, we need to check the tags of
the data in order to aggregate the data related to a specific application for evaluating
its trust. There are two ways to mark a tag on the data.

Method 1: The control plane embeds the ID of application into its flow rules that are
selected and applied into the data plane. The probes know the application ID during
the monitoring. But the privacy of the application could be influenced.

Method 2: The control plane informs the TE module the application IDs and the time
duration of the applied flow rules. The TE module matches the flow rule selection
result and its period of usage with the time of performance monitoring data collection.

In what follows, we assume that the data collected for trust evaluation has a tag
attached, which indicates its corresponding application.

4.5 Trust Evaluation
There are two sources to collect data for evaluating the trust of an application: the
monitored data provided by the NPM probes and the feedback from other controllers.
Multiple controllers could exist in the system. The evaluation algorithm should
support this situation.

𝑇",* denotes the trust value of application 𝑖 at time 𝑐. It is mainly contributed by two
parts: the feedback from controller 𝑗 (𝑗 = 1,… , 𝐽) at time 𝑐0, denoted as 𝑇𝑓",* and
the performance monitoring result, denoted as 𝑇𝑝",*. First, TMF sends a request to all
controllers that have interactions with application 𝑖 for feedback. After receiving the

request, controller 𝑗 sends back its feedback 𝑇𝑝0,",*3 in an honest way. This honest
behavior of controllers can be assumed due to the responsibility of network operators
for offering high quality networking services. 𝑇𝑝",*3,0 denotes application 𝑖’s trust
value fed back from the controller 𝑗 at time slot 𝑐0. Suppose TMF receives a total of
𝐽 feedback at time slot 𝑐. Then it aggregates all feedback by considering time impact
(the more recent the feedback, the more valuable it is) and the value of 𝐽’s impact
(since the bigger the value of 𝐽, the more accurate the evaluation is) based on
Formula (1):

𝑇𝑓",* =
4(5)
5
∑ 𝑇𝑝",*3,0
5
078 × 𝑒;

<=>=3<
? , (1)

where 𝜃(𝐽) = 1 − 𝑒𝑥𝑝	(;5D

E(FGH)D
) is the Rayleigh cumulative distribution function to

model the impact of 𝐽 on trust evaluation; 𝜀 = − 5
5′
	 , parameter 𝐽′ is the total

number of controllers in the system. Parameter 𝜏 is applied to control the decay of
𝑇𝑝0,",*3 since the most recent feedback should contribute more on the trust evaluation.

For calculating 𝑇𝑝",* based on the performance monitoring results, we apply the
following algorithm to prepare 𝑇𝑝",* calculation.
Algorithm 1: Preparation of 𝑇𝑝",* calculation
Input: Monitoring result of network throughput rate 𝒕𝒓, packet loss probability 𝒍𝒑,
and time delay 𝒕𝒅; the threshold value of network throughput rate 𝑻𝑯_𝒕𝒓; the
threshold value of packet loss probability 𝑻𝑯_𝒍𝒑; the threshold value of time delay
𝑻𝑯_𝒕𝒅;	𝑭𝒂𝒄𝒕𝒓 = 𝑭𝒂𝒄𝒍𝒑 = 𝑭𝒂𝒄𝒕𝒅 = 𝟎. (Note that we usually set the threshold as the
value that is tested at the time when the controllers do not run any third-party
applications.)
If 𝒊𝒏𝒑𝒖𝒕 = 𝒕𝒓, 𝑭𝒂𝒄𝒕𝒓 = 𝟏

𝟏 + 𝒆;𝒙
(𝒕𝒓>𝑻𝑯_𝒕𝒓)
𝑻𝑯_𝒕𝒓

^ ;

If 𝒊𝒏𝒑𝒖𝒕 = 𝒍𝒑,	𝑭𝒂𝒄𝒍𝒑 = 𝟏
𝟏 + 𝒆;𝒚

(𝑻𝑯_𝒍𝒑>𝒍𝒑)
𝑻𝑯_𝒍𝒑

^ ;

If 𝒊𝒏𝒑𝒖𝒕 = 𝒕𝒅, 𝑭𝒂𝒄𝒕𝒅 = 𝟏
𝟏 + 𝒆;𝒛

(𝑻𝑯_𝒕𝒅>𝒕𝒅)
𝑻𝑯_𝒕𝒅

^ ;

Where 𝒙, 𝒚, 𝒛 denote the scales of the impact of 𝒕𝒓, 𝒍𝒑 and 𝒕𝒅, respectively.
Output: 𝑭𝒂𝒄𝒕𝒓; 𝑭𝒂𝒄𝒍𝒑; 𝑭𝒂𝒄𝒕𝒅.

