
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Jing, Xuyang; Yan, Zheng; Pedrycz, Witold
Security Data Collection and Data Analytics in the Internet

Published in:
IEEE Communications Surveys and Tutorials

DOI:
10.1109/COMST.2018.2863942

Published: 01/01/2019

Document Version
Peer reviewed version

Please cite the original version:
Jing, X., Yan, Z., & Pedrycz, W. (2019). Security Data Collection and Data Analytics in the Internet: A Survey.
IEEE Communications Surveys and Tutorials, 21(1), 586 - 618. [8428412].
https://doi.org/10.1109/COMST.2018.2863942

https://doi.org/10.1109/COMST.2018.2863942
https://doi.org/10.1109/COMST.2018.2863942


This is the accepted version of the original article published by IEEE. 
 
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Security Data Collection and Data Analytics
in the Internet: A Survey

Xuyang Jing, Zheng Yan, Senior Member, IEEE, and Witold Pedrycz, Fellow, IEEE

Abstract—Attacks over the Internet are becoming more and
more complex and sophisticated. How to detect security threats
and measure the security of the Internet arises a significant
research topic. For detecting the Internet attacks and measuring
its security, collecting different categories of data and employing
methods of data analytics are essential. However, the literature
still lacks a thorough review on security-related data collection
and analytics on the Internet. Therefore, it becomes a necessity to
review the current state of the art in order to gain a deep insight
on what categories of data should be collected and which methods
should be used to detect the Internet attacks and to measure
its security. In this paper, we survey existing studies about
security-related data collection and analytics for the purpose of
measuring the Internet security. We first divide the data related to
network security measurement into four categories: packet-level
data, flow-level data, connection-level data, and host-level data.
For each category of data, we provide a specific classification
and discuss its advantages and disadvantages with regard to
the Internet security threat detection. We also propose several
additional requirements for security-related data analytics in
order to make the analytics flexible and scalable. Based on
the usage of data categories and the types of data analytic
methods, we review current detection methods for Distributed
Denial of Service (DDoS) flooding and worm attacks by applying
the proposed requirements to evaluate their performance. Finally,
based on the completed review, a list of open issues is outlined
and future research directions are identified.

Index Terms—Security-related data, data collection, data an-
alytics, DDoS flooding attacks, worm attacks, security measure-
ment

I. INTRODUCTION

THE Internet has played an important role in our daily life.
At the same time when the Internet brings us great con-

venience, it also raises a lot of security threats. Security threats
have become an important factor that restricts the development
of the Internet. Recently, security threats have been examined
in several different fields. Zou et al. [1] first summarized
security requirements of wireless networks and then presented
a comprehensive overview of attacks encountered in wireless
networks. Ahmad et al. [2] analyzed various security threats to

X. Jing is with State Key Laboratory on Integrated Services Networks,
School of Cyber Engineering, Xidian University, Xi’an, China (email:
Xuyangjing91@163.com).

Z. Yan is with the State Key Lab on Integrated Services Networks, School
of Cyber Engineering, Xidian University, No.2 South Taibai Road, Xi’an,
China, 710071; and the Department of Communications and Networking,
Aalto University, Konemiehentie 2, P.O.Box 15400, Espoo, Finland (e-mail:
zyan@xidian.edu.cn; zheng.yan@aalto.fi).

W. Pedrycz is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6R 2V4, Canada, the School of
Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China,
and also with the Faculty of Engineering, King Abdulaziz University, Jeddah
21589, Saudi Arabia (e-mail: wpedrycz@ualberta.ca).

application, control, and data planes of Software Defined Net-
working (SDN). Ali et al. [3] presented some security threats
in cloud computing and provided a comparative analysis of
attacks and countermeasures. AbdAllah et al. [4] identified
five major aspects related to security in Information-Centric
Networking (ICN) based on the ICN attacks. Many researchers
have considered that the premise of guaranteeing security is
to effectively resolve security threats, especially to prevent
attacks.

Network attacks that are the main threats for security over
the Internet have attracted special attention. The openness and
interconnection of the network and the security vulnerabil-
ities of protocols and software lead to multiple and multi-
level network attacks. Distributed Denial of Service (DDoS)
and worm attacks are two typical attacks over the Internet.
DDoS attacks aim to prevent normal users from accessing
specific network resources. The distribution of DDoS attacks
causes serious damage. Worms, a kind of self-duplicating and
self-propagating malicious codes, spread themselves across
networks without any human interaction. They compromise
hosts by exploiting vulnerabilities in operating systems or
installed programs and employ the infected hosts to launch
many kinds of attacks. Researchers have completed many
surveys to offer an overview on how to effectively counter
DDoS and worm attacks. In early work, Peng et al. [5]
introduced defense mechanisms for DoS and DDoS attacks.
They classified defense mechanisms into following categories:
attack prevention, attack detection, attack source identifica-
tion, and attack reaction. Zargar et al. [6] surveyed defense
mechanisms for DDoS flooding attacks from the perspective
of source-based, destination-based, network-based, and hybrid
approaches. Yan et al. [7] presented a comprehensive survey
on defense mechanisms against DDoS attacks using SDN in a
cloud computing environment. Li et al. [8] presented a survey
and compared the Internet worm detection and containment
mechanisms from the perspective of activity characteristics of
the worms. Kaur and Singh [9] reviewed signature-based worm
detection methods based on the classifications of signature
generation.

Different perspective of surveys offers different understand-
ing of detecting and defending DDoS and worm attacks.
However, based on our investigation, there is still an evident
lack of a thorough survey from the perspective of summarizing
detection methods for DDoS and worm attacks from the
view of security-related data. Security-related data (security
data, in short) refer to the data that can be used to detect
security attacks, security threats or intrusions. It is the basic
element in attack detection, no matter whether at a training



TABLE I
COMPARISON OF OUR SURVEY WITH OTHER EXISTING SURVEYS

Covered Topics [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] Our
survey

Summarize security data N N N N N N N N N N Y
Review data analytic methods Y N N N Y Y Y Y Y N Y
Propose additional requirements of
data analytics N N N N N N N N N N Y

Review DDoS attacks Y Y Y N N Y N N N Y Y
Review Worm attacks N N N Y Y N N Y N N Y
Establish the relationship between
data categories and attack types N N N N N N N N N N Y

Y: discussed; N: not discussed

or detecting stage. Many kinds of methods are employed to
analyze security data to detect attacks. Before designing a
detection method, we should select: (i) appropriate security
data categories that capture sufficient information on malicious
activities of attacks, (ii) effective analytic method that has the
ability to accurately detect attacks by analyzing security data.
By doing this, we can make a detection method accurate and
efficient. In order to gain a deep insight into data categories
and analytic methods, it becomes necessary to carefully sur-
vey current detection methods for network attacks from the
perspective of security data.

In this paper, with the purposes discussed above, we firstly
divide security data over the Internet into four categories:
packet-level data, flow-level data, connection-level data, and
host-level data. The packet-level data is defined as the infor-
mation of packet header, packet payload and packet activities.
It gives full information about network activities. Detection
methods that use the packet-level data can detect most net-
work attacks. But inspecting individual packets in high-speed
network and encrypting packet payload in some circumstances
make packet-level data-based methods inefficient. Flow is
defined as a stream of packets that have one or more same
attributes. It gives a more macroscopic view of network
traffic. The flow-level data represents statistical information
about the flow. Detection methods that use the flow-level data
can be deployed over a high-speed network. They have the
ability to solve the detection challenges related to encryption.
A connection is defined as the aggregated traffic between
two IP addresses. The connection-level data is the statistical
description of connection. It provides global information of
exchanged traffic between two IP addresses in a given time.
We can use the connection-level data in conjunction with
the packet-level data and the flow-level data to gain a more
detailed insight into network traffic. The host-level data repre-
sents information about system events. It records host activities
and uses it as a certain decision criterion. From the perspective
of these security data categories, we survey current detection
methods for DDoS flooding and worm attacks over the last
decade. Then, we present a detailed overview on how they
use different data categories and analytic methods to detect
attacks. By summarizing attack detection methods, we discuss
appropriate data categories and analytic methods that can be
used to detect specific DDoS flooding and worm attacks. We
also propose several additional requirements and use them as
a measure to evaluate the performance of existing detection

methods.
Although we can find a number of existing surveys about

DDoS and worm attacks in the literature [5-14], our survey
has different focuses, provides deep review on the relation-
ship between data categories and attack types and conducts
literature evaluation based on additional requirements of data
analytics. A tabulated comparison of our survey with other
existing surveys of DDoS and worm attacks is presented in
Table I. Through comparison, we can summarize the main
contributions of this paper as below:

(i) We summarize commonly used security data over the
Internet and divide them into four categories: packet-level data,
flow-level data, connection-level data, and host-level data. For
each data category, we provide a specific classification and
discuss its advantages and disadvantages with regard to the
Internet threat detection.

(ii) We propose several additional requirements for security-
related data analytics in order to make the analytics flexible
and scalable.

(iii) We thoroughly review current detection methods of Dis-
tributed Denial of Service (DDoS) flooding and worm attacks
from the view of the usage of data categories and the types of
data analytic methods by applying the proposed requirements
to evaluate their performance. We also summarize what data
categories and analytic methods can be used to detect what
specific DDoS flooding and worm attacks.

(iv) We further figure out a number of open issues and
propose future research directions to motivate network security
research.

The rest of the paper is organized as follows. Section II
introduces the main categories of security data. For each
category of data, we give a specific classification and discuss
its advantages and disadvantages regarding the Internet threat
detection. In Section III, we discuss analytic methods of
security data that are applied to detect attacks and propose a
number of security requirements to evaluate the performance
and quality of analytic methods. In Section IV and Section
V, respectively, we review current detection methods for
DDoS flooding and worm attacks based on the security data
categories and applied data analytic methods. Furthermore, we
discuss some open research issues and present future research
directions in Section VI. Finally, conclusions are presented in
the last section. For convenience, the reader can refer to Table
II for all abbreviations used throughout the paper.



TABLE II
ABBREVIATIONS IN THE PAPER

Abbreviation Explanation
AL-DDoS Application Layer Distributed Denial of Service
ANN Artificial Neural Network
CUSUM Cumulative Sum
C&C Command and Control
DDoS Distributed Denial of Service
DFC Deal with Flash Crowds
DRDoS Distributed Reflection Denial of Service
DNS Domain Name System
DPI Deep Packet Inspection
D-S Dempster-Shafer
DT Dynamic Threshold
EWMA Exponential Weighted Moving Average
FTP File Transfer Protocol
HCP Hop Count Filter
HIDS Host-based Intrusion Detection System
HTTP HyperText Transfer Protocol
ICMP Internet Control Message Protocol
ICN Information Centric Networking
IP Internet Protocol
KNN K-Nearest Neighbor
LDDoS Low-rate Distributed Denial of Service
NTP Network Time Protocol
N/T-L DDoS Network/Transport Layer Distributed Denial of Service
PC Personal Computer
PI Protocol Independence
PSD Power Spectral Density
RTT Round Trip Time
SDN Software Defined Networking
SD Self-adaptive Detection
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SSL Secure Sockets Layer
SVM Support Vector Machine
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TLS Transport Layer Security
TTL Time to Live
UDP User Datagram Protocol
VoIP Voice-over-IP

II. SECURITY DATA

For any attacks, detection methods, whether used at the
training, testing or detecting stage, are based on data. The data
fundamentally affects the efficiency and accuracy of detection
methods. Because different categories of data have different
application scenarios, we should first consider what category
of data could meet our needs when designing a detection
method. In this section, for each category of data, we first
briefly introduce its collection methods and then present its
classification. Based on these findings, we can effectively
and explicitly choose data categories to meet the needs of
a detection method.

