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Abstract 
The emergence of Software-Defined Network (SDN) has brought unprecedented 
innovation to current networks. SDN’s two most notable features are decoupling and 
programmability. Decoupling makes network management centralized in a control 
plane. Meanwhile, benefitted from the programmable characteristic of SDN, new 
functions of networking can be easily realized. However, these features also introduce 
new security issues to SDN. Through the programming interface provided by SDN, 
software engineers can easily develop network applications to generate networking 
policies for SDN’s control planes for the purpose of guiding network routing. But it is 
hard to guarantee the security and quality of these new applications. Malicious or 
low-quality applications could damage a whole network. To solve this problem, we 
propose a novel trust management framework for SDN applications in this paper. It 
can evaluate applications’ trust values based on their impact on the network 
performance (such as time delay, packet loss rate, throughput, etc.). These trust values 
further play a decisive role for managing and selecting applications in SDN. We 
evaluate this framework’s performance through a prototype system implemented 
based on a floodlight controller. The experimental results show the accuracy and 
effectiveness of our design. 
 
Keywords: Software Defined Network, SDN Application Security, Trusted Computing Platform, 
Trust Management, Trust Evaluation. 
 
1. Introduction 
Traditional network architecture is a kind of distributed architecture, and the functions 
of control and data forwarding are distributed in each router. This kind of network 
architecture appears an increasing number of drawbacks. Above all, because of a 
distributed control mode, network maintenance and operation are very complicated 
for network administrators. Second, switching equipment of traditional networks 
integrates control function and forwarding function, so network upgrade needs to 
replace a large amount of underlying switching devices, which is a huge expense to 
telecommunication operators. What’s more, in traditional networks, the deployment of 
new network functions requires network administrators to separately configure each 



device, this kind of working mode is hard to meet the demand of fast development of 
telecommunication networks and Network Function Virtualization (NFV) [1]. 
 
Software-Defined Network (SDN) makes a great contribution to solve the above 
problems. SDN was born at the Stanford University in 2006. It was built to improve 
the management of Stanford campus networks [2]. Its core design idea is to decouple 
the data forwarding and routing control functions of traditional Internet Protocol 
networks to achieve centralized control, distributed forwarding and programmable 
characteristics. Network centralized management brings a global network view [3] to 
network administrators and makes network configuration no longer a huge workload. 
Meanwhile, network’s update can be realized easily through SDN’s Application 
Programming Interface (API). Once an application is adopted in the application plane 
of SDN, SDN controllers can translate its offered policies to flow rules and 
automatically distribute the rules to specific switches to implement specific 
functionalities. SDN has drawn wide attention from both academia and industry. Until 
now, it has become one of core technologies of 5G wireless communication networks 
[33], and the implementation of NFV can depend on SDN’s architecture [37, 38]. 
Most of commercial switch vendors and telecommunications operators have begun to 
produce or deploy SDN products [4]. 
 
1.1 Motivation  
As a new technology, SDN greatly contributes to network innovation, but it also 
brings new security challenges [5, 32]. As introduced above, SDN has two specific 
characteristics [31]. One is that the control plane of SDN is centrally responsible for 
the management of a whole network. The other is that the emergence of the 
application plane of SDN makes the network programmable. However, SDN’s 
centralized control makes its controllers more vulnerable to Denial of Service attacks 
or Distributed Denial of Service attacks (DoS/DDoS) [6]. Current solutions to 
mitigate DoS/DDoS attacks mainly include DoS/DDoS detection [8-11], controller 
optimization [12, 13] and loading balance [14]. Because the controller holds a large 
amount of information about entire network structure, once it is invaded, the leakage 
of network information will cause a big harm [7].  
 
In this paper, we focus on the security issue of the application plane. The SDN 
controllers can easily enable the 3rd party applications installed into the SDN 
architecture, but they have no ability to distinguish the applications’ eligibility, 
legality and trustworthiness by themselves [5]. Besides that, a poorly designed or 
buggy application could unintentionally bring a series of vulnerabilities to the SDN 
system. In short, the application plane mainly faces three security problems: 1) Lack 
of certification and authorization: It lacks a robust authentication and authorization 
mechanism for applications, especially for a large number of third-party applications. 
2) Fraud traffic insertion: Malicious or buggy applications could generate erroneous 
harmful flow rules and routing policies, but compromised applications are hard to be 
detected. 3) Conflicts between applications: each application generates lots of flow 



rules, but it’s hard to guarantee that there are no conflicts between these rules [40]. 
Therefore, how to deal with the conflicts among applications is another challenge of 
SDN security. 
 
In order to solve the application plane’s security issues, the controllers must have the 
ability to identify whether the applications are trustworthy, or there are some 
additional functions in SDN to assist the controllers to make correct justification on 
this. In the literature, some role-based application authorization methods were 
proposed to deal with application policy conflicts and to manage applications [15-18]. 
In [21, 22], authors focused on improving the resilience of controllers to both buggy 
and malicious applications. In [19-20, 23, 36, 39], authors added a new function into 
an SDN system to distribute privileges to SDN applications. However, the above 
methods are deficient in establishing trust relationships between applications and 
controllers. In particular, the role-based method is not fine-grained [15-18]. 
Applications’ impact on the data plane of SDN was ignored in the past work [21, 22]. 
Therefore, how to reasonably evaluate SDN applications according to their actual 
impact on networks becomes a significant issue [41, 42]. Based on the evaluation on 
applications, it is possible and capable for a SDN system to distinguish applications 
and manage them. 
 