After collecting all 𝐹𝑎𝑐 from all probes at time slot 𝑐, the TE module first checks
the tags attached to 𝐹𝑎𝑐 with regard to application 𝑖	(𝑖 = 1,… , 𝐼) and then
calculates 𝑇𝑝",* by combining 𝐹𝑎𝑐d," from probe 𝑘 that contains tag 𝑖 with
Formula (2).

𝑇𝑝",* =
∑ (fg*hi,j,kGfg*lm,j,kGfg*hn,j,k)o
jpq

rsGt
, 𝑟 ≥ 1, (2)

where 𝑟 is a parameter to ensure 0 ≤ 𝑇𝑝",* < 1 and the validity of Formula (2). 𝐾
is the total number of probes that provide monitoring results with regard to
application 𝑖.

Finally, we aggregate 𝑇𝑓",* and 𝑇𝑝",* together and also consider past trust value 𝑇",*′
at a previous time slot 𝑐′ based on Formula (3).

𝑇",* = 𝛼𝑇",*′ + 𝛽𝑇𝑓",* + 𝛾𝑇𝑝",*, (3)
where 𝛼 + 𝛽 + 𝛾 = 1, they are weighting parameters of the above three input factors.

5. System Performance Evaluation
In this section, we firstly introduce TMF prototype implementation. We then design a
number of experiments to show the accuracy and efficiency of our system. At last, we
analyze its robustness.

5.1 System Implementation
We implemented a TMF prototype system based on the design specified in Section 4.
As shown in Figure 8, we installed floodlight version 1.2 controller in PC 1 to
simulate SDN’s control plane. This computer’s CPU is Inter Core i3-3220 at
3.30GHZ and RAM’s size is 4GB, running operating system is Ubuntu 16.04 LTS.
We developed the CD module with Java and embedded it into the floodlight’s source
code package. The TE module, implemented with Java in PC 1, connects to the CD
module to transmit trust values. The TE module consists of trust value evaluation part
and MySQL database that stores applications’ trust values. In PC 1, we also
implemented the NPM module to support the trust sustainment and control
mechanism by challenging the probe devices via TPM in order to ensure the
credibility of NPM probes and the trustworthiness of network performance data
collection.

Fig.8. TMF prototype’s structure

Floodlight controller

Mininet

Basic module CD module

Switch 1 Switch 2 ... Switch n

NPM

PC1_TPM

TE module

Trust value
evaluation

PC2_TPM

Trust value
Database

PC 1

PC 2

NPM Probes
NPM database

Refer to Figure 8, we installed Mininet that can create a realistic virtual network in a
single machine PC 2 to simulate a number of Openflow switches. These switches
make up the data plane and directly connect to the PC 1’s floodlight controller. PC 2’s
CPU is Inter Pentinum G630 at 2.70GHZ with 4GB RAM, running operating system
Red Hat Enterprise Linux Server 6.5. PC1 connects to PC 2 through a 100 Mbps
wired network. We simulated NPM probes with a network measurement tool called
Iperf to collect network performance data. After the data are collected, they are stored
in PC 1’s MySQL database. There are three tables in this database that respectively
record time delay, throughput rate, and packet loss probability of network nodes
affected by different applications’ flow rules in different time slots. TPM is installed
in both computers PC 1 and PC 2 to ensure the credibility of the NPM probes. The
code in PC 2 was written in C++ language.

5.2 Performance Evaluation
Our system’s main task is to evaluate the trust of applications and manage them based
on it. Therefore, the accuracy of trust evaluation is the first that should be assessed. In
addition, we also tested the efficiency of the prototype system in terms of CPU usage,
memory usage and operation time of each system procedure.

