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ABSTRACT: Accurate and reliable biosensing is crucial for
environmental monitoring, food safety, and diagnostics. Spatially
reconfigurable DNA origami nanostructures are excellent candi-
dates for the generation of custom sensing probes. Here we present
a nanoscale biosensing device that combines the accuracy and
precision of the DNA origami nanofabrication technique, unique
optical responses of chiral plasmonic assemblies, and high affinity
and selectivity of aptamers. This combination enables selective and
sensitive detection of targets even in strongly absorbing fluids. We
expect that the presented sensing scheme can be adapted to a wide
range of analytes and tailored to specific needs.

KEYWORDS: DNA origami, gold nanorods, chiral plasmonics, aptamers, biosensing

Various materials and biochemical entities have properties
that are potentially useful for biorecognition and/or

transduction in sensing applications.1 The difficulty often lies
in the integration of those properties for the realization of
efficient and reliable biosensors. This is especially challenging
for nanoscale sensing devices. Herein, we describe design,
fabrication, and characterization of a nanoscale sensing device
that combines the beneficial biosensing properties of DNA
origami technique, chiral plasmonics, and aptamers.
DNA nanotechnology, which utilizes DNA as a construction

material for the assembly of nanostructures,2,3 is finding
increasing use in biosensing applications.4 Recently, the DNA
origami technique has emerged as a powerful method for
fabrication of complex nanostructures that can serve as
templates for assembly of various functional components
with nanometer precision.5−10 In addition, reconfigurable
DNA origami structures have enabled realization of nanoscale
devices with functionalities tailored for the characterization of
bimolecular interactions,11−13 biosensing,14−17 and drug
delivery.18

Metal nanostructures and their plasmon resonances have
been extensively used as optical transducers for sensing. Utility
of plasmonics traditionally has stemmed from the ability to
generate strong electromagnetic field enhancement.19 Alter-
natively, the coupling of plasmonic excitations in metal
nanoparticles and its sensitivity to interparticle distances can
be utilized for sensing.20,21 Among coupled plasmonic systems,
reconfigurable chiral plasmonic assemblies enabled by DNA
nanotechnology22 are particularly promising candidates for
sensing applications because their structural configurations can
be readily correlated with the optical responses, e.g., circular
dichroism (CD).23 Optical detection based on CD spectros-

copy provides several additional benefits: biological samples
exhibit very low background CD signals in the visible spectrum
and optical measurements can be performed even in strongly
absorbing fluids.24 Recently, a DNA origami-based chiral
plasmonic nanosensor with ability to detect viral RNA at
concentrations down to 100 pM has been demonstrated.17 The
sensitivity to RNA has been implemented using DNA-based
molecular “lock” as a biorecognition element. In order to
extend the applicability of DNA origami-based plasmonic
nanosensors beyond nucleic acids, more universal biorecogni-
tion elements are required. Nucleic acids aptamers are
excellent candidates. Aptamers with high affinity and specificity
have been selected against a wide variety of target molecules
including small molecules, peptides, and proteins.25 Further-
more, aptamers are easy to generate, have low production cost
and batch-to-batch variability, and can be easily incorporated
into DNA origami structures.
The design of our DNA origami-based chiral nanosensor is

schematically illustrated in Figure 1A. A DNA aptamer-based
molecular lock is employed as a biorecognition element. The
lock is incorporated into reconfigurable DNA origami-AuNRs
construct and defines the spatial configuration state of the
nanosensor. The DNA origami structure consists of two 14-
helix bundles (80 nm × 16 nm × 8 nm) linked in the center by
two flexible single-stranded segments. Depending on the
relative orientation of the two bundles, the structure can
adapt left- or right-handed (LH/RH) chiral spatial config-
uration with ∼50° angle between the bundles.26 Two gold
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nanorods (AuNRs), 55 nm × 23 nm, are assembled on top of
the DNA origami to enable optical detection of the chiral
configuration with CD spectroscopy.17,26−28 Detailed descrip-
tion of the DNA origami design and AuNRs assembly is
provided in the Supporting Information.
The operation principle of the nanosensor is illustrated in

Figure 1B, C. The state of the aptamer-based lock changes
upon target binding. The DNA origami structure transduces
the state of the lock (closed/open) into two spatial
configurations of the AuNRs dimer (chiral/relaxed) with
distinct plasmonic CD reponses.26−28 To demonstrate the
versatility of our system, we designed two types of locks. The
double stranded (ds)-lock consisted of an aptamer and a
complementary strand (cs) and undergoes closed to open
transition upon analyte binding (Figure 1B). The split aptamer
(sp)-lock consisted of partial aptamer strands and closes upon
target binding (Figure 1C). In both cases, we used adenosine
as a model analyte and adapted its corresponding DNA
aptamer.29,30