1.2 Main Contributions 
In this paper, we propose a new Trust Management Framework (TMF) for SDN 
applications. It evaluates each application’s trust value based on its performance. This 
trust value can be used to solve applications’ conflicts and detect malicious 
applications. Our system mainly contains two modules: Network Performance 
Monitor (NPM) module and Trust Evaluation (TE) module. The NPM module 
consists of a number of probes that are configured to monitor the performance of flow 
rules issued by different applications when they are fulfilled in the data plane. These 
monitoring results will be sent to TE module with corresponding tags that indicate the 
applications that cause the represented network performance and the time when the 
network is affected. After collecting the above data and the feedback from other 
application users (i.e., other controllers), the TE module calculates the application’s 
current trust value and sends the trust value to the control plane and the application 
plane. The controllers manage the applications based on their trust values. Meanwhile, 
a Conflict Detection (CD) module is newly embedded into the control plane to detect 
whether a new flow rule issued by an application conflicts with existing policies. In 
order to guarantee the robustness and trustworthiness of this system, we introduce 
Trusted Platform Module (TPM) [29] into our proposed framework. TPM is applied 
to guarantee trust relationships among different modules in the system. In particular, 
we apply a trust sustainment and control mechanism based on TPM, e.g., a protocol as 
described in [28, 29], to ensure trustworthy performance monitoring and data 
collection for the purpose of high-quality trust evaluation. This protocol is designed to 
verify and further sustain the trust relationships among devices by attesting the device 
configurations and ensuring expected configurations are applied during device 



cooperation by embedding trust conditions into TPM. Furthermore, we develop a 
prototype system using a floodlight controller based on the framework design. The 
performance evaluation results demonstrate the accuracy and effectiveness of our 
system.  
 
The superiority of the proposed trust management framework system can be 
summarized as follows: 1) High Accuracy and Fine-graininess: For some applications 
with the same functions but different performance, the trust value evaluated by our 
system can well reflect their performance differences. 2): Dynamic and Real-time: the 
application’s trust value evaluated by the TMF is not static, but changed according to 
its real-time impact on the network performance, which can be used to figure out 
malicious or forged applications. 3) Robustness and Trustworthiness: Due to the 
adoption of a trust sustainment and control mechanism based on TPM that is 
embedded into the NPM probes and the NPM module, the network performance data 
can be guaranteed as trusted, and further the trustworthiness of trust evaluation on 
each application can be ensured. Specifically, the contribution of this paper can be 
summarized as below: 
• We propose a trust management framework for SDN applications that can 

evaluate application trust in order to mitigate application policy conflicts and 
detect malicious applications.  

• We implemented a prototype system and design a series of experiments to test the 
accuracy and the efficiency of our framework. 

 
The rest of this paper is organized as follows. In Section 2, we briefly review related 
work. Then, we introduce the preliminary knowledge about our proposed TMF in 
Section 3. The TMF design including system architecture and technical details is 
described in Section 4, followed by performance evaluation in Section 5. Finally, a 
conclusion is summarized in the last section. 
 
2. Related Work 
The programmable feature makes SDN face to a new challenge on how to manage the 
network applications to avoid maliciously utilizing this specific feature. In this section, 
we review related work about SDN application conflict detection and resolution and 
SDN application management. 
 
2.1 SDN Application Conflict Detection and Resolution 
SDN applications generate lots of flow rules when they are installed into controllers, 
and flow rule conflicts are inevitable. In this part, we review existing work related to 
application policy conflict detection and resolution. FortNox [15] is the software 
extension of a Nox controller (a kind of SDN controller) that provides flow rule 
conflict resolution based on the roles of applications. FortNox provides an algorithm 
to check flow rule contradictions in real time. When FortNox’s rule conflict detection 
engine finds some conflicts between different applications, it chooses the flow rules 
produced by the application that has a higher security level set by the FortNox system. 



Digital signature is used in FortNox to check applications’ security levels. Three 
application roles are defined in this system with different security levels from high to 
low: administrators, security-related Openflow applications, and non-security-related 
Openflow applications. Based on the above work, the FortNox team also developed 
another security system called SE-floodlight [16], which was designed to solve the 
security issue of floodlight controller’s applications. Similarly, the way that 
SE-floodlight resolves application conflicts is also to choose the application with a 
higher security role level. Obviously, the above methods are not fine-grained. 
 
FRESCO [17] performs as a secure application development platform by combining 
with a NOX OPENFLOW controller. The basic framework of FRESCO consists of an 
application layer and a security enforcement kernel. The application layer provides 
four main functions: script-to-module translation, database management, event 
management and instance execution. The emergency of FRESCO makes it possible 
for a network manager to design or quickly develop a security application with a 
script language. In this work, they also use the method proposed in [15, 16] to 
mitigate rule conflicts, which is obviously not fine-grained.  
 
In [18], the authors made efforts to solve policy conflicts between applications. They 
implemented a fully-functioned SDN controller called PANE that allows a network’s 
administrator to safely delegate his authority using its APIs. Furthermore, they 
proposed a new algorithm for consolidating hierarchical policies and utilized this 
algorithm to accomplish application policies conflict resolution. This work takes 
advantage of policy atom to run a policy in an isolated environment. They used a tree 
structure to store flow rules. The nodes in the tree store the routing information of 
flow rules (e.g., IP number, port number, protocol, etc.). Its root node stores the flow 
rules’ instructions. When a new policy is coming, the controller detects whether there 
are new conflicts by checking each node in the existing policy tree (from leaf nodes to 
root node). In this work, policy conflicts are resolved by dividing the usage level of 
applications. 
 
In the above existing work, the majority methods to solve flow rule conflicts are 
based on the roles of applications that are distributed by their proposed system or 
network administrators. To a certain extent, the role-based method can solve the 
conflicts between applications, but it is not fine-grained. For example, when the roles 
of conflicting applications are same, which application’s flow rules should be selected 
becomes a new problem. 
 
2.2 SDN Application Management 
We review some papers related to SDN application management herein. Hayward et 
al. designed a scheme to allocate permissions to network applications, which sets 
limitations on application operations [19]. They defined a set of permissions to which 
applications must subscribe during initialization with controllers and introduced an 
Operation Checkpoint that implements permission check prior to authorizing 



application commands. This work’s main contribution is to provide a method for 
network administrators to add, remove, change and query application permissions.  
 
Christian et al. presented a web-based northbound interface, which is secure, 
controller independent, and supports the deployment of external applications [20]. In 
their work, an encrypted channel is used to communicate between SDN applications 
and controller. Meanwhile, they also proposed a trust management and resource-based 
access control model for SDN applications. They introduced a certificate authority to 
distribute privilege to SDN applications and managed them based on their certificates.  
 
PermOF, a fine-grained permission system was presented in [23], which applies 
minimum privilege on applications. This system mainly considers two aspects: the 
most effective set of permissions and an isolation mechanism deployed to enforce 
permission control. It gives an action permission classification to each application and 
provides an isolation mechanism to enforce the permissions at an API entry. 
 