5.2.1 Accuracy
For evaluating the accuracy of application trust evaluation, we did some preparation.
Firstly, we simulated two types of network topology in the data plane. As shown in
Figure 9, the first topology is a Fat-tree topology that has 20 Openflow switches and
16 hosts. This kind of network topology is usually used in data centers. The second
type is a Star topology that has 6 Openflow switches and 10 hosts. Secondly, to
simulate different SDN applications, we designed three loading balance applications
(LB APP). In order to differentiate the performance of these three applications, we
only let the first application (LB APP 1) issue the flow rules that make the
transmission of data packets in network topology evenly distributed in each
equivalent link. The second loading balance application (LB APP 2) generates some
flow rules conflicted with the first one. Although it can also complete the task of load
balancing, its performance is worse than the first one because some of its flow rules
make data packets choose a further router, which results in uneven distribution of
flows. The third one (LB APP 3) is an application with some malicious behaviors. In
this application, there are flow rules that make some network switches regularly
discard packets or delay packet forwarding. In these three applications, the first
application’s performance should be the best and the worst is the third one since it is
malicious. Thirdly, as mentioned in Section 4, an application’s trust value is mainly
contributed by two parts: its performance monitoring reports from the control plane
where it currently runs (𝑇𝑝",*) and its performance feedback from other control planes
(i.e., in other SDN systems) (𝑇𝑓",*). To simulate an application’s feedback from other
control planes, we run the above loading balance applications in different control
planes’ controllers for different network topologies (i.e., SDN system 1 and SDN
system 2, as shown in Figure 9). Then we calculated their 𝑇𝑝",*3,0 and stored them in
a database to serve as the feedbacks from other control planes.

Fig.9. Network topologies applied in TMF’s accuracy evaluation

Table 2. The Values of Parameters of Trust Evaluation

Formula Parameter Value

Formula (1)

𝐽 2
𝐽′ 4
𝜎 3
𝜏 24 hours

Algorithm 1
𝑥 1
𝑦 1
𝑧 1

Formula (3)
𝛼 0.2
𝛽 0.2
𝛾 0.6

We ran the three loading balance applications in the two types of networks with
Fat-tree topology and Star topology, respectively. The TMF calculated their trust

Fat-tree Topology

Star Topology

SDN system 1 SDN system 2

Controller Controller

values in different time slots (every 6 hours). We set initial trust values of the three
applications as 0.8. That is to say, in the trust evaluation of time slot 1, 𝑇",*′ of the
three applications is 0.8. Table 2 lists the parameters used in our system for the
calculation of trust value. In our test, 𝐽 is the number of feedback pieces from other
control planes, which is 2 in our test, and 𝐽′ equals to the total number of control
planes that is 4. In order to make the impact of feedback obtained more than one day
decay faster, we set 𝜏 equal to 24 hours. We think the scales of the impact of
throughput rate, packet loss probability and time delay are same, so we set parameters
𝑥, 𝑦, 𝑧 as 1. In our design, an application’s current performance contributes the most
to its trust value, so 𝛾	was set as 0.6. The impact of the application’s feedback from
other control planes and its trust value in the previous time slot are smaller, compared
with its impact on current networking performance. Therefore, we set both 𝛼 and 𝛽
as 0.2.

Table 3. Trust Values of Three Loading Balance Apps in Different Time Slots and Topologies

App Name
Time Slot 1 Time Slot 2 Time Slot 3

Star Fat-tree Star Fat-tree Star Fat-tree

LB APP 1 0.823 0.815 0.827 0.816 0.828 0.816

LB APP 2 0.685 0.673 0.654 0.639 0.656 0.642

LB APP 3 0.421 0.457 0.344 0.458 0.327 0.457

The trust values of three applications are evaluated by our system and shown in Table
3. In our design, the LB APP 1 has the best quality, thus its trust value should be the
highest, which is proved by our experimental result. The LB APP 3 applied some
malicious policy, thus its trust value should be the lowest, which is always less than
0.5, as indicated in Table 3. The trust value of LB APP 2 falls into the middle of the
trust values of LB APP 1 and LB APP 3. We can find this experimental result is the
same as our expectation. In particular, when we ran the three applications in a larger
topology (Fat-tree topology), we found that their performance drops slightly,
compared with their performance in a Star topology. This result is reasonable since
application performance drops in a larger scale network.