A. Packet-level Data

Packets are generated when users’ programs run such proto-
cols as Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), Internet Control Message Protocol (ICMP),
etc. A packet consists of a packet header and a packet payload.
Following the definition presented in the previous section, the
packet-level data includes packet header information, packet
payload information, and packet activity information.

1) Collection Method of Packet: Normally, we collect net-
work packets at a physical interface by using a specific ap-
plication programming interface called packet capture (pcap).
Libpcap and Winpcap are two packet collecting software
libraries for Unix and Windows, respectively. They have many
network functions such as protocol analyzers, packet sniffers,
network monitors, etc. There are many popular packet collect-
ing tools freely available. For example, TCPdump provides the
functions of collecting packets and making some statistical
analysis based on tracing files [15]. Wireshark that adds a
GUI to TCPdump and includes many traffic signatures can be
used for application identification [16]. Snort is a tool for real-
time traffic analysis, which is capable of performing content
searching/matching and detecting many types of network
security attacks [17]. Nmap uses raw IP packets to probe
computer networks for host discovery, service and operating
system detection [18]. Moreover, libtrace is an efficient packet
collection and analysis library that supports multiple data
formats [19].

One of the commonly used hardware-based packet collec-
tion methods is a mirroring mode. Packet forwarding devices
mirror packets coming from one or more ports to another port,
to which a capture device connects. This process is called port
mirroring, port monitoring, or Switched Port Analyzer session
[20]. Port mirroring can analyze both incoming and outgoing
packets with a whole network view. But mirroring may induce
packet delay, loss or reorder. Thus, having enough bandwidth
is essential for a mirror port.

2) Classification of Packet-level Data: Based on the defini-
tion of the packet-level data, we classify them into a number
of types as below, which are usually used to detect the DDoS
and worm attacks. Mahoney and Chan [21] introduced 33
header features that can be used to detect anomalies. Herein,
we briefly discuss some commonly used header features for
detecting DDoS and worm attacks.

a) Source/Destination IP address: Source/Destination IP
address is the fundamental part of data transmission in TCP/IP.
It represents the address of a sender/receiver. The distribution
and changing rate of source IP address are often utilized
when attacks are launched by Botnet. The reason is that
the bots usually have a more concentrated source IP address
than legitimate users and they are usually strange for attack
targets. Usually we apply information entropy to calculate
the probability distribution of the source IP address. A high
entropy value represents a high degree of randomness of IP
addresses. In the same way, the distribution and changing rate
of destination IP address can be used to infer the possibility
of attacks in the case that a malicious host carries out target
scanning.

b) Source/Destination port: Source/Destination port ex-
ists in the TCP and UDP protocols. Different ports serve
for different protocols. The distribution and changing rate
of source/destination port are usually used to detect worm
scanning. Worms scan a specific port on many destination
hosts (horizontal scan) or scan several ports on a single
destination host (vertical scan). These behaviors lead to drastic
changes in the statistical information of the port.



c) Time to Live: The main function of Time to Live
(TTL) is to restrict the transmission distance (hop count) of
packets. Due to the relative stability of the network, the hop
count between a host and another host is located in a certain
range. Based on this knowledge, Hop-Count-Filter (HCP) is
applied to detect IP spoofing attack by matching the hop count
of packets sent from their actual source with the hop count of
packets sent from a claimed source [22]. The distribution of
TTL values can also be used to detect IP spoofing. If distinct
TTL values are observed in packets’ headers that come from
the same source address, we can infer with high probability
that this address has been spoofed [23].

d) Timestamp: Timestamp represents a point-in-time of
sending/receiving packets. Accurate packet timestamps are
essential in many scenarios, e.g., they are used to compute
inter-arrival time of packets, Round Trip Time (RTT) between
two hosts and the delay of transmission routes. Timestamp can
also be applied to check non-repudiation of packets [24].

e) Packet payload: Packet header features are useful
to detect attacks that exploit vulnerabilities of a network
stack or scan hosts for vulnerable services. Packet payload
information can be used to detect attacks directed at vulnerable
applications since the attackers imitate the network behaviors
of normal users. For example, some malicious code of worm
is carried by packet payload, therefore it cannot be detected
by packet header attributes; some application layer DDoS
attacks can be launched by using abnormal application con-
tents with legitimate network/transport layer behaviors. Deep
Packet Inspection (DPI) is a method that uses both packet
header and payload information to determine whether a packet
is an intrusion or not [25]. It is effective to detect attacks
in application layer. The main challenges for payload-based
detection methods are: (i) invasion of privacy, packet payload
often encapsulates the data of higher level protocols such as
HTTP and DNS, these data contain user private information,
so that there is no right to directly check packet payload
information, (ii) Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols encrypt application contents
that are carried in payload, so it is difficult to detect malicious
activities based on the analysis of packet payload.

f) Packet size: Packet size consists of header size and
payload size expressed in bytes. Usually, the size of packet
header is constant, but payload size is not fixed. It often
depends on which system and application the packet is coming
from. Some statistical information of packet size is widely
used to detect attacks that are launched by Botnet, such as
maximum packet size, minimum packet size, average packet
size and standard deviation of packet size. The size of attack
packets originated from one bot is similar to other packets that
come from the same kind of bots. So attack traffic generated
from the same botnet has similar or same packet size. Another
usage of packet size is to inspect abnormal packets with
arbitrary contents in payload. Moreover, we can determine the
number of transmitting bytes by accumulating packet size in
a certain time period.

g) The number of packets: The number of packets is
another widely used data type in current detection methods,
e.g., a drastical increase in the number of packets is an

indicator of DDoS flooding attacks. According to the direction
of packet transmission, this type can be divided into the
number of incoming packets, the number of outgoing packets
and the number of bidirectional packets. We also classify this
data type based on the protocol types, e.g., the number of
ICMP (request/reply) packets, the number of TCP packets with
different flags (SYN, ACK, FIN, SYN-ACK, RST, etc.), the
number of TCP-based protocol packets (HTTP, FTP, SMTP,
etc.) and the number of UDP-based protocol packets (DNS,
TFTP, NTP, etc.). These classifications can be freely combined
with protocol header information or other information, such as
the number of incoming TCP SYN packets from a source IP
address, the number of incoming packets to a same destination
port, the number of outgoing DNS query packets, and so on.
Furthermore, we can use packet rate to represent the number
of transmitting packets per unit time.

B. Flow-level Data

In high-speed networks with rates up to hundreds of Gigabit
per second (Gbps), collection of packet-level data requires
expensive hardware. Moreover, due to the increasing usage
of payload encryption and sophisticated obfuscation methods,
traditional packet-based detection methods also exhibit poor
performance. With the purposes of providing a macroscopic
view of the network traffic and endeavoring to deal with the
encrypted packets, the concept of flow has emerged. A flow
is defined as a stream of packets that have one or more
same attributes. These same attributes, usually called flow
keys, commonly include packet header information, packet
contents and meta-information [26]. For example, the flow
keys of NetFlow, introduced in Cisco routers, are source IP
address, destination IP address, source port, destination port,
IP protocol, IP type of service and ingress interface [27].
Flow aggregation techniques utilize a tuple of predefined flow
keys to aggregate packets. Different aggregated granularities
on network traffic can be obtained by choosing different
flow keys, according to the need of network administrators
[28]. Flow has many applications [29]: network monitoring,
application monitoring, host monitoring, network application
classification and security awareness and intrusion detection.
In this paper, we focus on the applications of flow in intrusion
detection. Sperotto et al. [30] provided a detailed discussion
on why flow-based intrusion detection is required and then
presented an overview. Umer et al. [11] summarized current
available flow-based datasets used for evaluation of intrusion
detection methods and surveyed flow-based intrusion detection
methods.

1) Collection Method of Flow: There are two flow collec-
tion strategies [29]: (i) depth-first, choosing specific flow keys
to aggregate packets in order to meet collection demands, (ii)
breadth-first, collecting as much as possible information in
order to have a global view on network traffic. We simplify the
collection process of flow as illustrated in Fig. 1. The complete
processes of flow collection and flow exportation are discussed
in [26]. The first stage concerns packet collection from a
monitor point. Then packets are aggregated into flows with
predefined flow keys. During packet aggregation, statistical



Packet 

collector

Flow 

expiration

Flow 

aggregation

Flow 

export

Internet
Flow collector

Flow analysis

Fig. 1. The collection process of flow

information of a flow is continuously updated in a flow cache.
Once a flow record expires, it is sent to a flow collector for
further analysis. A flow is considered expired when [26,30]:
(i) the flow was idle meaning that no packets have been
transmitted for a long time exceeding a given threshold (idle
timeout), (ii) the flow reaches the maximum allowed lifetime
(active timeout), (iii) the FIN or RST flags have been seen in
a TCP flow (natural expiration), (iv) automatic reduction of
timeout parameters in case of resource constraints (resource
constraints), (v) the flow cache memory becomes full (emer-
gent expiration), (vi) all flow cache entries have to be expired
in emergent events (cache flush).

2) Classification of Flow-level Data: Flow-level data rep-
resents the statistical information of a flow. We classify flow-
level data into the following types. Each type is extracted from
flow records.

a) Flow count: Flow count is the number of different
flows resulting from aggregating packets with the same flow
keys. For example, at a host-side, we can aggregate incoming
packets by source address, destination address, and protocol
types. In the sequel, many flows with different three attributes
can be obtained. Flow count is used to measure this quantity.

b) Flow type: When flow keys consist of port numbers or
other protocol identifiers, we can acquire many kinds of flow
such as HTTP flow, DNS flow, ICMP flow, TCP (SYN, SYN-
ACK, FIN, etc.) flow and others. We can combine flow count
with flow types to detect some evidently abnormal traffic. In
a normal TCP connection building process, the number of
SYN flow is equal to the number of SYN-ACK flow. In the
same way, the number of DNS query flow is also equal to the
number of DNS response flow. Any abrupt changes of these
balanced relationships indicate the presence of attacks.

c) Flow size: A flow is made up of packets that share
one or more same attributes. Therefore flow size is the number
of packets in a flow. During DDoS flooding attacks, the size
of attack flows is distinctly larger than legitimate flows.

d) Flow direction: From the perspective of a specific
network, the transmission direction of packets is divided into
incoming (inbound traffic) and outgoing (outbound traffic).
Flow is generated by aggregating packets. Hence, flow can

be classified into inflow and outflow. Inflow is determined by
aggregating incoming packets with flow keys and outflow is
specified by aggregating outgoing packets. For example, from
the view of host-side, there have to be inflows and outflows
during a normal TCP connection.

e) Flow duration: As we discussed above, a flow is
expired according to six scenarios. So flow duration is the time
duration from the first packet’s arrival time to the expiration
time of flow.

f) Flow rate: Flow rate is defined as the number of
transmitting packets of a flow per unit time. In a given flow,
the packets share one or more the same attributes. The flow
rate has higher specificity than the packet rate but they have
mostly similar usages. In the case of high-rate DDoS flooding
attacks, the rate of attack flows is distinctly higher than the
rate of normal flows.