Wang et al. proposed a permission management and authentication scheme called 
PERM-GUARD for SDN applications [36]. It employs a permission authentication 
model and introduces an identity-based signature scheme for the controller to verify 
the validity of applications’ flow rules. In this work, they defined 16 kinds of 
permissions for each application. In [39], Wu et al. presented an access control model 
named Access Control Protector (AC-PROT) for SDN applications . AC-PROT 
employs an attribute-based signature scheme for SDN applications and defines 16 
kinds of privilege levels for SDN applications. In the above methods [19-20, 23, 36, 
39], the application’s privilege is distributed by network administrators, which is 
different from our work presented in this paper. We manage applications according to 
their trust values that are evaluated based on application impact on networks. 
 
Chandrasekaran et al. re-designed the controller architecture of SDN to make the 
controllers and the network resilient to application failures [21]. They presented 
LegoSDN that embodies described functions by providing two techniques. The first 
one is AppVisor – an isolation technique used in Operating Systems to separate 
address space of SDN applications from each other and controllers. The second one is 
NetLog – a network-wide transaction system that supports atomic updates and 
efficient roll backs. In this architecture, each application is run in an isolated Java 
Virtual machine (JVM), and it is handled by NETLog intensively. Once there are 
crashes in the applications, the NETLog will support the whole network back to a 
normal work status based on concerned roll-back strategies. This work focused on 
how to mitigate application failures’ impact on networks. But it did not propose a 
detailed policy to manage applications. 
 
Shin et al. provided a new controller called ROSEMARY [22], which has high 
resistance to malicious or buggy applications. They designed a micro network 
operating system called micro-NOS architecture. In this system, each application runs 



in a sandbox. The system distributes a specific privilege to each application based on 
monitored resource consumption of the controller caused by applying the application. 
This work is advanced, but the authors focused on the influence of application on the 
control plane and ignored their impact on the data plane. Although some applications 
are less detrimental to the controller, they may cause paralysis of the underlying data 
plane. 
 
We list application management methods and their management basis together with 
ours in [19-20, 22-23, 36, 39] in Table 1. To sum up, the existing work related to SDN 
application management focuses on applications’ impact on controllers, and the 
management of applications mostly depends on third-party authorization. But how to 
reasonably determine applications’ privilege level and how to detect the application 
that has a negative effect on the data plane in real time have not been well 
investigated in all above studies. In this paper, we attempt to propose a trust 
management framework to evaluate the trust of SDN applications in order to solve the 
above open issues.  
 

Table 1. Comparison of Application Management Methods and Management Basis 

Scheme Methods Basis 

OPCheckpoint [19] Permission List 
15 kinds of permissions for each 

application 

Secure-North [20] 
Application access 

control 
Application’s certificates, 

RoseMary [22] Role-based 3 kinds of application authorization roles 

PermOF [23] Privilege List 18 kinds of privileges for each application 

PERM-GUARD 
[36] 

Identity-based 16 kinds of identities for each application 

AC-PROT [39] Privilege List 16 kinds of privileges for each application 

Our Scheme  Trust-Based Trust Value 

 
3. Background Knowledge and Preliminaries 
In this section, we introduce the background knowledge of this paper work. We firstly 
describe the structure of SDN and Openflow’s flow table. Then, we introduce the 
trusted computing platform to explain the mechanism of TPM.  
 
3.1 SDN Structure and Openflow 



 

Fig.1. The architecture of SDN 

As shown in Figure 1, the mainstream structure [2] of SDN includes three layers: data 
plane, control plane and application plane. The data plane is made up of simple 
interconnecting switches, and these switches forward data packets based on flow 
tables sent from the controllers in the control plane through a southbound interface. 
The control plane can be described as a brain of SDN. It is mainly responsible for 
making routing policies, arranging the data plane’s resources and maintaining network 
topologies. In a mature SDN architecture [13], the control plane is made up of 
controller clusters instead of a single controller. A controller cluster includes a master 
controller [35] that is mainly responsible for data plane management and some 
common controllers that assist the master controller to manage the network. It is 
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worth noting that these controller clusters are not isolated from each other. A 
controller can be a member of several controller clusters and a master controller may 
act as a common controller role in another controller cluster. This kind of design can 
make full use of each controller’s processing power to mitigate DoS/DDoS attacks on 
the control plane. The application plane consists of various applications. These 
applications are mainly designed to achieve some specific network functions, such as 
loading balance, firewall, intrusion detection, network monitoring, and so on. A 
northbound interface is responsible for the communications between the control plane 
and the application plane. 
 
Currently, Openflow [24] is the most popular communication protocol used between 
SDN’s controllers and switches/routers. In this protocol, forwarding data packets in 
the data plane should follow flow tables. Figure 2 shows a structure of the flow table 
in Openfow version 1.5. Among them, Match Fields and Instructions are the main 
parts. Other parts are responsible for measurement, restriction and other auxiliary 
work. The structure of Match Fields is also shown in Figure 2. They are used to 
distinguish different kinds of data packets based on their IP addresses or other routing 
information. The Instructions field describes what actions should be taken for packets. 
These actions include required actions and optional actions. The required actions 
include output packets, drop packets, and set the queue of packets. The optional 
actions include set-Field (modify values in matching fields), change-TTL, 
Push-Tag/Pop-Tag and other operations. 

 

Fig.2. The structure of the flow table in Openflow version 1.5 

3.2 Trusted Computing Platform (TCP) 
Trusted computing is a technology to secure a computing system [25]. As we known, 
physical trust is the most reliable. Trusted computing can ensure that a computing 
system is physically trusted by applying a secure chip. By verifying a computer’s 
hardware, operating system software, and application software step by step, trusted 
computing can ensure that a computing platform can always operate as expected. If the 
platform wants to be trusted always, it must have an ability to report its state 
information in the condition that its identity information and private information 
cannot be revealed. So, trusted computing must have the following abilities. First, it 
can protect the platform’s sensitive information from being compromised. Second, it 
can measure and evaluate the integrity of the platform’s entities or components based 
on the characteristics of the platform. Third, it can authenticate another platform’s 
status based on its characterization. 
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Fig.3. The structure of Trusted Computing Platform 