Table 4. Trust Values of Three Loading Balance Apps in Different Time Slots and Topologies with

Different Parameters

App
Name

Parameter
Time Slot 1 Time Slot 2 Time Slot 3

Star Fat-tree Star Fat-tree Star Fat-tree

LB APP 1
Set 1 0.749 0.740 0.752 0.745 0.753 0.746

Set 2 0.831 0.823 0.834 0.826 0.834 0.825

LB APP 2 Set 1 0.628 0.613 0.579 0.566 0.589 0.579

App
Name

Parameter
Time Slot 1 Time Slot 2 Time Slot 3

Star Fat-tree Star Fat-tree Star Fat-tree

Set 2 0.672 0.668 0.641 0.635 0.648 0.639

LB APP 3
Set 1 0.387 0.381 0.311 0.303 0.283 0.279

Set 2 0.382 0.376 0.342 0.336 0.334 0.328

We also evaluated the three applications’ trust values with different system parameters.
These trust values are listed in Table 4. Two sets of parameters sets are used to
calculate the trust values. In Set 1, 𝛼 = 0.2 (the weight of previous trust value 𝑇",*′);
𝛽 = 0.3 (the weight of feedback from other control planes 𝑇𝑓",*); 𝛾 = 0.5 (the
weight of 𝑇𝑝",*), and other parameters are the same as the parameters in Table 2. In
Set 2, 𝛼 = 0.1; 𝛽 = 0.2; 𝛾 = 0.7, and other parameters are same as the parameters
in Table 2. We can see the weighting parameters’ impact on the trust evaluation.

Fig.10. Three LB APPs’ trust values in time slot 1 in different networks and with different

parameters
We further compared the three applications’ trust values in time slot 1 with different
parameter sets (Set 1, Set 2, and parameters in Table 2, denoted as Set 3), as shown in
Figure 10. Comparing the results with Set 1 and Set 3, we can find that the three
applications’ trust values become big when 𝛼 remains the same, 𝛽 decreases and γ
increases. This is because in our design, the number of pieces of feedback from other
control planes is relatively small, resulting in 𝑇𝑓",* is smaller than 𝑇𝑝",*, which
ultimately lead the applications’ trust values increase when 𝛽 decreases. The purpose
of comparison between Set 2 and Set 3 is to observe the influence of 𝛼 and γ when
𝛽 stays the same. As mentioned before, 𝑇",*′ in Time Slot 1 equals 0.8, it’s smaller
than LB APP 1’s 𝑇𝑝",* and bigger than LB APP 2 and 3’s 𝑇𝑝",*. Therefore, the trust
value of LB APP 1 evaluated in Set 3 is smaller than in Set 2, and the evaluation of
trust values of LB APP 2 and APP 3 shows opposite results. To sum up, our system

can objectively evaluate an application’s trust by adjusting the weight of each
parameter in various scenarios. For example, when we don’t need to pay much
attention to the feedback from other control planes, we can reduce the value of 𝛽 to
keep the accuracy of trust values.

5.3.2 Efficiency
In system efficiency test, we measured the floodlight controller’s CPU usage, memory
usage and each procedure’s operation time. Firstly, we ran floodlight version 1.2
without the TMF support and connected the floodlight controller to the network with
the Fat-tree topology. Then we installed the three loading balance applications
separately and record the controller’s CPU usage and memory usage. We also did the
same experiment in the floodlight controller with the TMF support and recorded the
related data. The test results are presented in Figure 11 and 12, respectively.

Fig. 11. CPU usage of floodlight version 1.2 with and without TMF

Fig. 12. Memory usage of floodlight version 1.2 with and without TMF

As shown in Figure 11 and Figure 12, when a new application is installed into the

controller, its CPU and memory usage will increase because the controller need to
load the application and insert new rules into its flow table. When running the TMF,
more resources are consumed, because the controller needs to check the application’s
trust value, detect flow rule conflicts and select the flow rules of the application with
the highest trust value. Through comparison, we can see that the CPU consumption of
the TMF is acceptable. The memory usage of the controller with the TMF support is
about 5% more than that without TMF. In short, the TMF consumes few resources for
achieving desired functionalities.