C. Connection-level Data
A connection is defined as the aggregated traffic between

two IP addresses from the perspective of a specific network,
where one address belongs to internal addresses and the other
is an external address. If the rule of traffic collection is the
same as the rule of flow expiration, a connection is made
up of two flows (inflow and outflow). A connection will
contain many flows if the collection rule is more extensive
than the rule of flow expiration. For example, we define a
connection as being composed of transmission traffic between
two IP addresses in five minutes. We may get a number of
flows (inflows and outflows) in this connection. Notably, the
difference between flow and connection is that a flow does
not have size restriction, that is to say, the flow is generated
even if a single packet has been exchanged. But a connection
is generated by at least two packets. Moreover, the notion of
connection in this paper is the granularity of network traffic,
which is different from the notion of “connection-oriented” in
TCP protocol.

Connection-level data describes the traffic statistical infor-
mation (includes inbound traffic and outbound traffic) ex-
changed between two IP addresses. It has a higher granu-
larity of network traffic than the flow-level data because it
provides global information of exchanged traffic between two
IP addresses in a given time. The connection-level data can
be divided into the following types.

1) Connection Size: Connection size can be divided into
the size of packet-level and the size of flow-level. The size
of packet-level is the total number of packets in a connection,
while the size of flow-level is the count of flows.

2) Connection Duration: Connection duration is the time
duration from connection generation to connection termina-
tion. It measures the communication time between two hosts.

3) Connection Count: Connection count is the number of
connections in a certain period of time. It offers the infor-
mation about the number of hosts that a given host connects
within that period. A drastic change of connection count is
also a signal of attack occurrence.

4) Connection Type: Connection type is determined by
the type of collected traffic, such as TCP connection, UDP
connection and ICMP connection.



The collection process of connection-level data is actu-
ally the process of collecting packet-level or flow-level data.
Usually, we make use of the connection-level data together
with the packet-level data and the flow-level data to acquire
more detailed information about network traffic. By tracing a
connection status and applying it together with the first two
data categories, we can distinguish attack traffic from normal
traffic based on the difference between them. But a detection
method using the connection-level data requires keeping track
of host and connection information, which implies that such
a method requires more resources than other methods.

D. Host-level Data

The host-level data is collected from a local host while the
former three categories are collected from network devices.
Various open-source tools can be used to collect host-level
data, such as Collectl in Linux [31], Loadrunner in Win-
dows [32], etc. The host-level data provide comprehensive
knowledge of system events as it records host activities, host
changes, host resource consumption, etc. Each type of attack
is intended to have an impact on host performance. The host-
level data can describe any internal changes in the host. They
are widely used in Host-based Intrusion Detection System
(HIDS). A HIDS monitors the internals of a computing system
by analyzing host-level data. It is capable of detecting internal
abnormal activities such as modification of file systems, privi-
lege escalation, unauthorized logging and unauthorized access.
Herein, we discuss some commonly used types of host-level
data in attack detection.

1) CPU and Memory Usage: Monitoring CPU usage can
deliver useful load information about running software pro-
grams. We can measure CPU usage at system level and user
level. If a host is suffering from a network/transport layer
DDoS flooding attack, the CPU usage of system level will
drastically increase, but user level usage will hold steady.
However, under application DDoS flooding attacks, such as
HTTP requests and asymmetric attacks, both system level and
user level CPU usage will simultaneously increase. Memory
usage reveals the information about data exchange. It also
drastically increases during application DDoS flooding attacks
because applications need to process massive data.

2) Operation Log: Operation logs can be classified into
equipment operation logs and application operation logs.
The equipment operation logs collect the running events of
equipment that connects with host, such as keyboard and
mouse click events, cursor changes, writable objects, etc.
The application operation logs represent user-related activities
when using a specific application, e.g., local port creations or
destruction events, the number of login events, software usage
events, system calls, etc.

E. Summarization and Comparison

Table III shows the summarization and comparison of four
data categories. From the table, we can observe that each
data category has its own advantages and disadvantages with
regard to security threat detection. Packet-level data that has
full information about packet payload and packet header can

offer detailed records of network activities, making real-time
detection and payload matching possible. But having the infor-
mation of packet payload is double-edged as it could intrude
user privacy. Moreover, by considering the need of inspecting
individual packets, existing collection methods of packet-level
data are not suitable for high-speed networks with a rate up
to hundreds of Gbps. Current collection methods of flow-level
data provide several advantages compared to packet-level data,
such as suitable for high-speed networks and widely deployed.
The main merit of collecting flow-level data is to reduce the
amount of network traffic to be analyzed. But the flow-level
data has no information about packet payload, thus it is not
useful in payload-based detection methods. The connection-
level data records global information exchanged between two
hosts so that it gives a higher granularity of network traffic
than the flow-level data. We can measure the communication
situation of a given host by analyzing the connection-level
data. And when making use of the connection-level data to-
gether with the packet-level data or the flow-level data, we can
obtain detailed information about network activities. However,
collecting the connection-level data needs to keep track of the
status of each connection, which requires additional resources.
The host-level data differs from the first three data categories
as it offers comprehensive information of system events rather
than the information of network traffic and records any internal
changes of a host. The host-level data are rarely analyzed
alone to detect attacks due to the high false positive caused
by some normal user activities that lead to abnormal system
performance.

Through the above discussion, we can conclude that the
selection of data categories is determined by the needs of a
detection method and a network environment. We can take the
advantages of each data category and use them in conjunction.
For example, by considering the connection-level data together
with the packet-level or the flow-level data, we can detect
application layer related attacks. By analyzing the host-level
data with network status, we can accurately infer whether a
host suffers attacks.

III. METHODS AND REQUIREMENTS OF SECURITY DATA
ANALYTICS

In this section, we briefly introduce the widely used analytic
methods of security data and discuss their advantages and
disadvantages. In order to make the analytic methods of
security data flexible and scalable, we further propose four
additional requirements in terms of security data analytics.

A. Methods of Security Data Analytics

The methods of security data analytics with the purpose of
detecting network attacks can be classified into three main cat-
egories: statistical methods, machine learning, and knowledge-
based methods, as shown in Fig. 2. This classification is based
on the nature of data analytic methods. It is not straightforward
to propose a classification for security data analytic methods,
because there is substantial overlap among the methods used
in various classes.



TABLE III
SUMMARIZATION AND COMPARISON OF DATA CATEGORIES

Data
category

Classification Advantages DisadvantagesType Explanation

Packet-level
data

Source address The IP address of source
network interface 1. Access to raw packet data so

that make real-time detection
possible;
2. Allow pattern matching in
payload content;
3. Have full information about
network activities.

1. Collection methods are not
suitable for high-speed networks;
2. Touch private and sensitive
information.

Destination address The IP address of destination
network interface

Source Port The end-point of source
network interface

Destination Port The end-point of destination
network interface

TTL The Maximum hop count

Timestamp The point-in-time of sending
or receiving packets

Packet payload The content that packet
carries

Packet size The size of a packet in bytes
The number of
transmitting bytes

The number of bytes accumulated
in a certain time period

The number of
packets

The packet count accumulated in
a certain time period

Packet rate The number of transmitting
packets per unit time

Flow-level data

Flow count The number of flows 1. Independent of encrypted
payload;
2. Collection methods are
suitable for high-speed networks;
3. Collection methods are widely
deployed and well understood.

1. Collection methods cause
some inevitable delay;
2. Have no information about
packet payload.

Flow type The protocol information of
a flow

Flow size The number of packets in
a flow

Flow direction The transmission direction of
a flow

Flow duration The time duration of a flow

Flow rate The number of transmitting
packets per unit time of a flow

Connection-level
data

Connection size The number of packets or flows
in a connection

1. Provide global information of
exchanged traffic between two
IP addresses in a given time;
2. Support a good detection
performance when being used
with other categories of data.

1. Collection methods need to
keep track of each connection
status;
2. Have poor performance
when being used separately
from other categories of data.

Connection duration The time duration of a connection
Connection count The number of connections

Connection type The protocol information of a
connection

Host-level data

CPU usage The load information about
running software programs 1. Have full information about

system performance and
behaviors;
2. Record any internal changes
of a host system.

1. Have a high false alarm rate
when being used separately from
other categories of data;
2. Collection methods take up
host-side resources.

Memory usage The information about data
exchange

Equipment operation
logs

The running records of equipment
that connects with a host

Application operation
logs

The running records of an
application

1) Statistical Methods: In statistical methods, the network
traffic activity occurring in normal conditions is captured and
a profile representing its normal behaviors is generated. The
profile is created based on metrics such as packet-level data
and flow-level data. In the sequel, a statistical inference is
applied to calculate an anomaly score (usually a distance to
the profile), which is generated based on currently observed
traffic and the normal profile. If the score passes a certain
threshold, an alarm of anomaly will be generated. Univariate
models, multivariate models and time series models have
been applied in statistical methods. The univariate models
need prior knowledge of the underlying distribution of data
and estimate the parameters from given data (e.g., mean
and standard deviation). The multivariate models consider
correlations between two or more metrics and do not need
prior knowledge of an underlying distribution. The time series
models, which use an interval time combining with an event
counter or a resource measure, consider the order and the inter-
arrival times of observations as well as their values.

There are several widely used examples of statistical meth-
ods in attack detection. The first is information entropy.
Entropy summarizes the traffic distribution by capturing the
important characteristic of traffic features. The traffic distribu-
tion is used to detect abnormal behaviors through comparing
with a predefined distribution. An entropy-based method is
suitable for detecting attacks launched by Botnet based on
anomalous patterns in networks [33]. In [34], several mea-
sures, such as entropy, conditional entropy, relative entropy,
information gain, etc., were used to explain the characteristics
of a dataset. Another statistical method is Cumulative Sum
(CUSUM) algorithm, which is a sequential analysis technique
used to detect irregular changes in traffic traces [35]. It is based
on the fact that if a change occurs, the probability distribution
of random sequence will change from negative to positive.
Other examples are Exponentially Weighted Moving Average
(EWMA) algorithm [36], Holt-Winter algorithm [37], etc.

The statistical methods have a number of distinct advan-
tages:



Analytic methods of 

security data

Statistical 

methods

Machine 

learning

Knowledge-based 

methods

Univariate 

models

Multivariate 

models

 Time series 

models

Supervised 

learning

Unsupervised 

learning

Semi-supervised 

learning

Expert 

system

Ontology 

analysis

Logic 

analysis

Fig. 2. Classification of analytic methods of security data

• They do not require prior knowledge of network attacks.
It means that they have the capability of detecting zero-
day attacks.

• They can accurately detect the attacks that cause abruptly
changes in network traffic, when setting an appropriate
threshold.

• They use few features to characterize the network traffic
so that their time and space complexity is small.

But, the statistical methods also have some disadvantages:

• They are susceptible to being trained by an attacker.
• The pure normal behavior model of a network is difficult

to establish.
• An appropriate threshold is difficult to set in order to

successfully balance false positives and false negatives.
• Most statistical methods rely on an assumption of a quasi-

stationary process [38], which is not always realistic.