 
Fig.4. A trust measurement chain 

In order to provide the platform security-related capabilities as described above, 
Trusted Computing Group (TCG) defined TCP’s structure in Trusted Platform Module 
in TCG-1.2 [34]. As shown in Figure 3, TCP is made up of ten modules including 
cryptographic related components, storage modules and some system protection 
components that ensure TCP to work stably for a long time. Trusted computing is able 
to provide a secure computing platform because it uses a trust chain delivery 
mechanism. As illustrated in Figure 4, when a trusted platform is established, TCP’s 
Trust Building Block (TBB) module creates a credible root to serve as trusted 
computing start. Then, core root trusted measurement module verifies Root Trusted 
Measurement (RTM) and Powers on Self-Test (POST) code in BIOS (Basic 
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Input/Output System). Meanwhile, the system stores the measurement summary in 
Platform Configuration Register (PCR). In the premise that current part and code are 
credible, TPM then assesses the security of next part or upcoming code and saving the 
measurement value into PCR. Entire startup sequence follows the principle of "first 
measure, then execute" [26, 27]. In this way, TCP starts with BIOS extension code, 
then verifies the operating system loader, finally to upper applications, and it gives 
each part executive power after it is proved to be credible. In TCP, a computer’s all 
parts are verified level-by-level, the trust train is delivered from bottom to top, and it 
extends trust from the root to the entire platform. 

 
TCP’s measurement log stores each stage’s codes, detailed measurement information 
of configuration status and history records of PCR values. If an attacker tampers 
configuration information or executes malicious codes, the log will store a new 
measurement value. During a platform operation process, the status information in the 
measurement log is provided to platform users for verification, so that the users can 
make a judgment on whether the platform is credible according to the credibility report 
that includes the measurement log and the corresponding PCR values. 

 
4. System Design 
This section presents the proposed trust management framework. Firstly, we introduce 
system structure and each module’s functionalities. Then, we describe technical 
details of the TMF in terms of trust based flow rule selection, trustworthy network 
performance monitoring, data collection with tags and trust evaluation. 
 
4.1 System Architecture 

 

Fig.5. The structure of trust management framework 

Figure 5 shows the system structure of the proposed Trust Management Framework 
(TMF). The SDN system is constructed with three layers: application plane, control 
plane and data plane. As mentioned in Section 3, network policies are generated in the 
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application plane and embodied in the control plane. The control plane generates data 
forwarding commands based on a selected flow rule to update the flow tables that are 
used to instruct data forwarding in the data plane. We add a Conflict Detection (CD) 
module in the control plane to detect whether new policy conflicts appear. The CD 
module decides which flow rule should be selected and applied based on the trust 
values of applications. The data plane mainly comprises forwarding devices such as 
routers and switches. Besides forwarding data flows, it also collects network data and 
sends network status to the control plane. The network performance data can be 
collected by embedding network performance monitor probes into the network 
devices in the data plane. 
 
The Trust Management Framework contains two modules: Network Performance 
Monitor (NPM) module and Trust Evaluation (TE) module. The NPM module is 
composed of a number of probes that are configured to monitor the performance of 
flow rules issued by different applications when they are carried out and fulfilled. 
These probes (either hardware or software or both) are located in suitable places of 
the data plane in the network and are trusted by the TMF for fulfilling the network 
performance monitoring (by applying the trust sustainment and control mechanism 
based on TPM). They monitor the network performance in terms of throughput rate, 
packet loss probability, time delay and so on when a flow rule is applied. These 
monitoring results will be sent to the TE module with corresponding tags that indicate 
the corresponding application that issues the flow rules. By collecting the above 
monitoring results and also the feedback from other application users (e.g., different 
controllers), the TE module calculates the trust values of the applications that issue 
the flow rules. These trust values will be stored in TE module’s database, meanwhile, 
they are regularly updated as long as the applications are running in the control plane. 
Once the trust value of an application is generated or updated based on its 
performance evaluation, it will be sent to the control plane’s CD module in order to 
help it manage applications and assist it to select flow rules, even facing any conflicts 
caused by different applications. 
 
We assume that any applications in the application plane can authenticate themselves 
with the control plane, e.g., by applying a public key cryptosystem. The data collected 
by the probes are signed and cannot be denied by their providers. The identity 
management of the system is based on Public Key Cryptosystem. The public key of 
the system entity represents its unique identifier. Note that TMF can be located inside 
the control plane or in a trusted third party and be shared by a number of control 
planes. 
 
Figure 6 shows the main procedure of system process. The procedure can be 
described as follows: 
Step 1: Before an application is installed in the application plane, the control plane 
checks the trust value of this application. If this application’s trust value is sufficiently 



high (e.g., higher than a threshold that is set 0.5), this application can be deployed. 
Otherwise, the application should be discarded.  

 
Fig.6. Trust Management Procedure 
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Step 2: Once an application is installed, the CD module checks if there are conflicts 
between new flow rules and old rules. If there are no conflicts, the new flow rules will 
be written into the control plane’s flow table and distributed to the data plane. 
Otherwise, the CD module should calculate the priorities of both new and old flow 
rules (P_New and P_Old) and should select the flow rules with a higher priority. 
Step 3: The NPM probes monitor the network performance of new flow rules after 
they are distributed from the control plane to the data plane and send the performance 
data to the TE module with the corresponding application’s ID, as well as the time of 
collection. Then the TE module evaluates the trust value of this application and 
feedbacks it to the control plane for application management. 
 
4.2 Trust Based Flow Rule Selection 
Before an application provides its network requirements and desired network 
behaviors (i.e., network policies) to the control plane, it should first send a request to 
the TE module. Then the TE module checks the trust value of this application and 
issues this value to the application and/or the control plane. If this is a new application, 
the TE module gives it an initial trust value. When the application sends its policy (i.e., 
flow rules) to the control plane, it must sign the flow rules with its private key and 
attach its certified trust value (issued by the TE module, i.e., signed by the TE 
module). The CD module checks whether the flow rules conflicts with the existing 
policies. The conflict detection principle is that several flow rules have the same 
match field but different instructions. We define P_New represents the priority of the 
new flow rule provided by the new application and P_Old represents the priority of 
the old flow rule provided by another old application. In the process of conflict 
resolution, the system follows the following rules: If P_New > P_Old, the old flow 
rule is replaced by the new one. If P_New < P_Old, the new flow rule will be rejected. 
If P_New = P_Old, it will be handled by a network administrator to make a final 
decision or keep the old flow rule. Then the control plane converts the selected flow 
rules into the controller’s flow table and sends them to the flow table in the data plane. 
In the whole process that the flow rules are carried out, the NPM module monitors the 
performance of their execution until they are carried out and fulfilled.  
 