Table 5. The Operation Time of TMF (unit: millisecond)

Procedure
Operation Time

APP 1 APP 2 APP 3

CD module 22 21 23

TPM verification 954 936 973

NPM data transmission
and verification

42 46 45

Trust Evaluation 5 5 5

Trust value feedback 10 12 9

To test the operation time of TMF, we successively installed three load balancing
applications that generate some flow rules conflicting with each other into the
controller with Fat-tree topology. After that, we separately recorded the operation time
of TMF’s each procedure. The result is shown in Table 5. In each procedure, the
trusted platform module spends the most time to do platform verification, but this
operation only needs to be done few times when NPM probes establish connection
with the NPM module and when the NPM module needs to perform periodical
re-verification via TPM. In this test, each application generated about 500 flow rules,
so the CD module detected about five hundred flow rule conflicts and made selection
each time. The operation time of conflict detection is less than 25 milliseconds. The
operation time of trust value feedback and distribution is about 10 milliseconds. Trust
value evaluation spends the least time, which is less than 10 milliseconds. In general,
the operation time of the TMF is relatively low. Taking both the operation time and
the resource consumption into account, we can see that the TMF system is efficient
and can provide precise trust management for SDN applications based on digital trust
evaluation.

In what follows, we further compared our system’s performance with some related
work [15, 16, 19] reviewed in Section 2.
1) We compared the operation time of adding new flow rules into the controller with

the existing works in [15, 16]. They proposed role-based solutions to deal with
flow rule conflicts. By installing different numbers of applications, we inserted

different number of flow rules into the controller’s flow table. After that, we tested
the operation time of adding different number of flow rules. The result is shown in
Figure 13. By contrast, we find that our system has lower operation time than
existing work when detecting the same number of flow rule conflicts.

Fig. 13. Comparison of operation time to add new flows

2) We tested the time of installing a new application into the controller with the

existing work [19]. In [19], a permission check is performed before each
application is installed into the controller. We installed an application with 50 flow
rules into the controller for ten times, recorded their average time and calculated
standard deviation of them to show their volatility. The result is shown in Figure
14. We find that the time of our system to add a new application is similar to that
of [19], but our system has smaller standard deviation.

Fig. 14. Comparison of time to install a new application

It is not easy to compare our work with other existing ones, we present the reasons
below. The system main functions in [17], [18] and [22] are different from ours, so the
objectives of system performance evaluation are different from ours. In [20], [21] and
[22], authors only showed their system design without any system performance
evaluation.

5.3 System Robustness Analysis
The core function of our system is trust evaluation based on the network performance
data collected by the NPM probes. In order to ensure the system core function to run
correctly, we must guarantee the veracity of the collected data. As described in
Section 4, we embedded TPM into the NPM probes, applied a trust sustainment and
control mechanism [28, 29] to ensure the truth of network performance data collection
and used digital signature to achieve non-repudiation. The TPM module can ensure
the NPM probes to perform as expectation for collecting desired network performance
data. Once a NPM probe is compromised or behaves maliciously, its configuration
information is changed. Meanwhile, the probe’s TPM will inform the NPM module
that this probe is beyond credible, and the NPM module will break down the
connection between TE module and this probe. The TE module will not use the data
collected from this probe for trust evaluation. To prevent the collected network
performance data from being tampered, we used digital signature in our prototype
system. Concretely, we used SHA-256 hash function to extract message digest of data
and RSA asymmetric cryptography to sign the extracted message digest. So, once the
network performance data is tampered by attackers, the NPM module can find that its
message digest is changed, and then discard the data. If this event happens many
times, the NPM module will inform network administrators and the TE module to
disconnect with the related probes. Based on the above analysis, we can see that our
system has certain resistance to attacks against the NPM probes.

In our system, before the TE module evaluates an application’s trust value, it should
collect a large amount of network performance data through the NPM probes. After an
application’s trust value is generated, the network performance data is useless. But the
network performance data could be a target of attackers. If the TE module is attacked,
these data will leak network privacy. In order to mitigate this issue, once an
application’s trust value is generated, its network performance data will be deleted by
the TE module if they are useless. Particularly, we can encrypt useful data and store
them in a backup server for later tracking.