2) Machine Learning: Machine learning aims to establish
an explicit or implicit model of analyzed patterns. The machine
learning is mainly divided into three categories [39, 40, 41]: (i)
supervised learning, (ii) unsupervised learning, and (iii) semi-
supervised learning. In the supervised learning, the algorithm
learns knowledge from labeled data and uses the obtained
knowledge to classify the unknown data. Several supervised
learning algorithms (e.g., K-Nearest Neighbor (KNN), Sup-
port Vector Machines (SVM), and Artificial Neural Network
(ANN), Decision Trees, etc.) have been widely applied to
detect network attacks [42]. In the unsupervised learning, the
algorithm finds the underlying structure of the data without
any labels. The unsupervised learning methods that mainly
work based on similarity or distance computation are divided
into partitioning methods (e.g., K-means, K-medoids, etc.),
hierarchical methods (e.g., BIRCH, Chameleon, etc.), density-
based methods (e.g., DBSCAN, OPTICS, etc.), and grid-based
methods (e.g., STING, CLIQUE, etc.). In semi-supervised
learning, a portion of labeled data is mixed into a large
amount of unlabeled data to generate the training dataset for
unsupervised learning. Here, the labeled data is used to obtain
a mapping from a large number of clusters to several classes.

Some detailed discussions about how to employ the machine
learning to detect network attacks are presented in [39, 40].

The machine learning has a number of advantages:
• It has high detection rate.
• It is capable of updating their execution processes in

response to new traffic.
But, it also has some disadvantages:
• The supervised learning cannot detect unknown attacks

until relevant information is fed for retraining.
• The unsupervised learning needs prior knowledge to

determine the number of clusters and is under the assump-
tion that the large clusters are normal and small clusters
are abnormal.

• The machine learning consumes more resources in both
training and updating processes than other two types of
methods.

3) Knowledge-based Methods: In the knowledge-based
methods, network or host events are matched with predefined
attack rules or patterns or signatures to examine them for the
presence of known attack instances. Expert system is the most
widely used knowledge-based methods. The expert system
extracts the specific features from the training data and builds a
rule in order to classify new coming data. Another type of the
knowledge-based methods is ontology analysis. It expresses
the relationships between collected data and uses these re-
lationships to infer particular attack types. Furthermore, logic
analysis models attack patterns in an expressive logic structure
and uses this structure to determine whether network events
are legal.

The knowledge-based methods exhibit the following advan-
tages:
• They are simple, robust, and flexible.
• They have a high detection rate under the circumstance

that attack rules or patterns or signatures are accurately
established.

Some disadvantages of the knowledge-based methods are
identified as below:
• They cannot detect unknown attacks.
• They need high-quality prior knowledge.
• These methods may trigger some false alarms due to non-

availability of biased normal and attack datasets.

B. Requirements of Security Data Analytics

Various theories and methods can be applied to analyze
security data so as to detect network attacks. Traditional
requirements (such as real-time, high accuracy, less consump-
tion, widely deployment, etc.) have been usually considered
when designing attack detection methods. But the Internet
attacks are growing day-by-day, novel detection methods
should be developed. As a result, additional requirements on
detection methods should be further considered for the purpose
of detecting all potential security threats and attacks and
applying into network security measurement. With the purpose
of making detection methods more flexible and scalable, we
propose four additional requirements. By considering these
four requirements, we believe future detection methods will
show advanced performance.



1) Self-adaptive Detection (SD): The anomaly-based de-
tection methods typically build normal profile for network
behaviors, and detect intrusion based on the deviation between
normal profile and current network profile [43]. They have
the ability to detect zero-day attacks while misuse-based
detection methods can only detect known attacks by using
signatures. But an attacker can elaborately launch attacks by
intentionally training detection methods to make it gradually
accept abnormal network behaviors as normal. Facing such an
attack, it is hard to define what types of network behaviors
are normal. If the patterns of normal network behaviors are
wrong or incomplete, anomaly-based detection methods will
have a high false positive rate. Therefore the detection methods
should adaptive to the changes of current network behaviors
instead of mainly depending on a static profile, that is to
say the detection methods should be capable of updating the
detection strategies with traffic changes.

2) Dynamic Threshold (DT): Most detection methods set a
threshold during the measurement of deviation in anomaly-
based technologies or make it act as an upper bound for
measuring the number of anomalies. Actually, it is difficult to
choose a proper value as the threshold that can be applied in all
kinds of networking scenarios. Setting a fixed threshold value
could greatly impact detection accuracy and efficiency. Thus,
it is preferred that the threshold should dynamically accuracy
and efficiency. Such a dynamically changed threshold could
greatly balance between false positive rate and false negative
rate.

3) Protocol Independence (PI): There are many kinds of
DDoS flooding and worm attacks in the context of various
networking protocols. We cannot predict when and which type
of attacks will occur. A qualified detection method should be
protocol independent for detecting DDoS flooding and worm
attacks. Both direct and indirect DDoS flooding attacks have
their own attack characteristics and could exploit multiple
protocols to launch attacks. So a protocol-independent method
is expected to detect a category of DDoS flooding attacks in-
stead of detecting a specific protocol-related attack. For worm
attacks, we prefer efficient early detection at scanning and
propagating phases. Although worms have many scanning and
propagating schemes, they have a similar purpose. A protocol
independent method can detect both known and unknown
worms based on the scanning or propagating schemes. In par-
ticular and from the view of network security measurement, a
generic and pervasive method is highly expected for evaluating
the Internet security as a whole.

4) Deal with Flash Crowds (DFC): Flash crowds that
massive legitimate users send request packets to a server in
a short period of time, have very similar properties to DDoS
flooding and worm attacks. But they are legitimate network
traffic. A comprehensive comparsion between DDoS flooding
attacks and flash crowds is shown in Table IV [5]. Moreover,
with the development of the Internet, flash crowds occur more
and more frequently. An attacker usually launches malicious
activities as soon as flash crowds occur. It can hide its activities
under flash crowds and achieves its malicious goals. The
detection methods that have the ability of dealing with flash
crowds and distinguishing attacks accompanying with flash

TABLE IV
COMPARISON BETWEEN DDOS FLOODING ATTACKS AND FLASH CROWDS

DDoS flooding
attacks Flash Crowds

Network impact Congested Congested
Server impact Overloaded Overloaded

Traffic Malicious Genuine
Response to

traffic control Unresponsive Responsive

Traffic type Any Mostly Web
Traffic amount Any Large amount of traffic
Predictability Unpredictable Mostly predictable

crowds are urgently needed.

IV. SECURITY DATA ANALYTICS FOR DDOS FLOODING
ATTACK DETECTION

Distribution and cooperation are the main characteristics
of DDoS attacks. There are two methods to launch DDoS
attacks over the Internet. One is called protocol attack (also
called vulnerability attack and killer packet attack). It exploits
vulnerability of protocols or applications and sends some
malformed packets to the victim. The victim will crash when
processing these malformed packets. For example, Ping of
Death attack, Winnuke attack and Teardrop attack fall into
this category. Another attack is called DDoS flooding attack,
which is the most common one, as shown in Fig. 3. This type
of attack floods a victim and occupies the victim’s resources
so that it cannot provide normal services for legitimate users.

Usually attackers launch DDoS attacks with massive hosts
that have installed malware programs. A botnet is made
up of compromised hosts (zombies) and controlled by an
attacker (botmaster). The botmaster utilizes command and
control system (C&C system) to remotely control and issue
attack commands to zombies. Botnets have been studied
extensively. Khattak et al. [44] presented three comprehensive
taxonomies of botnet features. The first taxonomy categorizes
botnet behaviors as those concerning propagation, rallying,
C&C, purpose, topology, and evasion. The second taxonomy
classifies botnet detection methods into bot detection, C&C
system detection and botmaster detection. The third taxon-
omy classifies botnet defense mechanisms into preventive and
remedial. Hoque et al. [10] classified botnet into stationary
botnets and mobile botnets. They not only introduced current
development trends of botnets, but also pointed out challenges
when designing botnets.

To prevent DDoS attacks, there are two different ways: (i)
direct attack detection that exploits the characteristics of DDoS
attacks, (ii) botnet detection that detects bots, botmaster and
C&C system. In this paper, we focus on the detection methods
for DDoS flooding attacks.

DDoS flooding attacks can be generated in two ways: direct
flooding attacks and indirect flooding attacks, as shown in
Fig. 4 (we only list some specific examples, there still are
many examples based on different protocols). In the direct
flooding attacks, attackers usually spoof source IP address
of attack packets and send them to a victim directly. In
the case of indirect flooding attacks, attackers use many



Attacker

Normal user

……

Commands

Server

Fig. 3. DDoS flooding attacks

innocent intermediates to flood the victim indirectly. Based
on this classification, we surveyed current detection methods
for DDoS flooding attacks based on the data categories and
the methods of data analytics they used. We discussed the
current work based on some data categories in each data
analytic method because other categories had not been found
in the usage of corresponding attack detection in the literature
as best as we know. Notably, due to the detection problem
of Low-rate DDoS flooding attacks that we will explain in
the following, we separately discuss this type of attacks.
Moreover, a discussion in each subsection is given with the
purpose of identifying what categories of data should be
collected and which analytic method should be applied for
each type of attack.

A. Detection Methods against Network/Transport Layer DDoS
Flooding Attacks

The main purpose of Network/Transport Layer DDoS (N/T-
L DDoS) flooding attacks is to consume network bandwidth
and overwhelm network infrastructures by sending a large vol-
ume of attack traffic. These attacks often exploit weaknesses
of network/transport protocols.

SYN flooding attacks are one of the most frequently
happening N/T-L DDoS flooding attacks which exploit the
weakness of TCP three-way handshake. An attacker sends
massive SYN request packets to a victim without subsequent
ACK reply packets. The victim is busy in processing these
request packets with a half-open connection so that it has few
resources to process normal user’s request packets. In this part,
the detection methods of SYN flooding attacks are mainly
discussed, because UDP protocol is currently used to launch
reflection flooding attacks and ICMP flooding attacks can be
easily defended by firewall.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting N/T-L DDoS flooding attacks
using packet-level data, flow-level data and connection-level
data.

a) Use packet-level data: Bellaiche and Gregoire [45]
used the numbers of SYN, ACK, SYN-ACK and RST packets
that drastically change in unusual TCP handshakes to detect
attacks. Entropy is calculated based on the fraction of these
packet counts occurring under normal traffic. During SYN
flooding attacks, massive unusual handshakes cause the drastic

change of the numbers of the above four types of packets. SYN
flooding attacks can be detected when the variation of entropy
value exceeds a certain threshold. The detection method is
independent from the traffic volume and does not produce false
alarms during flash crowds. Thus, this method can satisfy the
requirement of DFC, but cannot achieve the goals of SD, DT,
and PI.

Based on the similar principle, Sengar et al. [46] used
normalized frequencies of SYN, SYN-ACK, FIN and RST
packets during non-attack traffic to build normal probability
distributions. During detection, current probability distribution
of packet counts is built. Hellinger distance is employed to
measure the distance between normal probability distributions
and current probability distributions. A dynamic threshold was
computed by employing a stochastic gradient algorithm based
on the Hellinger distance observed during a training period.
An alarm will be raised when the Hellinger distance is higher
than an estimated threshold. Their method has the ability of
detecting the attacks that violate the normal communication
steps of protocols. Therefore, the method can support DT and
PI, but the requirements of SD and DFC cannot be satisfied.