Agarose gel electrophoresis, transmission electron micros-
copy (TEM), and CD spectroscopy were used to characterize
the assembly of the DNA origami-AuNRs structures. The
structures assembled with high yields (Figure 2A and Figure S1
and S2) and exhibited distinct CD responses in chiral and
relaxed states (Figure 2B). The relaxed state had a slight RH
CD response preference due to structural imperfections.
First, we tested the performance of nanosensors with ds-

locks (Figure 1B). The polyacrylamide gel electrophoresis
(Figure S4) showed the shortest length of cs to form a stable
hybrid with the aptamer is 12 nt (cs12) and that this
hybridization was efficiently broken by adenosine as the
adenosine competed against the cs to bind with the aptamer
(Figure S5). The sequences of the aptamer and the cs12 were
incorporated into the two origami bundles as ds12-lock
(Figure S6A) and the origami was in RH chiral state when
the ds12-lock was closed. The agarose gel electrophoresis
showed that the origami with the ds12-lock shifted faster
compared to the relaxed structure confirming the closed
configuration (Figure S7). After the attachment of AuNRs, the
DNA origami-AuNRs constructs with the ds12-lock (ds12-
nanosensor) exhibited strong RH CD response. Addition of

adenosine resulted in a concentration dependent decrease of
the CD signal, indicating the equilibrium shift from the RH
chiral state to the relaxed state (Figure 3A). The lowest
concentration of adenosine to induce clear change in CD
spectra was 300 μM. The highest measured adenosine

Figure 1. Design and operation principle. (A) Schematics of the DNA origami-based chiral plasmonic nanosensor. The DNA aptamer-based
molecular lock is employed as a biorecognition element incorporated into reconfigurable DNA origami structure, which hosts two gold nanorods
(AuNRs). Two AuNRs constitute a three-dimensional (3D) chiral plasmonic object with circular dichroism optical response that is dependent on
the angle between the rods. (B,C) Operation principle of the nanosensor with different aptamer-based molecular locks. (B) Double-stranded (ds)-
lock opens upon target binding, and the 3D spatial configuration of the origami-AuNR construct changes from chiral to relaxed. (C) Split aptamer
(sp)-lock closes upon target binding, and the spatial configuration of origami-AuNR constructs changes from relaxed to chiral.

Figure 2. DNA origami-AuNR structures and their chiroptical
responses. (A) TEM image of the DNA origami-AuNR structures.
The structures showed typical binding preference to the TEM grid,
i.e., parallel origami bundles and rods. Scale bar, 100 nm. (B) CD
responses in RH chiral (red line) and relaxed (blue line) states.

Figure 3. Ds12-nanosensor. (A) Relative CD responses at different
concentrations of adenosine. Concentrations are given in mM. (B)
CD responses of the nanosensor in the presence of adenosine (2 mM)
or guanosine (saturated solution, 2.5 mM).
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concentration was 10 mM due to the limited solubility. The
typical response time of the ds12-nanosensor was in the range
of tens of minutes (Figure S11) and the limit of detection
(LOD) was ∼270 μM (see the Supporting Information). To
demonstrate that the CD change was induced by the specific
interaction between the aptamer-based lock and the adenosine,
we constructed the structures in which the aptamer strand in
the lock was replaced by a scramble strand that formed the
same 12 base pairs (bp) with the cs12 sequence but lacked the
ability to bind adenosine. No adenosine response was observed
when the aptamer sequence was scrambled or omitted (Figure
S8). The ds12-nanosenor also responded to the adenosine
triphosphate (ATP), which is another target of the adenosine
aptamer (Figure S9). No decrease in the CD signal was
observed in the presence of the guanosine (Figure 3B), which
confirms the selectivity of our sensing device.
To test whether the ds-lock can be used to detect adenosine