6. Conclusion
In this paper, we proposed a trust management framework for SDN applications. It
can evaluate trust of an application that is adopted by the SDN controller based on its
performance and can also update the evaluated trust value dynamically accordingly to
newly collected network performance data by a number of NPM probes. Besides that,
the proposed TMF can detect flow rule conflicts between applications. Trust values
obtained by TMF can be used to solve flow rule conflicts and detect malicious

applications. In addition, the TMF also ensure the robustness of trust evaluation by
adopting a trust sustainment and control mechanism for network performance data
collection, which can verify whether a network device is working in a desired manner.
We implemented a prototype system to demonstrate the TMF in order to assess its
performance in terms of accuracy and efficiency. We also compared the performance
of our system with the existing work. The testing results are satisfactory. However,
this is a simulation test. In the future, we will establish our framework and evaluate its
performance in a real and large SDN environment.

Acknowledgement
This work is sponsored by the National Key Research and Development Program of
China (grant 2016YFB0800704), the NSFC (grants 61672410 and U1536202), the
Academy of Finland (grant 308087), the Project Supported by Natural Science Basic
Research Plan in Shaanxi Province of China (Program No. 2016ZDJC-06), the
Fundamental Research Funds for the Central Universities (JBG161509), and the 111
project (grants B16037 and B08038). The corresponding author is Zheng Yan.

References
[1] Matias J, Garay J, Toledo N, Unzilla J, Jacob E. Toward an SDN-enabled NFV

architecture. IEEE Communications Magazine 2015; 53 (4): 187-193. DOI:
10.1109/MCOM.2015.7081093.

[2] Kreutz D, Ramos F M, Verissimo P E, Rothenberg C E, Azodolmolky S, Uhlig S.
Software-defined networking: A comprehensive survey. Proceedings of the IEEE
2015; 103 (1): 14-76. DOI: 10.1109/JPROC.2014.2371999.

[3] H Kim, N Feamster. Improving network management with software defined
networking. IEEE Communications Magazine 2013; 51 (2): 114-119. DOI:
10.1109/MCOM.2013.6461195.

[4] Trivisonno R, Guerzoni R, Vaishnavi I, Soldani D. SDN‐based 5G mobile
networks: architecture, functions, procedures and backward compatibility.
Transactions on Emerging Telecommunications Technologies 2015; 26 (1): 82-92.
DOI: 10.1002/ett.2915.

[5] Scott-Hayward S, Natarajan S, Sezer S. A survey of security in software defined
networks. IEEE Communications Surveys & Tutorials 2016; 18 (1): 623-654.
DOI: 10.1109/COMST.2015.2453114.

[6] Yan Q, Yu F R, Gong Q, Li, J. Software-defined networking (SDN) and
distributed denial of service (DDoS) attacks in cloud computing environments: A
survey, some research issues, and challenges. IEEE Communications Surveys &
Tutorials 2016; 18 (1): 602-622. DOI: 10.1109/COMST.2015.2487361.

[7] Ali S T, Sivaraman V, Radford A, Jha S. A survey of securing networks using
software defined networking. IEEE transactions on reliability 2015; 64 (3):
1086-1097. DOI: 10.1109/TR.2015.2421391.

[8] Lim S, Ha J, Kim H, Kim Y, Yang S. A SDN-oriented DDoS blocking scheme for
botnet-based attacks. Ubiquitous and Future Networks (ICUFN), 2014 Sixth
International Conf on, July 2014. IEEE; 63-68. DOI: 10.1109/ICUFN.2014.

6876752.
[9] Mousavi S M, St-Hilaire M. Early detection of DDoS attacks against SDN

controllers. Computing, Networking and Communications (ICNC), 2015
International Conference on, February 2015. IEEE; 77-81. DOI:
10.1109/ICCNC.2015.7069319.

[10] Braga R, Mota E, Passito A. Lightweight DDoS flooding attack detection using
NOX/OpenFlow. Local Computer Networks (LCN), 2010 IEEE 35th Conference
on, October 2010. IEEE; 408-415. DOI: 10.1109/LCN.2010.5735752.