Herein, the priority of the application policy is calculated based in the trust value of 
the application. In a simple way, 𝑃" = 𝐹(𝑇"), where 𝑇" denote application 𝑖’s trust 
value, 𝑃" is 𝑖’s priority value. The bigger value of the 𝑇", the higher the 𝑃"  is. 
Notably, 𝑃" could be also impacted by other factors, not only trust, thus function 𝐹 
could take other inputs (such as application authority level, importance level, etc.) 
into account in order to generate an accurate priority value of an application. 
 
4.3 Trustworthy Network Performance Monitoring and Data Collection 
In order to ensure that the Network Performance Monitor (NPM) probes can work and 
collect network data as expected, we apply Trusted Platform Module (TPM) [28-30] 
into them. TPM’s working mechanism was introduced in Section 3. It can verify 



platform’s trustworthiness based on its hardware and operating configurations. 
Applying this feature, we use the NPM Module to manage the trust of NPM probes by 
applying the trust sustainment and control mechanism [28, 29]. Once the probe is 
attacked or intruded, the NPM module will be informed. Meanwhile, we also use 
digital signature to guarantee the trustworthiness of collected network performance 
data. When the monitored data is collected from a probe, the TE module checks with 
the NPM module to ensure that the data-providing probe is in a trusted status. 
Concretely, the probe sends its network performance monitoring data and its public 
key to the TE module by signing the data with its private key. The TE module verifies 
the signature and checks the trustworthiness of the probe by providing its public key 
to the NPM module. If the probe is in a trusted status, its provided data can be 
considered in the trust evaluation; otherwise, the TE module will discard the data if 
the probe’s authentication with the NPM module fails (e.g., in a situation that the 
probe is attacked). 
 

Fig.7. Procedure of trustworthy network performance monitoring 
 

Figure 7 shows the procedure of trustworthy network performance monitoring and 
data collection. Herein, we apply the trust sustainment and control mechanism as 
described in [28, 29] based on our previous work [30]. The procedure can be 
described as follows: 
Step 1: The NPM module sends a data collection request with a trust challenge to a 
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NPM probe. 
Step 2: After the probe receives this message, it responses with its device 
configurations (trust credentials). 
Step 3: Then the NPM module performs verification on trust credentials. If the 
verification is successful, the NPM module will request trust relationship 
establishment by providing its trust conditions (e.g., no platform configuration 
changes and no additional software allowed to install, etc.). 
Step 4: When the NPM probe gets the request, it verifies and registers the trust 
conditions by embedding the trust conditions into its TPM. After that, it confirms the 
trust relationship establishment with the NPM. With this way, the trust relationship 
from the NPM module to the NPM probe is established. 
Step 5: Optionally, the trust relationship from the NPM probe to the NPM module can 
be also established if needed following a similar way. If the platform configurations 
appear changes that violate the trust conditions, the NPM probe’s TPM will notify the 
NPM probe and further the NPM module about the distrusted configuration changes. 
The NPM module will correspondingly take an appropriate safety measures, e.g., 
breaking down the connection with this NPM probe and informing the TE module to 
discard the data collected by this probe. 
 
4.4 Tag of Data Collection 
For aggregating the data collected by different probes, we need to check the tags of 
the data in order to aggregate the data related to a specific application for evaluating 
its trust. There are two ways to mark a tag on the data. 
 
Method 1: The control plane embeds the ID of application into its flow rules that are 
selected and applied into the data plane. The probes know the application ID during 
the monitoring. But the privacy of the application could be influenced. 
 
Method 2: The control plane informs the TE module the application IDs and the time 
duration of the applied flow rules. The TE module matches the flow rule selection 
result and its period of usage with the time of performance monitoring data collection. 
 
In what follows, we assume that the data collected for trust evaluation has a tag 
attached, which indicates its corresponding application. 
 
4.5 Trust Evaluation 
There are two sources to collect data for evaluating the trust of an application: the 
monitored data provided by the NPM probes and the feedback from other controllers. 
Multiple controllers could exist in the system. The evaluation algorithm should 
support this situation.  
 
𝑇",* denotes the trust value of application 𝑖 at time 𝑐. It is mainly contributed by two 
parts: the feedback from controller 𝑗 (𝑗 = 1,… , 𝐽) at time 𝑐0, denoted as 𝑇𝑓",* and 
the performance monitoring result, denoted as 𝑇𝑝",*. First, TMF sends a request to all 
controllers that have interactions with application 𝑖 for feedback. After receiving the 



request, controller 𝑗 sends back its feedback 𝑇𝑝0,",*3 in an honest way. This honest 
behavior of controllers can be assumed due to the responsibility of network operators 
for offering high quality networking services. 𝑇𝑝",*3,0 denotes application 𝑖’s trust 
value fed back from the controller 𝑗 at time slot 𝑐0. Suppose TMF receives a total of 
𝐽 feedback at time slot 𝑐. Then it aggregates all feedback by considering time impact 
(the more recent the feedback, the more valuable it is) and the value of 𝐽’s impact 
(since the bigger the value of 𝐽, the more accurate the evaluation is) based on 
Formula (1): 

𝑇𝑓",* =
4(5)
5
∑ 𝑇𝑝",*3,0
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where 𝜃(𝐽) = 1 − 𝑒𝑥𝑝	( ;5D

E(FGH)D
) is the Rayleigh cumulative distribution function to 

model the impact of 𝐽  on trust evaluation; 𝜀 = − 5
5′
	 , parameter 𝐽′  is the total 

number of controllers in the system. Parameter 𝜏 is applied to control the decay of 
𝑇𝑝0,",*3 since the most recent feedback should contribute more on the trust evaluation. 
 