at concentrations below 300 μM, we shortened the hybrid-
ization length between the aptamer and the cs from 12 bp to 9
bp by substituting the cs12 with the cs9 sequence (ds9-lock,
Table S2). Fewer base pairs of the aptamer-cs hybrid are
expected to benefit the competing binding between the
adenosine and the aptamer. Although free cs9 and aptamer
were not expected to form a stable hybrid at room temperature
the origami-AuNRs constructs with the ds9-lock (ds9-nano-
sensor) exhibited strong CD signals, possibly due to the
enhanced local concentration effect after the incorporation into
the origami structures. The ds9-nanosensor exhibited clear CD
changes at the adenosine concentration of 30 μM (Figure 4A),
1 order of magnitude smaller than the ds12-nanosensor. The
LOD of ds9-nanosensor was ∼20 μM. Furthermore, the ds9-
nanosensor responded to the addition of adenosine within 1
min (Figure S11), much faster than ds12-nanosensor.
Although shortening the hybridization length of the ds-lock

improved the detection limit and speed, the correlation
between the CD signal and the adenosine concentration
became less steep (Figure 4D).
Next, we tested the performance of the nanosensor with the

split aptamer (sp)-molecular lock (Figure 1C), which consisted
of two partial aptamers (apt1, apt2) that do not interact with
each other but can form an apt1-apt2-adenosine complex in
the presence of the adenosine. We inserted the apt1 and apt2
on the two bundles of the origami as shown in the Figure S6B.
The complex formation of apt1-apt2-adenosine enabled the
origami to possess a LH chiral configuration. The CD spectra
of the origami-AuNRs with the sp-lock (sp-nanosensor) in
adenosine showed that the higher the adenosine concentration,
the higher the LH CD signal generated (Figure 4B). Of note,
although the LH CD spectra became clear only after the
adenosine concentration reached 250 μM, the RH CD signal
of the relaxed state exhibited clear decrease in CD at 50 μM of
adenosine. The high adenosine concentration was required to
compensate the constructs’ intrinsic tendency toward the RH
configuration in the relaxed state. The LOD of sp-nanosensor
was ∼65 μM. When the sp-lock was inserted on the opposite
side of the origami bundle to close the construct as the RH
structure, the signal started to increase at 25 μM (Figure S10).
The DNA origami technique provides the ability to combine

both types of locks in one device. We used the ds9-lock
responsible for RH chiral to relaxed transition and sp-lock
responsible for relaxed to LH chiral transition to test the
performance of the dual lock system (ds9-sp-nanosensor). The
addition of adenosine is expected to open the ds9-lock to drive
the equilibrium from the RH toward the relaxed state and close
the sp-lock to shift the equilibrium from the relaxed to the LH
state. The ds9-sp-nanosensor not only showed clear change in
CD already at 30 μM of adenosine (Figure 4C), similar to ds9-
lock based system, but also exhibited steeper CD signal−
adenosine concentration dependence (Figure 4D) compared
to the nanosensor with only ds9-lock. The LOD of ds9-sp-
nanosensor was ∼25 μM. In addition, the response time of the
double lock-nanosensor was in the range of several minutes
(Figure S11).
Finally, we tested our devices in absorbing fluids. The CD

responses of the nanosensor were almost identical at optical
densities of environment up to OD ≈ 3 (Figure 5). At ODs
above 3, the CD response became too noisy for reliable
measurement.

Figure 4. Relative CD responses of the (A) ds9-nanosensor, (B) sp-
nanosensor, and (C) ds9-sp-nanosensor at different adenosine
concentrations. Concentrations are given in mM. (D) Relative CD
signals at 612 nm at different concentrations of adenosine.

Figure 5. CD responses of the nanosensor in absorbing fluids. (A)
CD spectra of the ds9-sp-nanosensor in environments with different
optical extinction. (B) Corresponding absorption spectra. The
absorption was adjusted by addition of gold nanorods.
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In summary, we developed a nanoscale biosensing device
that combines the benefits of the DNA origami technique,
chiral plasmonics and aptamers. One of the main advantages of
such combination is the high level of programmability.
Aptamer based biorecognition elements can be easily
incorporated into DNA origami structures at desired locations.
While the availability of split aptamers is limited, the double
stranded lock strategy can be adapted to a wide variety of
aptamers and targets. Dynamic DNA origami structures can be
optimized to undergo desired spatial reconfiguration upon
target binding and the spectral position of optical responses
can be tuned by the size and material composition of the
nanorods. In addition, the nanosensor enables optical
detection in environments with strong optical extinction,
which would simplify preparation procedures of biologically
relevant samples. Our results demonstrate a promising route
toward the development of the aptamer-based sensing
platforms utilizing optical responses of chiral plasmonic
nanostructures.
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