[11] Oktian Y E, Lee S, Lee H. Mitigating denial of service (dos) attacks in openflow
networks. Information and Communication Technology Convergence (ICTC),
2014 International Conference on, October 2014. IEEE; 325-330. DOI:
10.1109/ICTC.2014.6983147.

[12] Lim S, Yang S, Kim Y, Yang S, Kim H. Controller scheduling for continued SDN
operation under DDoS attacks. Electronics Letters, 2015; 51 (16): 1259-1261.
DOI: 10.1049/el.2015.0334.

[13] Dabbagh M, Hamdaoui B, Guizani M, Rayes A. Software-defined networking
security: pros and cons. IEEE Communications Magazine 2015; 53 (6): 73-79.
DOI: 10.1109/MCOM.2015.7120048.

[14] Belyaev M, Gaivoronski S. Towards load balancing in SDN-networks during
DDoS-attacks. Science and Technology Conference (Modern Networking
Technologies)(MoNeTeC), 2014 First International, October 2014. IEEE; 1-6.
DOI: 10.1109/MoNeTeC.2014.6995578.

[15] Porras P, Shin S, Yegneswaran V, Fong M, Tyson M, Gu G. A security
enforcement kernel for OpenFlow networks. Proceedings of the first workshop on
Hot topics in software defined networks, August 2012. ACM; 121-126. DOI:
10.1145/2342441.2342466.

[16] Porras P A, Cheung S, Fong M W, Skinner K, Yegneswaran V. Securing the
Software Defined Network Control Layer. The Network and Distributed System
Security Symposium, February 2015.

[17] Shin S, Porras P A, Yegneswaran V, Fong M W, Gu G, Tyson M. (2013, February).
FRESCO: Modular Composable Security Services for Software-Defined
Networks. ISOC Network and Distributed System Security Symposium (NDSS),
February 2013.

[18] Ferguson A D, Guha A, Liang C, Fonseca R, Krishnamurthi S. Participatory
networking: An API for application control of SDNs. ACM SIGCOMM computer
communication review 2013; 43 (4): 327-338. DOI: 10.1145/2534169.2486003.

[19] Scott-Hayward S, Kane C, Sezer S. Operationcheckpoint: Sdn application control.
In Network Protocols (ICNP), 2014 IEEE 22nd International Conference on,
October 2014. IEEE; 618-623. DOI: 10.1109/ICNP.2014.98.

[20] Banse C, Rangarajan S. A secure northbound interface for sdn applications.
Trustcom/BigDataSE/ISPA, 2015; 1: 834-839. DOI: 10.1109/Trustcom.2015.454.

[21] Chandrasekaran B, Benson T. Tolerating SDN application failures with LegoSDN.
In Proceedings of the 13th ACM workshop on hot topics in networks, October
2014. ACM; 22-28. DOI: 10.1145/2670518.2673880.

[22] Shin S, Song Y, Lee T, Lee S, Chung J, Porras P, Kang B B. Rosemary: A robust,
secure, and high-performance network operating system. Proceedings of the 2014
ACM SIGSAC conference on computer and communications security, November
2014. ACM; 78-89. DOI: 10.1145/2660267.2660353.

[23] Wen X, Chen Y, Hu C, Shi C, Wang Y. Towards a secure controller platform for
openflow applications. Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, August 2013. ACM; 171-172. DOI:
10.1145/2491185.2491212.

[24] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review 2008; 38 (2): 69-74. DOI: 10.1145/1355734.1355746.

[25] Yan Z. Trust management in mobile environments–usable and autonomic models.
IGI Global 1, 2013; (1) 2.

[26] Ren J, Liu L, Zhang D, Zhang Q, Ba H. Tenants attested trusted cloud service.
Cloud Computing (CLOUD), 2016 IEEE 9th International Conference on, June
2016. IEEE; 600-607. DOI: 10.1109/CLOUD.2016.0085.

[27] Lauer H, Kuntze N. Hypervisor-based attestation of virtual environments.
Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing,
Internet of People and Smart World Congress, 2016 Intl IEEE Conferences, July
2016.IEEE; 333-340.DOI:10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2016.0067.