For calculating 𝑇𝑝",* based on the performance monitoring results, we apply the 
following algorithm to prepare 𝑇𝑝",* calculation. 
Algorithm 1: Preparation of 𝑇𝑝",* calculation 
Input: Monitoring result of network throughput rate 𝒕𝒓, packet loss probability 𝒍𝒑, 
and time delay 𝒕𝒅; the threshold value of network throughput rate 𝑻𝑯_𝒕𝒓; the 
threshold value of packet loss probability 𝑻𝑯_𝒍𝒑; the threshold value of time delay 
𝑻𝑯_𝒕𝒅;	𝑭𝒂𝒄𝒕𝒓 = 𝑭𝒂𝒄𝒍𝒑 = 𝑭𝒂𝒄𝒕𝒅 = 𝟎. (Note that we usually set the threshold as the 
value that is tested at the time when the controllers do not run any third-party 
applications.) 
If 𝒊𝒏𝒑𝒖𝒕 = 𝒕𝒓, 𝑭𝒂𝒄𝒕𝒓 = 𝟏

𝟏 + 𝒆;𝒙
(𝒕𝒓>𝑻𝑯_𝒕𝒓)
𝑻𝑯_𝒕𝒓

^ ; 

If 𝒊𝒏𝒑𝒖𝒕 = 𝒍𝒑,	𝑭𝒂𝒄𝒍𝒑 = 𝟏
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𝑻𝑯_𝒍𝒑
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If 𝒊𝒏𝒑𝒖𝒕 = 𝒕𝒅, 𝑭𝒂𝒄𝒕𝒅 = 𝟏
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Where 𝒙, 𝒚, 𝒛 denote the scales of the impact of 𝒕𝒓, 𝒍𝒑 and 𝒕𝒅, respectively. 
Output: 𝑭𝒂𝒄𝒕𝒓; 𝑭𝒂𝒄𝒍𝒑; 𝑭𝒂𝒄𝒕𝒅. 

After collecting all 𝐹𝑎𝑐 from all probes at time slot 𝑐, the TE module first checks 
the tags attached to 𝐹𝑎𝑐  with regard to application 𝑖	(𝑖 = 1,… , 𝐼)  and then 
calculates 𝑇𝑝",*  by combining 𝐹𝑎𝑐d,"  from probe 𝑘  that contains tag 𝑖  with 
Formula (2). 

𝑇𝑝",* =
∑ (fg*hi,j,kGfg*lm,j,kGfg*hn,j,k)o
jpq

rsGt
, 𝑟 ≥ 1,  (2) 

where 𝑟 is a parameter to ensure 0 ≤ 𝑇𝑝",* < 1 and the validity of Formula (2). 𝐾 
is the total number of probes that provide monitoring results with regard to 
application 𝑖. 
 
Finally, we aggregate 𝑇𝑓",* and 𝑇𝑝",* together and also consider past trust value 𝑇",*′ 
at a previous time slot 𝑐′ based on Formula (3). 

𝑇",* = 𝛼𝑇",*′ + 𝛽𝑇𝑓",* + 𝛾𝑇𝑝",*,  (3) 
where 𝛼 + 𝛽 + 𝛾 = 1, they are weighting parameters of the above three input factors. 



 
5. System Performance Evaluation 
In this section, we firstly introduce TMF prototype implementation. We then design a 
number of experiments to show the accuracy and efficiency of our system. At last, we 
analyze its robustness. 
 
5.1 System Implementation 
We implemented a TMF prototype system based on the design specified in Section 4. 
As shown in Figure 8, we installed floodlight version 1.2 controller in PC 1 to 
simulate SDN’s control plane. This computer’s CPU is Inter Core i3-3220 at 
3.30GHZ and RAM’s size is 4GB, running operating system is Ubuntu 16.04 LTS. 
We developed the CD module with Java and embedded it into the floodlight’s source 
code package. The TE module, implemented with Java in PC 1, connects to the CD 
module to transmit trust values. The TE module consists of trust value evaluation part 
and MySQL database that stores applications’ trust values. In PC 1, we also 
implemented the NPM module to support the trust sustainment and control 
mechanism by challenging the probe devices via TPM in order to ensure the 
credibility of NPM probes and the trustworthiness of network performance data 
collection. 

 
Fig.8. TMF prototype’s structure 
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Refer to Figure 8, we installed Mininet that can create a realistic virtual network in a 
single machine PC 2 to simulate a number of Openflow switches. These switches 
make up the data plane and directly connect to the PC 1’s floodlight controller. PC 2’s 
CPU is Inter Pentinum G630 at 2.70GHZ with 4GB RAM, running operating system 
Red Hat Enterprise Linux Server 6.5. PC1 connects to PC 2 through a 100 Mbps 
wired network. We simulated NPM probes with a network measurement tool called 
Iperf to collect network performance data. After the data are collected, they are stored 
in PC 1’s MySQL database. There are three tables in this database that respectively 
record time delay, throughput rate, and packet loss probability of network nodes 
affected by different applications’ flow rules in different time slots. TPM is installed 
in both computers PC 1 and PC 2 to ensure the credibility of the NPM probes. The 
code in PC 2 was written in C++ language. 
 
5.2 Performance Evaluation 
Our system’s main task is to evaluate the trust of applications and manage them based 
on it. Therefore, the accuracy of trust evaluation is the first that should be assessed. In 
addition, we also tested the efficiency of the prototype system in terms of CPU usage, 
memory usage and operation time of each system procedure. 
 
5.2.1 Accuracy 
For evaluating the accuracy of application trust evaluation, we did some preparation. 
Firstly, we simulated two types of network topology in the data plane. As shown in 
Figure 9, the first topology is a Fat-tree topology that has 20 Openflow switches and 
16 hosts. This kind of network topology is usually used in data centers. The second 
type is a Star topology that has 6 Openflow switches and 10 hosts. Secondly, to 
simulate different SDN applications, we designed three loading balance applications 
(LB APP). In order to differentiate the performance of these three applications, we 
only let the first application (LB APP 1) issue the flow rules that make the 
transmission of data packets in network topology evenly distributed in each 
equivalent link. The second loading balance application (LB APP 2) generates some 
flow rules conflicted with the first one. Although it can also complete the task of load 
balancing, its performance is worse than the first one because some of its flow rules 
make data packets choose a further router, which results in uneven distribution of 
flows. The third one (LB APP 3) is an application with some malicious behaviors. In 
this application, there are flow rules that make some network switches regularly 
discard packets or delay packet forwarding. In these three applications, the first 
application’s performance should be the best and the worst is the third one since it is 
malicious. Thirdly, as mentioned in Section 4, an application’s trust value is mainly 
contributed by two parts: its performance monitoring reports from the control plane 
where it currently runs (𝑇𝑝",*) and its performance feedback from other control planes 
(i.e., in other SDN systems) (𝑇𝑓",*). To simulate an application’s feedback from other 
control planes, we run the above loading balance applications in different control 
planes’ controllers for different network topologies (i.e., SDN system 1 and SDN 
system 2, as shown in Figure 9). Then we calculated their 𝑇𝑝",*3,0 and stored them in 
a database to serve as the feedbacks from other control planes. 
 