Boro et al. [47] considered two detection features for UDP
flooding attacks targeted to a particular destination: (i) the
count of total destination port changes for non-spoofed source
addresses with random destination ports, and (ii) the count
of source addresses changes for randomly spoofed source ad-
dresses. A KD-Tree that each node represents a unique source
address is used to record information of incoming traffic. In
each time interval, they performed pre-order traversal of the
KD-Tree to calculate the entropies of the count of destination
port changes and the count of source address changes. An
alarm will be raised to indicate UDP flooding attacks when
the two entropies beyond a preset threshold. However, this
method cannot support all additional requirements.

Kim et al. [48] proposed a statistics-based malicious packet
detection and filtering scheme named PacketScore. Pack-
etScore utilizes the notion of “Conditional Legitimate Prob-
ability” (CLP) based on Bayesian theorem to judge whether
a packet is legitimate. The CLP of a packet is calculated by
comparing its attribute values with the values in a baseline
profile. The baseline profile contains the distribution of six at-
tributes namely packet size, TTL value, source address prefix,
TCP flag and server port number, and some joint distribution,
such as <packet size and protocol-type> , <server port number
and protocol-types>, etc. Once the score of every packet
is computed, PacketScore prioritizes packets based on their
scores and performs selective packet filtering by comparing
the scores with a dynamic threshold that is determined by a
recent snapshot of CLP values. The method can support DT
and PI, but cannot satisfy the requirements of SD and DFC.
Some extended schemes of PacketScore were described in [49]
and [50].

b) Use flow-level data: Zhou et al. [51] utilized source
address and destination address to aggregate packets into
flows. Based on the knowledge that attack packets that orig-
inated from the same botnet have the similar size, they
calculated entropy of the distribution of packet size in each
flow. The more concentrated the packet size is, the lower the



DDoS flooding 

attacks

Direct 

flooding attacks

Indirect 

flooding attacks

Network/transport 

layer flooding 

attacks

Application layer 

flooding attacks

Reflection  

flooding attacks

Link flooding 

attacks

TCP flooding 

attacks

UDP flooding 

attacks

ICMP flooding 

attacks

HTTP flooding 

attacks

SIP flooding 

attacks

DNS flooding 

attacks

FTP flooding 

attacks

DNS reflection 

flooding attacks

SNMP reflection 

flooding attacks

ICMP reflection 

flooding attacks

NTP reflection 

flooding attacks

Examples

Fig. 4. The classification of DDoS flooding attacks

entropy is. They detected DDoS flooding attacks by measuring
the entropy deviation between normal and current traffic. Their
method is protocol independent because they only used the
packet size in each flow. Thus, the method can support the
requirement of PI. But it cannot achieve the goals of SD, DT,
and DFC.

c) Use connection-level data: David et al. [52] moni-
tored traffic on connection-level and aggregated traffic into
flows with 5 tuples (viz. source and destination addresses,
source and destination ports, and protocol type). The entropy
of flow counts was calculated for each connection in each time
interval. Moreover, an dynamic threshold was calculated based
on the traffic pattern of network activities and user behav-
iors. DDoS flooding attacks are detected when the variation
between the entropy of flow counts at each instant and the
mean value of entropy in that time interval are greater than
their corresponding thresholds. The method can achieve the
requirement of DT, but cannot support SD, DT and DFC.

2) Machine Learning: In this part, we discuss machine
learning for detecting N/T-L DDoS flooding attacks using
packet-level data, flow-level data and connection-level data.

a) Use packet-level data: Saied et al. [53] applied an
Artificial Neural Network (ANN) to separate attack traffic
from genuine traffic based on specific features. They compared
the features of legal packets, which are generated by normal
applications with the features of illegal packets that are gener-
ated by DDoS attacking tools. Then, they used distinct features
as input variables to train TCP/UDP/ICMP topological ANN
structures, including source IP address, source and destination
port number, packet size, the number of packets, etc. The
trained ANN can detect known and unknown DDoS flooding
attacks with high accuracy. Thus, the method can support the

requirement of PI, but cannot achieve the goals of SD, DT
and DFC.

Vijayasarathy et al. [54] proposed a real-time detection
method using a Naive Bayes classifier. They used windowing
to split input traffic into traffic subsets in order to obtain
reasonable estimation and control over the reaction time of
the system for attacks and have better models from big
training datasets. In the phase of training, the system takes
traffic statistics namely the amount of source and destination
addresses, source and destination ports, the number of packets,
TCP flags, packet size and packet arrival time as input and
trains them using the Naive Bayes algorithm. 10-fold cross
validation was used to evaluate the accuracy of attack. But
this method cannot support all additional requirements.

Su [55] proposed a detection method by combining with
a weighted k-nearest neighbor (KNN) classifier. The author
derived 35 features from headers, including IP, TCP, UDP,
ICMP, ARP, and IGMP. A weight value is calculated for each
feature and an optimal vector of weighted features is used for
attack classification. This method achieves 97.42% detection
accuracy for known attacks and 78% accuracy for unknown
attacks. The method can support PI, but cannot satisfy the
requirements of SD, DT and DFC.

The traffic of DDoS flooding attacks launched by a Botnet
is quite different from flow crowds. Kong et al. [56] identified
some statistical features to discriminate DDoS flooding attacks
from flash crowds, such as the number of unique source
addresses in each interval, the number of increased source
addresses in adjacent interval, the average of the number of
packets sent by source addresses in each interval, and the
standard of the number of packets sent by source addresses



in each interval. With these features, traffic is classified by
employing some supervised methods. The method can satisfy
DFC, but cannot support SD, DT and PI.

Lee et al. [57] proposed a proactive detection method
for DDoS flooding attacks by exploiting an architecture that
consists of the selection of victims that help attack, the com-
munication between an attacker and victims, and the process
of launching an attack. The entropy of source and destination
addresses, the entropy of source and destination ports, the
entropy of packet types, the occurrence of packet types (TCP,
UDP, and ICMP), and the number of packets are computed
to build feature vectors based on a sample of consecutive
packets. A hierarchical clustering algorithm was adopted to
form clusters using the feature vectors. The normal traffic
and each phase of DDoS flooding attacks are partitioned. The
method can support the requirement of PI, but cannot achieve
the goals of SD, DT and DFC. An extended detection method
combined with a feature ranking algorithm was proposed in
[58].

b) Use flow-level data: Data centers provide a various
of services and applications such as Web, FTP, DNS, Hadoop,
etc. Many services containing a data center can easily lead to
corresponding DDoS attacks. Traditional packet-based DDoS
attack detection methods seem impractical. Xiao et al. [59]
proposed an efficient detection method deployed at data cen-
ters by applying CKNN (K-nearest neighbors traffic classi-
fication with correlation analysis) on flow-level data. They
aggregated packets that come from the data center network
with identical 5 tuples (viz. source and destination addresses,
source and destination ports, and protocol type). Each flow
can be represented by a set of statistical features, such as flow
duration, flow size, etc. Due to the high correlation among
the flows, which were generated by the same application, the
method can detect the existing attacks by examining flow
features with CKNN classification and correlation analysis.
The detection method that makes full use of the similarity
among flows instead of pre-building a profile is self-adaptive
and protocol independent. Thus, this method can support SD
and PI, but cannot satisfy the requirements of DT and DFC.

Wagner et al. [60] designed a kernel function based a
one-class SVM classifier to detect attacks. A special kernel
function considers properties of Netflow records and projects
data points into a higher dimension before classification. Such
a one-class SVM classifier is capable of identifying outliers
and anomalies. They tested the detection method with some
types of flooding attacks and obtained high detection accuracy.
Thus, the method can satisfy the requirement of PI, but cannot
achieve the goals of SD, DT and DFC.

Qin et al. [61] aggregated packets into flows with 5 tuples
(viz. source and destination addresses, source and destination
ports, and protocol type). For each flow, they recorded packet
size, source address, destination address, destination port,
and flow duration. Then they constructed entropy vectors of
these five features and modeled normal profiles using a K-
means algorithm. By comparing current traffic profiles with
the normal traffic profiles, the deviations of entropy vectors
are calculated and compared with a threshold to figure out
potential attacks. The method can support PI, but cannot

satisfy the requirements of SD, DT and DFC.
c) Use connection-level data: Kumar and Selvakumar

[62] proposed a classification algorithm called RBPBoost by
combining ensemble of neural classifiers and Neyman Pearson
cost minimization strategy. Several features were extracted
from traffic during a specified time window, such as the
number of connections to the same host, the number of
connections having the same packet length, the number of
connections that have SYN errors using the same service,
the number of UDP echo packets to a specified port, etc. In
training phase, an ensemble of neural classifiers was trained
using the above features for each individual dataset and the
results were combined. In testing phase, the Neyman Pearson
Structural Risk Minimization was applied to make a final
classification decision. But the method cannot support all
additional requirements.

3) Knowledge-based Methods: In this part, we discuss
knowledge-based analytic methods for detecting N/T-L DDoS
flooding attacks using packet-level data, flow-level data and
connection-level data.

a) Use packet-level data: Sun et al. [63] discussed five
kinds of skillful SYN flooding attacks and proposed an accu-
rate and fast detection method, named SACK2. Under a normal
TCP three-way handshake, the number of SYN-ACK packets
that a server sends should be almost equal to the number
of ACK packets that a client sends. However during the
SYN flooding attack, this balanced relationship will be broken
with a large deviation as there are no corresponding ACK
packets. SACK2 utilizes counting bloom filters to observe the
difference of SYN-ACK packets and ACK packets in number.
Each bucket in bloom filters is hash value that is calculated
by using client’s and server’s IP addresses, client and server’s
ports, and client and server’s initial sequence numbers of TCP
packets. SACK2 does not leave any chance for an attacker to
evade the detection, so it can detect all kinds of SYN flooding
attacks and distinguish attacks from flash crowds by adjusting
a threshold. Thus, this method can satisfy the requirement of
DFC, but cannot achieve the goals of SD, DT and PI.

The PING command of ICMP protocol is used to test
whether a host is reachable. When a source host sends a
PING request to a living host, that host must answer with a
PING reply. A PING flooding attack exploits this weakness to
overwhelm a host with mass PING requests. Yadav et al. [64]
proposed a distributed defense approach to mitigate the PING
flooding attack by inspecting whether the number of PING
request packets crosses a threshold or whether the size of
PING request packets is bigger than the size of normal PING
packet. When a router, which connects with a victim, has
detected a PING flooding attack, it will issue an alert message
to intermediate routers. Those routers will start dropping the
PING packets whose destination address is the victim’s IP
address. In daily Internet activities, the PING command is
often blocked by firewall. However, the method cannot support
all additional requirements.

b) Use flow-level data: Sanmorino and Yazid [65] pro-
posed a protocol independent detection method that uses flow
patterns. All incoming packets with identical 5 tuple (viz.
source and destination addresses, source and destination ports,



and protocol type) are aggregated into flows. They used flow
size and flow count to calculate the average flow size in a time
interval. If the average flow size is very small while flow count
is large, then a flooding attack is happening at that time. For
example, during SYN flooding attacks, an attacker employs
massive bots to overwhelm a victim. So the flow count will
drastically increase due to the increase of the number of new
source IP address. The method can satisfy the requirement of
PI, but cannot achieve the goals of SD, DT and DFC.