[28] Yan Z, Zhang P, Vasilakos A V. A security and trust framework for virtualized
networks and software ‐ defined networking. Security and communication
networks 2016; 9 (16): 3059-3069. DOI: 10.1002/sec.1243.

[29] Yan Z, Cofta P. A mechanism for trust sustainability among trusted computing
platforms. International Conference on Trust, Privacy and Security in Digital
Business, August 2004. Springer, Berlin, Heidelberg. TrustBus 2004: Trust and
Privacy in Digital Business; 11-19. DOI: 10.1007/978-3-540-30079-3_2.

[30] Xu G W, Tang Y K, Yan Z, Zhang P. TIM: A trust insurance mechanism for
network function virtualization based on trusted computing. The 10th
International Conference on Security, Privacy and Anonymity in Computation,
Communication and Storage (SpaCCS2017), GuangZhou, China, December 2017.
Springer; 139-152. DOI: 10.1007/978-3-319-72389-1_13.

[31] Yao Z, Yan Z. Security in Software-Defined-Network: A Survey. The 9th
International Conference on Security, Privacy and Anonymity in Computation,
Communication and Storage (SpaCCS 2016), Zhangjiajie, China, November
2016. LNCS, Springer; 319-332. DOI: 10.1007/978-3-319-49148-6_27.

[32] Bian S S, Zhang P, Yan Z. A Survey on Software-Defined Networking Security.
IW5GS 2016 held in conjunction with 9th EAI International Conference on
Mobile Multimedia Communications, MobiMedia2016, Xi’an, China, June 2016.

[33] Fu Y, Yan Z, Li H, Xin X L, Cao J. A secure SDN based multi-RANs architecture
for future 5G networks. Computers & Security, 2017; 70: 648-662. DOI:
10.1016/j.cose.2017.08.013.

[34] Trusted Computing Group (TCG), TPM Main Specification, Version 1.2 Revision

94. https://trustedcomputinggroup.org/tpm-1-2-protection-profile/ [14 July 2014].
[35] Suh D, Pack S. Low-Complexity Master Controller Assignment in Distributed

SDN Controller Environments. IEEE Communications Letters, 2017. DOI:
10.1109/LCOMM.2017.2787590.

[36] Wang M, Liu J, Chen J, Liu X, Mao J. Perm-guard: Authenticating the validity of
flow rules in software defined networking. Journal of Signal Processing Systems,
2017; 86 (2-3): 157-173. DOI 10.1007/s11265-016-1115-8.

[37] Moyano R F, Cambronero D F, Triana L B. A user-centric SDN management
architecture for NFV-based residential networks. Computer Standards &
Interfaces, 2017; 54 (4): 279-292. DOI: 10.1016/j.csi.2017.01.010.

[38] Costa-Perez X, Garcia-Saavedra A, Li X, Deiss T, De La Oliva A, Di Giglio A,
Moored A. 5G-Crosshaul: an SDN/NFV integrated fronthaul/backhaul transport
network architecture. IEEE Wireless Communications, 2017; 24 (1): 38-45. DOI:
10.1109/MWC.2017.1600181WC.

[39] Wu A, Liu R, Ni W, Kaafar D, Huang X. AC-PROT: An Access Control Model to
Improve Software-Defined Networking Security. IEEE 85th Vehicular
Technology Conference, April 2017. DOI: 10.1109/VTCSpring.2017.8108543.

[40] He B, Dong L, Xu T, Fei S, Zhang H, Wang W. (2017). Research on network
programming language and policy conflicts for SDN. Concurrency and
Computation: Practice and Experience, 2017; 29 (19). DOI: 10.1002/cpe.4218.

[41] Ma Y, Wu Y, Ge J, Li J. An Architecture for Accountable Anonymous Access in
the Internet-of-Things Network. IEEE Access, 2018. DOI: 10.1109/ACCESS.
2018.2806483.

[42] Huang C, Min G, Wu Y, Ying Y, Pei K, Xiang Z. Time Series Anomaly Detection
for Trustworthy Services in Cloud Computing Systems. IEEE Transactions on
Big Data, 2017. DOI: 10.1109/TBDATA.2017.2711039.