 

Fig.9. Network topologies applied in TMF’s accuracy evaluation 
 

Table 2. The Values of Parameters of Trust Evaluation 

Formula Parameter Value 

Formula (1) 

𝐽 2 
𝐽′ 4 
𝜎 3 
𝜏 24 hours 

Algorithm 1 
𝑥 1 
𝑦 1 
𝑧 1 

Formula (3) 
𝛼 0.2 
𝛽 0.2 
𝛾 0.6 

 
We ran the three loading balance applications in the two types of networks with 
Fat-tree topology and Star topology, respectively. The TMF calculated their trust 
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values in different time slots (every 6 hours). We set initial trust values of the three 
applications as 0.8. That is to say, in the trust evaluation of time slot 1, 𝑇",*′ of the 
three applications is 0.8. Table 2 lists the parameters used in our system for the 
calculation of trust value. In our test, 𝐽 is the number of feedback pieces from other 
control planes, which is 2 in our test, and 𝐽′ equals to the total number of control 
planes that is 4. In order to make the impact of feedback obtained more than one day 
decay faster, we set 𝜏 equal to 24 hours. We think the scales of the impact of 
throughput rate, packet loss probability and time delay are same, so we set parameters 
𝑥, 𝑦, 𝑧 as 1. In our design, an application’s current performance contributes the most 
to its trust value, so 𝛾	was set as 0.6. The impact of the application’s feedback from 
other control planes and its trust value in the previous time slot are smaller, compared 
with its impact on current networking performance. Therefore, we set both 𝛼 and 𝛽 
as 0.2. 
 

Table 3. Trust Values of Three Loading Balance Apps in Different Time Slots and Topologies 

App Name 
Time Slot 1 Time Slot 2 Time Slot 3 

Star Fat-tree Star Fat-tree Star Fat-tree 

LB APP 1 0.823 0.815 0.827 0.816 0.828 0.816 

LB APP 2 0.685 0.673 0.654 0.639 0.656 0.642 

LB APP 3 0.421 0.457 0.344 0.458 0.327 0.457 

 
The trust values of three applications are evaluated by our system and shown in Table 
3. In our design, the LB APP 1 has the best quality, thus its trust value should be the 
highest, which is proved by our experimental result. The LB APP 3 applied some 
malicious policy, thus its trust value should be the lowest, which is always less than 
0.5, as indicated in Table 3. The trust value of LB APP 2 falls into the middle of the 
trust values of LB APP 1 and LB APP 3. We can find this experimental result is the 
same as our expectation. In particular, when we ran the three applications in a larger 
topology (Fat-tree topology), we found that their performance drops slightly, 
compared with their performance in a Star topology. This result is reasonable since 
application performance drops in a larger scale network. 
 
Table 4. Trust Values of Three Loading Balance Apps in Different Time Slots and Topologies with 

Different Parameters 

App 
Name 

Parameter 
Time Slot 1 Time Slot 2 Time Slot 3 

Star Fat-tree Star Fat-tree Star Fat-tree 

LB APP 1 
Set 1 0.749 0.740 0.752 0.745 0.753 0.746 

Set 2 0.831 0.823 0.834 0.826 0.834 0.825 

LB APP 2 Set 1 0.628 0.613 0.579 0.566 0.589 0.579 



App 
Name 

Parameter 
Time Slot 1 Time Slot 2 Time Slot 3 

Star Fat-tree Star Fat-tree Star Fat-tree 

Set 2 0.672 0.668 0.641 0.635 0.648 0.639 

LB APP 3 
Set 1 0.387 0.381 0.311 0.303 0.283 0.279 

Set 2 0.382 0.376 0.342 0.336 0.334 0.328 

 
We also evaluated the three applications’ trust values with different system parameters. 
These trust values are listed in Table 4. Two sets of parameters sets are used to 
calculate the trust values. In Set 1, 𝛼 = 0.2 (the weight of previous trust value 𝑇",*′); 
𝛽 = 0.3 (the weight of feedback from other control planes 𝑇𝑓",* ); 𝛾 = 0.5 (the 
weight of 𝑇𝑝",*), and other parameters are the same as the parameters in Table 2. In 
Set 2, 𝛼 = 0.1; 𝛽 = 0.2; 𝛾 = 0.7, and other parameters are same as the parameters 
in Table 2. We can see the weighting parameters’ impact on the trust evaluation. 
 

 
Fig.10. Three LB APPs’ trust values in time slot 1 in different networks and with different 

parameters  
We further compared the three applications’ trust values in time slot 1 with different 
parameter sets (Set 1, Set 2, and parameters in Table 2, denoted as Set 3), as shown in 
Figure 10. Comparing the results with Set 1 and Set 3, we can find that the three 
applications’ trust values become big when 𝛼 remains the same, 𝛽 decreases and γ 
increases. This is because in our design, the number of pieces of feedback from other 
control planes is relatively small, resulting in 𝑇𝑓",* is smaller than 𝑇𝑝",*, which 
ultimately lead the applications’ trust values increase when 𝛽 decreases. The purpose 
of comparison between Set 2 and Set 3 is to observe the influence of 𝛼 and γ when 
𝛽 stays the same. As mentioned before, 𝑇",*′ in Time Slot 1 equals 0.8, it’s smaller 
than LB APP 1’s 𝑇𝑝",* and bigger than LB APP 2 and 3’s 𝑇𝑝",*. Therefore, the trust 
value of LB APP 1 evaluated in Set 3 is smaller than in Set 2, and the evaluation of 
trust values of LB APP 2 and APP 3 shows opposite results. To sum up, our system 



can objectively evaluate an application’s trust by adjusting the weight of each 
parameter in various scenarios. For example, when we don’t need to pay much 
attention to the feedback from other control planes, we can reduce the value of 𝛽 to 
keep the accuracy of trust values. 