Miao et al. [66] introduced eight scenarios of SYN flooding
attacks according to the positions of attackers, victims and
attacking addresses. Then they used Netflow data to detect
Internet-wide SYN flooding attacks based on the symmetry
relationship between SYN flows and SYN-ACK flows. But
their method cannot support all additional requirements.

c) Use connection-level data: Rahmani et al. [67] uti-
lized total variation distance to measure the similarity between
inflow size and outflow size in each connection. During normal
TCP/UDP/ICMP connections, inflow size and outflow size
retain a similar shape. Any abrupt disproportion corresponds to
a legitimate or an illegitimate anomaly. Distance measurement
is an effective way to discriminate DDoS flooding attacks from
flash crowds because the similarity among attack traffic is
much higher than the similarity among legitimated traffic of
flash crowds. Thus, the method can satisfy the requirements
of SD, PI and DFC, but cannot support DT.

4) Discussion: Table V gives a summary of detection
methods of N/T-L DDoS flooding attacks. We also provide
comparison results of existing detection methods with regard
to N/T-L DDoS flooding attacks in terms of the following
criteria:
• Self-adaptive Detection:

-Yes: The detection method detects attacks adaptively to
the changes of current network behaviors.
-No: The detection method employs a static profile to
detect attacks.

• Dynamic Threshold:
-Yes: The detection method applies a dynamic threshold
to detect attacks.
-No: The detection method uses a static threshold to detect
attacks.

• Protocol Independent:
-Yes: The detection method has the ability to detect a cat-
egory of attacks independently from a concrete protocol.
-No: The detection method can only detect a specific
protocol-related attack.

• Deal with Flash Crowds:
-Yes: The problem of flash crowds was considered and
solved in the paper.
-No: The problem of flash crowds was not considered or
solved in the paper.

From the table, we can observe that the number of packets
and flow count are widely used to detect N/T-L DDoS flooding
attacks, especially in knowledge-based detection methods [63-
67]. This is inspired by the nature of the flooding attacks that
flood a target host with massive packets, which is obvious in
the network/transport layer. Current DDoS flooding attacks are
often launched by a botnet. Each bot, which is infected by the

same malicious program, generates attack packets in the same
format. The attack packets share many similar characteristics,
such as destination address, source port, destination port,
packet size, packet rate. These identical characteristics at the
packet-level lead to similarities on flow-level (such as flow
rate, flow size, flow duration) and connection-level (such as
connection size, connection duration). Therefore, generating a
profile that measures the distribution of traffic features (such as
source and destination addresses, source and destination ports,
packet size, packet rate, flow duration, etc.) in statistical meth-
ods is quite necessary [45-48, 51, 52]. Machine learning-based
detection methods often select some important characteristics
of traffic features that can reflect that the traffic is generated
by a botnet, to classify attack traffic [53-57, 59-62].

Moreover, the properties of Self-adaptive Detection and
Dynamic Threshold are not widely applied in the current
literature. Most of the methods do not take the problem of
flash crowds into account. This leads to high false rate when
flash crowds occur.

B. Detection Methods against Application Layer DDoS Flood-
ing Attacks

Application Layer DDoS (AL-DDoS) flooding attacks gen-
erally focus on exhausting server resources such as sockets,
CPU, memory, disk/database bandwidth and I/O bandwidth
[68]. The attacker usually customizes them to disrupt a par-
ticular Web server. Unlike N/T-L DDoS flooding attacks, AL-
DDoS flooding attacks can be launched by using legitimate
traffic and the volume of traffic is also not too large. Moreover,
during flash crowds, attackers can imitate legitimate user’s
requests and attack a targeted server. The AL-DDoS flooding
attacks become more and more undetectable due to the above
obscure activities.

Several famous AL-DDoS flooding attacks are discussed
below.

(i) HTTP flooding attacks: The HTTP flooding attacks are
one of the most famous AL-DDoS flooding attacks that aim to
web servers. They can be mainly classified into the following
categories [6, 68]: (a) HTTP request flooding attacks that send
high-rate requests packets, such as HTTP GET/POST flooding
attacks. (b) Slow HTTP request attacks (idle attacks) in which
an attacker keeps HTTP connection opening in an idle state
without actually sending a complete HTTP request, such as
slowloris attack, (c) HTTP asymmetric attacks that send high-
workload requests. Jiang et al. [69] provided valuable insight
on the impacts of AL-DDoS flooding attacks on HTTP/1.1
and HTTP/2.0.

(ii) SIP flooding attacks: These attacks can be easily
launched by employing open SIP traffic generators. They
have some attack forms: (a) SIP INVITE flooding attacks in
which a large number of INVITE messages are generated and
transmitted to a victim. (b) SIP BYE flooding attacks in which
a large number of BYE messages are sent to a SIP server. (c)
SIP REGISTER flooding attacks in which a large number of
user agent REGISTER requests are sent to a SIP registrar. (d)
Multi-attribute flooding attacks in which a large number of all
four SIP messages (INVITE, BYE, RINGING, and OK) are
sent to the SIP server.



TABLE V
SUMMARY AND COMPARISON OF DETECTION METHODS OF N/L-T DDOS FLOODING ATTACKS

References Collected Security Data Analysis Method DA FA SD DT PI DFC Remarks
[45] The number of packets Entropy variation 100% 0% N N N Y Detect all kinds of TCP SYN

flooding attacks
[46] The number of packets Hellinger distance

variation
93.33%-
100%

0% N Y Y N An online anomaly detection
method

[47] Source address and desti-
nation port

Entropy variation N.A. N.A. N N N N Using KD-Tree makes detec-
tion method scalable

[48] Packet size, TTL values,
source address, TCP flags,
server port, etc.

Conditional Legiti-
mate Probability

N.A. 0.03%-
5.15%

N Y Y N Effective in filtering several
different attack types

[51] Packet size in each flow Entropy variation N.A. N.A. N N Y N Detection method is stable
[52] Connection size on flow-

level
Entropy variation N.A. N.A. N Y N N Adaptive threshold makes de-

tection method accurate
[53] Source address, packet

size, the number of
packets, etc.

ANN 100% N.A. N N Y N Detect known and unknown at-
tacks

[54] The number of pack-
ets, source address, packet
size, packet arrival time
etc.

Naive Bayesian
classifier

97%-
99.5%

0%-
2.3%

N N N N A real-time system to detect
DDoS flooding attacks

[55] Packet size, TCP flags,
source port, etc.

Weighted KNN
classifier

97.42% 0.33% N N Y N Detect known and unknown
DDoS attacks in real-time

[56] The number of packets,
source addresses

Classification algo-
rithm

100% 0% N N N Y Tested with several classifica-
tion algorithm

[57] The number of pack-
ets, source address, source
port, packet type, etc.

Hierarchical clus-
tering algorithm

N.A. N.A. N N Y N Analyze each phase of DDoS
flooding attacks

[59] Flow size, flow duration,
etc.

KNN with correla-
tion analysis

88.4%-
96.7%

N.A. Y N Y N A grid-based method is used to
reduce computational burden

[60] Netflow records One-class SVM 89.6%-
93.8%

0%-
3.3%

N N Y N A kernel function makes de-
tection method universal

[61] Flow duration, packet
size, source address, etc.

K-means algorithm 100% N.A. N N Y N Applying dynamic threshold
makes detection more effective

[62] Connection count, the
number of packets, etc.

Neural classifier 90%-
98.5%

2.9%-
4%

N N N N Detection method is suitable
for a real time environment

[63] The number of packets Number variation 100% N.A. N N N Y Detect all kinds of SYN flood-
ing attacks

[64] The number of packets,
packet size

Match attack rule N.A. N.A. N N N N A distributed detection method

[65] Flow size, flow count Match attack rule 95% N.A. N N Y N A pattern-based method re-
duces the cost of infrastructure

[66] Flow count Number variation N.A. N.A. N N N N Detection method is real-time
[67] Connection size on

packet-level
Number variation 90% N.A. Y N Y Y Need less parameters than

other methods
DA: Detection Accuracy; FA: False Alarm; N.A.: Not Available;
SD: Self-adaptive Detection; DT: Dynamic Threshold; PI: Protocol Independence; DFC: Deal with Flash Crowds; Y: Yes; N: No

(iii) DNS flooding attacks: During DNS flooding attacks,
some attacker commands bots to send a large volume of
malformed DNS queries to a DNS server in order to exhaust
its resources. There are two types of DNS flooding attacks
[70]: (a) Water Torture in which bots send a large number
of DNS queries by adding random subdomains to a prefixed
domain. (b) NXDOMAIN in which bots send a large number
of queries to non-existent domain names. Another DNS-based
DDoS flooding attack is amplification flooding attacks. We
will discuss them in subsection D.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting AL-DDoS flooding attacks
using packet-level data, flow-level data and connection-level
data.

a) Use packet-level data: Based on the principle of
HTTP protocol, Alenezi et al. [71] proposed a detection
method for HTTP flooding attacks. During normal network
communications, congestion window (cwnd) value is changing

due to congestion control and the change is with an reasonable
range. But when a HTTP flooding attack occurs, the victim
controls traffic volume by setting the cwnd value at a low
value. Instead of building a static normal profile, they em-
ployed a Cumulative Sum (CUSUM) algorithm to detect the
variation of cwnd values. If the threshold value is exceeded,
an alarm is triggered. The method can support SD, but cannot
satisfy the requirements of DT, PI and DFC.

Zhou et al. [72] proposed an efficient method that can
be deployed in network backbone to distinguish AL-DDoS
flooding attacks from flash crowds. Their method has three
modules: (i) abnormal traffic detection module that issues a
specific signal of ‘ATTENTION’ if abrupt changes in the
number of HTTP GET request packets exceed a presumed
threshold, (ii) AL-DDoS flooding attack detection module
that first derives traffic model from web traffic by using the
number of HTTP GET request packets and the packet arrival
time of each incoming source address, and then compares the



current traffic model with a normal traffic model to get attack
probability, (iii) filter module that drops the network traffic
coming from a malicious source address that is determined
by the second module. Thus, the method can satisfy the
requirement of DFC, but cannot achieve the goals of SD, DT
and PI.

Sengar et al. [46] applied the same detection method to de-
tect SIP flooding attacks by using the probability distributions
of the number of SIP INVITE, SIP 200 OK, SIP ACK and SIP
BYE packets. But the above detection method becomes inef-
fective if the four types of packets are proportionally flooded
simultaneously. Tang et al. [73] developed a versatile detection
method for the SIP flooding attacks. They designed a three-
dimensional sketch data structure to separately summarize the
number of SIP INVITE, SIP 200 OK, SIP ACK and SIP
BYE packets. Based on sketch data structure, a probability
distribution is established for each SIP attribute independently.
A SIP flooding attack can be detected with a high probability
by comparing the Hellinger distance among data distributions
in sketches with a dynamic threshold that is calculated with
Exponential Weighted Moving Average (EWMA) algorithm.
Thus, their method can satisfy the requirement of DT, but
cannot achieve the goals of SD, DT and DFC.

Wang et al. [74] proposed an effective detection and defense
system for AL-DDOS flooding attacks, named SkyShield,
which monitors the divergence of distribution of packet
amount recorded by sketch. SkyShield employs three sketches
(S1, S2, S3) and two Bloom filters (B1, B2). In each detection
cycle, S1 is used to record information of all incoming requests
with source addresses as input keys. S2 stores the results of
S1 in the last normal detection cycle. At the end of each
cycle, the divergence between S1 and S2 is calculated and
compared with a threshold that is computed by a Multiple
Independent EWMA algorithm. If an anomaly is detected, S2
will not be updated anymore that ensures the detection method
is self-adaptive and S3 will be updated by S1. In mitigation
phase, all incoming traffic will be checked by B1 that is a
whitelist and B2 that represents a blacklist. The remaining
requests are inspected based on abnormal buckets of S3.
SkyShield achieves high performance in attack detection and
mitigation even when the attacks occur during flash crowds.
Thus, SkyShield can satisfy all additional requirements of SD,
DT, PI and DFC.

Thapngam et al. [75] used packet arrival rate as input to
extract pattern behavior of attack packets. They observed that
the transmission rate of attack packets has the property of
repeatability and can be considered as a pattern in a short
period of time. Oppositely, the packet arrival rate of normal
traffic is non-predictable because the users may take time
to skim and respond. They employed Pearson’s correlation
coefficient to judge the similarity among traffic to discriminate
attack traffic from the traffic generated by real users like flash
crowds. Thus, their method can achieve the goals of SD, PI
and DFC, but cannot support DT.

Yu et al. [76] first acted as attackers to mimic browsing
behaviors of a legitimate web viewer in order to study the
characteristics of mimicking attacks. They found that mimick-
ing attacks can be successfully launched if the attacker has a

sufficient number of active bots. However, sufficient number of
bots is hard to fully gather in some time, which gives possible
to detect the flash crowd mimicking attacks. They established
a map of the number of page request for a 24-hour period and
based on it, a mapping of the variation of fine correntropy
that is a tool for second order similarity measurement of
page requests was built. The flash crowd mimicking attacks
can be accurately detected by comparing current mappings
with the pre-established mappings. The method can satisfy
the requirement of DFC, but cannot achieve the goals of SD,
DT and PI.

Bhatia [77] presented an ensemble-based DDoS flooding
attack detection method that has the ability of separating flash
crowd traffic. They combined packet-level data and host-level
data per interval to construct traffic feature vector, namely the
number of packets, the number of new source addresses, the
number of source addresses, the number of packets per IP,
CPU utilization, CPU load, memory utilization. Exponentially,
EWMA algorithm was employed to analyze traffic feature
vector in two adjacent time intervals to detect attacks. Thus,
the method can support SD and DFC, but cannot satisfy the
requirements of DT and PI.

Alonso et al. [70] proposed a novel notion called DNS social
structure by abstracting recursive DNS traffic from recursive
DNS servers. They observed a phenomenon that DNS usage
gives rise to a social structure through mining the interactions
of IP address to domain names. A normal DNS social structure
will be built at DNS server-side based on the number of
distinct source (agent) IP addresses, the number of DNS query
packets and other calculated features. During DNS flooding
attacks, the normal DNS social structure is drastically changed,
indicating the presence of attack. But their method cannot
support all additional requirements.

b) Use flow-level data: Yu et al. [78] applied a similarity
metric, called flow correlation coefficient to discriminate attack
flows among suspicious flows (such as flow crowds). In
their method, each flow is made up of incoming packets
that share the same destination address. They formulated the
flow correlation coefficient by using the basic elements of
flow size. When a possible attack alarm goes off, the flow
correlation coefficient between suspicious flows is calculated.
If the correlation coefficient exceeds a threshold, this pair of
flows is determined as attack. The detection method is self-
adaptive and protocol independent because it makes full use
of the similarity among flows. Thus, their method can satisfy
the requirements of SD, PI and DFC, but cannot support DT.
Saravanan et al. [79] also proposed using flow similarity to
detect AL-DDoS flooding attacks during flash crowd.

Giralte et al. [80] described a normal user behavior in a
statistical way. They aggregated packets with the same source
address and protocol type. Then the flow count, flow size and
flow rate of HTTP protocol are used to compute statistics for
each user (each source address). If a high deviation between
a user value and the average value is reported, this user is
labeled as suspicious. However, their method cannot support
all additional requirements.

Zolotukhin et al. [81] defined that a conversation is the
combination of two flows such that the source socket of one



of these flows is equal to the destination socket of another
flow and vice versa. They recorded conversation duration
(that is flow duration) and extracted following features from
inflow and outflow in each TCP conversation: packet rate (per
second); the number of transmit bytes per second; maximal,
minimal and average of packet size; maximal, minimal and
average of TCP window values; maximal, minimal and average
of TTL values; and percentage of packets with different TCP
flags. During offline training, a normal user behavior model is
built with the help of fuzzy clustering based on these features.
Then, they applied an online training algorithm to rebuild the
model every time when a new portion of network traffic is
available for the analysis. Reconstruction error between the
old model and the new one is calculated. If the error value
exceeds a predefined threshold, this conversation is considered
to be an intrusion. However, this method cannot support all
additional requirements.

c) Use connection-level data: Beitollahi and Deconinck
[82] measured various statistical attributes for users in non-
attack conditions, including the distribution of source IP
addresses, request packet rates, the number of transmit bytes
per second (downloading rat), connection duration, browsing
behaviors that extracted from web operation logs, arrival
distribution rate of users (source addresses), and well-known
confirmed users. They used these features to build a normal
user profile. For each connection, a score is assigned based
on normal user profile. The connections that get lower scores
are more possible to be intrusions. The method can support
PI, but cannot satisfy the requirements of SD, DT and DFC.

2) Machine Learning: In this part, we discuss applying
machine learning to detect AL-DDoS flooding attacks using
packet-level data and connection-level data.

a) Use packet-level data: Adi et al. [83] designed a
stealthy DDoS flooding attack that has the ability of directly at-
tacking HTTP/2 web servers. They showed this type of attack
can degrade the performance of machine learning analysis.
To prevent this novel attack, the authors presented a detec-
tion scheme that combines feature selection techniques and
supervised learning methods. Three features are extracted from
legitimate and malicious traffic, namely the number of packets
grouped by packet type, the total number of bytes grouped by
packet type and the packet arrival time. These features are
ranked and classified by supervised learning methods. But the
method cannot support all additional requirements.

Ramamoorthi et al. [84] first built normal user’s behavior
profile using HTTP request rate, page viewing time, the
number of TCP and UDP and ICMP packets, etc. These
features of behavior profile are used as training samples for
an Enhanced Support Vector Machines (ESVMs) with string
kernels. The experimental results show that this ESVM with
string kernels has a higher accuracy than one class SVMs,
Binary SVMs and SVMs with string kernels. But their method
cannot support all additional requirements.

She et al. [85] introduced a clustering-based detection
method for HTTP flooding attacks. They first defined that if
the time interval between two packets that arrive continuously
less than a pre-set threshold, then these two packets are in
the same session. According to this definition, they extracted

following features from a session: the total number of requests
in a session, the total size of all request packets in a session,
the request packet rate of a session and the average frequency
of the request packets in a session. The K-means algorithm
was used to cluster traffic and a normal user’s behavior model
was obtained from clusters. A new session is whether normal
or not is determined by its distance from the normal model.
But the method cannot support all additional requirements.

b) Use connection-level data: Singh et al. [86] analyzed
the standard Environmental Protection Agency-Hypertext
Transfer Protocol (EPA-HTTP) dataset and extracted some
essential features, namely the entropy of the number of HTTP
GET request packets per connection, the number of HTTP
GET request packets for a particular IP address, and the
variance of the entropy per IP address. These features were
considered as the input to a multilayer perceptron classification
algorithm with a genetic algorithm for differentiating attacks
from a normal profile. Their method not only shows that the
entropy values of the number of HTTP GET request packets
and IP addresses decrease in case of an attack, but also proves
that the nature of packet transmission from an attack source
is almost identical. Their method cannot support all additional
requirements.

3) Knowledge-based Methods: In this part, we discuss
knowledge-based analytic methods for detecting AL-DDoS
flooding attacks using packet-level data and flow-level data.

a) Use packet-level data: Geneiatakis et al. [87] uti-
lized the one-to-one mapping relationship among INVITE-
responses-ACKs to detect SIP flooding attacks. Three bloom
filters with counters are respectively employed to keep track
of the INVITE requests and the corresponding responses and
the final ACKs. A new metric calculated based on the coun-
ters, named “session distance”, is introduced as a detection
measurement against such attacks. The smaller the value of
session distance, the more legitimate traffic is. They calculated
a judging dynamic threshold by considering the average value
of the session distance, network delay and user response time.
Experimental results showed that detection time is negligible
and the rate of false alarms is very low if applying such a
detection method. The method can satisfy the requirements of
SD and DT, but cannot support PI and DFC.

Liao et al. [88] analyzed the differentiation between web
user’s behaviors and then extracted the following two feature
sequences to represent browsing behaviors: the sequence of
request frequency and the sequence of request interval. The
detection architecture consists of two parts: (i) Request interval
sequence part. This part filters normal users based on the
assumption that they take more time in web browsing than
malicious users that have a short time interval between two
adjacent request packets. (ii) Request frequency sequence part.
This part further filters normal users from malicious users
by using a decomposition and rhythm matching algorithm.
The remaining sequences are inspected based on a predefined
threshold. But the method cannot support all additional re-
quirements.

b) Use flow-level data: Zhang et al. [89] proposed a
novel packets aggregation method that uses meta-information
and employs resulting flows to detect AL-DDoS flooding



TABLE VI
SUMMARY AND COMPARISON OF DETECTION METHODS OF AL-DDOS FLOODING ATTACKS

References Collected Security Data Analysis Method DA FA SD DT PI DFC Remarks
[71] TCP window size CUSUM algorithm N.A. 0% Y N N N Select a novel traffic feature
[72] The number of packets,

packet arrival time
Model similarity
mining

N.A. N.A. N N N Y The method can be deployed
for handling heavy backbone
traffic

[73] The number of packets Sketch with
Hellinger distance
metric

100% 1.67%/
7.81%

N Y N N Sketch technology makes de-
tection method scalable

[74] The number of packets Bloom filter and
Sketch Hellinger
distance metric

100% 1.77%-
3.67%

Y Y Y Y Test the impacts of all param-
eters

[75] Packet arrival time The similarity of
packet rate

85%/
94%

0% Y N Y Y Test the performance of detec-
tion method with three datasets

[76] The number of packets Distance metric N.A. N.A. N N N Y Imitate attackers to study the
characteristics of attacks

[77] The number of packets,
source address, CPU and
memory utilization, etc.

EWMA change de-
tection

N.A. N.A. Y N N Y Combine packet-level data and
host -level data to detect at-
tacks

[70] The number of packets,
source address

DNS social struc-
ture

N.A. 0.2% N N N N The first work of detecting
DNS flooding attacks on a re-
cursive level

[78] Flow size Flow similarity N.A. N.A. Y N Y Y Find a new feature to discrim-
inate DDoS attacks

[80] Flow size, flow count,
flow rate

Analysis of model
change

N.A. N.A. N N N N Combine several technologies
to model web-server behaviors

[81] Flow duration, packet rate,
the number of packets,
TTL, etc.