 
5.3.2 Efficiency 
In system efficiency test, we measured the floodlight controller’s CPU usage, memory 
usage and each procedure’s operation time. Firstly, we ran floodlight version 1.2 
without the TMF support and connected the floodlight controller to the network with 
the Fat-tree topology. Then we installed the three loading balance applications 
separately and record the controller’s CPU usage and memory usage. We also did the 
same experiment in the floodlight controller with the TMF support and recorded the 
related data. The test results are presented in Figure 11 and 12, respectively. 

 
Fig. 11. CPU usage of floodlight version 1.2 with and without TMF 

 
Fig. 12. Memory usage of floodlight version 1.2 with and without TMF 

 
As shown in Figure 11 and Figure 12, when a new application is installed into the 



controller, its CPU and memory usage will increase because the controller need to 
load the application and insert new rules into its flow table. When running the TMF, 
more resources are consumed, because the controller needs to check the application’s 
trust value, detect flow rule conflicts and select the flow rules of the application with 
the highest trust value. Through comparison, we can see that the CPU consumption of 
the TMF is acceptable. The memory usage of the controller with the TMF support is 
about 5% more than that without TMF. In short, the TMF consumes few resources for 
achieving desired functionalities. 
 

Table 5. The Operation Time of TMF (unit: millisecond) 

Procedure 
Operation Time 

APP 1 APP 2 APP 3 

CD module 22 21 23 

TPM verification 954 936 973 

NPM data transmission 
and verification 

42 46 45 

Trust Evaluation 5 5 5 

Trust value feedback 10 12 9 

 
To test the operation time of TMF, we successively installed three load balancing 
applications that generate some flow rules conflicting with each other into the 
controller with Fat-tree topology. After that, we separately recorded the operation time 
of TMF’s each procedure. The result is shown in Table 5. In each procedure, the 
trusted platform module spends the most time to do platform verification, but this 
operation only needs to be done few times when NPM probes establish connection 
with the NPM module and when the NPM module needs to perform periodical 
re-verification via TPM. In this test, each application generated about 500 flow rules, 
so the CD module detected about five hundred flow rule conflicts and made selection 
each time. The operation time of conflict detection is less than 25 milliseconds. The 
operation time of trust value feedback and distribution is about 10 milliseconds. Trust 
value evaluation spends the least time, which is less than 10 milliseconds. In general, 
the operation time of the TMF is relatively low. Taking both the operation time and 
the resource consumption into account, we can see that the TMF system is efficient 
and can provide precise trust management for SDN applications based on digital trust 
evaluation. 
 
In what follows, we further compared our system’s performance with some related 
work [15, 16, 19] reviewed in Section 2.  
1) We compared the operation time of adding new flow rules into the controller with 

the existing works in [15, 16]. They proposed role-based solutions to deal with 
flow rule conflicts. By installing different numbers of applications, we inserted 



different number of flow rules into the controller’s flow table. After that, we tested 
the operation time of adding different number of flow rules. The result is shown in 
Figure 13. By contrast, we find that our system has lower operation time than 
existing work when detecting the same number of flow rule conflicts. 

  
Fig. 13. Comparison of operation time to add new flows 

 
2) We tested the time of installing a new application into the controller with the 

existing work [19]. In [19], a permission check is performed before each 
application is installed into the controller. We installed an application with 50 flow 
rules into the controller for ten times, recorded their average time and calculated 
standard deviation of them to show their volatility. The result is shown in Figure 
14. We find that the time of our system to add a new application is similar to that 
of [19], but our system has smaller standard deviation. 

  
Fig. 14. Comparison of time to install a new application 

 



It is not easy to compare our work with other existing ones, we present the reasons 
below. The system main functions in [17], [18] and [22] are different from ours, so the 
objectives of system performance evaluation are different from ours. In [20], [21] and 
[22], authors only showed their system design without any system performance 
evaluation. 
 
5.3 System Robustness Analysis 
The core function of our system is trust evaluation based on the network performance 
data collected by the NPM probes. In order to ensure the system core function to run 
correctly, we must guarantee the veracity of the collected data. As described in 
Section 4, we embedded TPM into the NPM probes, applied a trust sustainment and 
control mechanism [28, 29] to ensure the truth of network performance data collection 
and used digital signature to achieve non-repudiation. The TPM module can ensure 
the NPM probes to perform as expectation for collecting desired network performance 
data. Once a NPM probe is compromised or behaves maliciously, its configuration 
information is changed. Meanwhile, the probe’s TPM will inform the NPM module 
that this probe is beyond credible, and the NPM module will break down the 
connection between TE module and this probe. The TE module will not use the data 
collected from this probe for trust evaluation. To prevent the collected network 
performance data from being tampered, we used digital signature in our prototype 
system. Concretely, we used SHA-256 hash function to extract message digest of data 
and RSA asymmetric cryptography to sign the extracted message digest. So, once the 
network performance data is tampered by attackers, the NPM module can find that its 
message digest is changed, and then discard the data. If this event happens many 
times, the NPM module will inform network administrators and the TE module to 
disconnect with the related probes. Based on the above analysis, we can see that our 
system has certain resistance to attacks against the NPM probes. 
 
In our system, before the TE module evaluates an application’s trust value, it should 
collect a large amount of network performance data through the NPM probes. After an 
application’s trust value is generated, the network performance data is useless. But the 
network performance data could be a target of attackers. If the TE module is attacked, 
these data will leak network privacy. In order to mitigate this issue, once an 
application’s trust value is generated, its network performance data will be deleted by 
the TE module if they are useless. Particularly, we can encrypt useful data and store 
them in a backup server for later tracking.  
 
6. Conclusion 
In this paper, we proposed a trust management framework for SDN applications. It 
can evaluate trust of an application that is adopted by the SDN controller based on its 
performance and can also update the evaluated trust value dynamically accordingly to 
newly collected network performance data by a number of NPM probes. Besides that, 
the proposed TMF can detect flow rule conflicts between applications. Trust values 
obtained by TMF can be used to solve flow rule conflicts and detect malicious 



applications. In addition, the TMF also ensure the robustness of trust evaluation by 
adopting a trust sustainment and control mechanism for network performance data 
collection, which can verify whether a network device is working in a desired manner. 
We implemented a prototype system to demonstrate the TMF in order to assess its 
performance in terms of accuracy and efficiency. We also compared the performance 
of our system with the existing work. The testing results are satisfactory. However, 
this is a simulation test. In the future, we will establish our framework and evaluate its 
performance in a real and large SDN environment. 
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