Analysis of model
change

100% Around
0.5%

N N N N Have the ability to detect at-
tacks that utilize encrypted
protocols

[82] Connection duration,
source address, packet
rate, etc.

ConnectionScore
algorithm

N.A. 0% N N Y N Effectively detect common and
meek attacks

[83] The number of packets,
the number of transmitting
bytes, packet arrival time

Classification algo-
rithm

N.A. 0%-
0.27%

N N N N Present a novel DDoS attack
for HTTP/2 services

[84] The number of packets,
packet rate, packet arrival
time, etc.

Enhanced SVM al-
gorithm

99.32% N.A. N N N N Enhanced SVM with string
kernels has high detection ac-
curacy

[85] The number of packets,
packet size, packet rate

K-means algorithm 75.6%-
98.37%

0.19%-
5.17%

N N N N A simple but robust method

[86] The number of packets,
source address

Multilayer Percep-
tron

Around
98.32%

Around
0.5%

N N N N Analyze the impacts of DDoS
attacks

[87] The number of packets Bloom filter with
counters

N.A. 0% Y Y N N Evaluate through different sce-
narios

[88] The number of packets,
packet arrival time

Match attack rule Around
90.11%

Around
3.5%

N N N N Employ a stepwise refinement
method to filter traffic

[89] Meta-information D-S evidential the-
ory

N.A. 4.5% Y N N N Use meta-information to ag-
gregate packets

DA: Detection Accuracy; FA: False Alarm; N.A.: Not Available;
SD: Self-adaptive Detection; DT: Dynamic Threshold; PI: Protocol Independence; DFC: Deal with Flash Crowds; Y: Yes; N: No

attacks. They used two surface features from packets of a
single user (source address): average scan time and sequence
of page requests. Average scan time is, in fact, the average
of inter-arrival time of request packets from the same source
address. Sequence of page requests represents the access times
of a specific page namely the number of request packets of that
page. Then they aggregated users’ packets with similar average
scan time and sequence of page requests to one flow. By
adding up all users’ sequence of page requests and calculating
page’s access frequency to generate a normalized frequency
vector, hot-spot access is extracted from flows. Finally, they
applied Dempster-Shafer (D-S) evidence theory to analyze
flow rate to evaluate a flow and assess whether it is an attack
flow or not. Thus, their method can support SD, but cannot
satisfy the requirements of DT, PI and DFC.

4) Discussion: Having the same format as in Table V,
we summarize and compare detection methods of AL-DDoS
flooding attacks in Table VI.

From the table, we can see that the number of packets is
still an important traffic feature to detect AL-DDoS flooding
attacks. In statistical methods, measure the similarity among
traffic [72, 75, 78] and monitor the changes of user behaviors
[70, 71, 77, 80-82] are widely employed to detect AL-DDoS
flooding attacks, rather than using information entropy to
reveal the distribution of traffic features. This is due to the
obscure characteristics of AL-DDoS flooding attacks. The
detection methods that combine with traffic compression and
fusion technique [73, 74] for AL-DDoS flooding attacks obtain
high performance, which are capable of dealing with large-
scale network traffic. The usages of machine learning and
knowledge-based methods in detecting AL-DDoS flooding



attacks are as similar as the usages in detecting N/T-L flooding
attacks. Although both flash crowds and AL-DDoS flooding
attacks are gusty and have a high volume in network traffic.
There still exist some key differences between them, such as
the distribution of source addresses, the speed of traffic, the
volume of traffic, traffic arrival time, etc. All these features can
be used to discriminate AL-DDoS flooding attacks from flash
crowds by measuring the similarity among the traffic [72, 74-
78]. We also find that the requirements on dynamic threshold
and protocol independence are not widely considered in the
current detection methods.

C. Detection Methods against Low-Rate DDoS Flooding At-
tacks

Low-rate DDoS (LDDoS) flooding attacks send a large
number of packets within a specific time interval to decline the
performance of a victim’s services. They follow the form of
periodic pulse (ON/OFF pattern), as shown in Fig. 5. LDDoS
flooding attacks are totally different from traditional high-rate
DDoS flooding attacks. First, they exploit many vulnerabilities
of a target system, e.g., shrew attacks use TCP Retransmission
Time-Out (RTO) mechanism [90], NewShrew attacks use both
TCP RTO mechanism and slow start mechanism [91], low-
rate DoS attacks against concurrent servers (LoRDAS) use
the service response mechanism of application layer [92],
and Reduction of Quality (RoQ) attacks exploit a common
adaptation mechanism [93]. Second, LDDoS flooding attacks
send attack packets only in a specific interval and do nothing in
other time-slots. This characteristic of LDDoS flooding attacks
hides abnormal traffic as legitimate traffic by keeping a low
average rate. Obviously, it is difficult to use the detection
methods for high-rate DDoS flooding attacks to detect the
LDDoS flooding attacks.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting LDDoS flooding attacks using
packet-level data and flow-level data.

a) Use packet-level data: Hoque et al. [94] used the
entropy of source addresses, the change rate of IP addresses
and packet rate to build a normal profile under non-attack
traffic. A dissimilarity value is calculated based on the devia-
tion between normal profile and current profile. If the dissim-
ilarity value is greater than a predefined threshold, an alarm
is generated. The detection method is protocol independent
because it exploits the basic characteristics of LDDoS. They
also proposed a method to classify low-rate and high-rate
DDoS flooding attacks. Their method can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

Xiang et al. [95] proposed a detection method for LDDoS
flooding attacks by using two new information metrics namely
generalized entropy metric and information distance metric.
The generalized information entropy as a generalization of
Shannon entropy is one of a family of functions for quantifying
either the diversity uncertainty or randomness of a system. In
their method, the distribution of source IP addresses or the
distribution of IP packet sizes can be used. The information
distance they designed can measure the deviation of probabil-
ity distributions between attack traffic and normal traffic. By

Time 

……

Attack 

rate

Attack peak

Period of the attack

Fig. 5. LDDoS flooding attacks

adjusting the value of parameters of the generalized entropy
and information distance metrics, the method can increase
the information distance between LDDoS flooding attack
traffic and normal traffic. The detection method is protocol
independent because it exploits the basic characteristics of
LDDoS. It can support PI, but cannot satisfy the requirements
of SD, DT and DFC.

Network traffic exhibits self-similarity over a large time
scale while presenting multifractal characteristics over a small
time scale. Based on this idea, Wu et al. [96] proposed a
novel detection method for LDDoS flooding attacks using a
multifractal technology. When LDDoS flooding attacks are
launched, a large number of UDP packets will appear in
the network because the LDDoS flooding attacks usually
use UDP protocol. This status makes the Lipschitz-Holder
exponent (Holder exponent) that is used to characterize the
bursty of network traffic, fall quickly. The smaller the Holder
exponent is, the more bursty the network traffic. Therefore,
by monitoring the abrupt change of the Holder exponent
in adjacent time periods through wavelet analysis, LDDoS
flooding attacks can be detected and considered to exist if
the deviation is larger than a detection threshold. Their method
can satisfy the requirement of SD, but cannot achieve the goals
of DT, PI and DFC. Based on the multifractal characteristics
exist in network traffic, another LDDoS attack detection work
based on wavelet transform and neural network is described
in [97].

b) Use flow-level data: It is obvious that a periodic
pulse is difficult to be detected by using existing methods of
analyzing network traffic in time domain, because its average
share of bandwidth is not big enough. Wu et al. [98] used
the theory of Digital Signal Processing (DSP) based on a
small signal model to detect TCP-based LDDoS flooding
attacks. They aggregated packets into flows by protocols and
considered the variation of flow size in adjacent time periods
as the sign of attack. The method can support SD, but cannot
satisfy the requirements of DT, PI and DFC.

Zhou et al. [99] proposed an Expectation of Packet Size
(EPS)-based method to distinguish LDDoS attacks from le-
gitimate traffic. They classified packets that share the same
destination address into flows and calculated EPS value of
each flow at different time. The EPS value of attack traffic
is smaller than that of normal traffic and varies within a



TABLE VII
SUMMARY AND COMPARISON OF DETECTION METHODS OF LDDOS FLOODING ATTACKS

References Collected Security Data Analysis Method DA FA SD DT PI DFC Remarks
[94] Source address, packet

rate
Distance variation 100% 0% N N Y N The methods can detect both

low-rate and high-rate DDoS
attacks

[95] Source address, packet
size

Entropy and dis-
tance metric

N.A. N.A. N N Y N The methods has high trace-
back accuracy

[96] The number of packets Multifractal
detrended
fluctuation analysis

91%/
92%

9%/
10%

Y N N N Exploit the changes in multi-
fractal characteristics of net-
work traffic

[98] Flow size Small signal model 100% 0% Y N N N Find out the attributes of LD-
DoS attacks in frequency do-
main

[99] Flow size and packet size
in each flow

Expectation varia-
tion

98.7% N.A. N N Y N Simple but effective method

[100] Flow rate Match attack rule N.A. N.A. Y N Y N Ignore the characteristics of
LDDoS attacks

[101] Flow size Congestion Partici-
pation Rate

100% 1.625% Y N Y N Simple calculation and wide
deployment

DA: Detection Accuracy; FA: False Alarm; N.A.: Not Available;
SD: Self-adaptive Detection; DT: Dynamic Threshold; PI: Protocol Independence; DFC: Deal with Flash Crowds; Y: Yes; N: No

narrow limit. Motivated by this difference, attack flows can be
distinguished by comparing the EPS values among flows. This
detection method is protocol independent since it exploits the
basic characteristics of LDDoS. Thus, the method can support
PI, but cannot satisfy the requirements of SD, DT and DFC.

2) Knowledge-based Methods: In this part, we discuss
knowledge-based analytic methods for detecting LDDoS
flooding attacks using flow-level data.

Use flow-level data: During the congestion time caused
by LDDoS flooding attacks, the rate of attack flows will
drastically increase while normal flow rate will decrease due to
the congestion control mechanism. But in a non-attack period,
the rate of attack flows is close to zero and normal flow rate
will increase. Wu et al. [100] utilized the difference between
the rate of normal flows and attack flows in pulse periods
to fight against LDDoS flooding attacks. They aggregated
incoming packets by source and destination addresses and
recorded each flow rate in a time interval. When packet loss
rate is abnormal, the average rate of each flow is calculated. If
flow rate is beyond a predefine threshold, this flow is treated
as a malicious flow. This detection method exploits the basic
characteristics of LDDoS and does not need to prebuild a
normal profile. Thus, it can satisfy the requirements of SD
and PI, but cannot support DT and DFC.

Zhang et al. [101] proposed a novel metric called Conges-
tion Participation Rate (CPR) deployed in a router to detect
LDDoS flooding attacks. All incoming packets with identical
five-tuple keys (viz. source and destination addresses, source
and destination ports and protocol type) are aggregated into
flows. The CPR of a given flow is defined as the ratio of
the flow size in congestion time to the flow size in normal
time. During attacks, the CPR values of attack flows substan-
tially increase and become higher than a threshold. Through
monitoring the difference of CPR values of network flows,
their method can effectively identify LDDoS flooding attack
flows. The detection method exploits the basic characteristics
of LDDoS and does not need to prebuild a normal profile.
Thus, this method can support SD and PI, but cannot achieve

the goals of DT and DFC.
3) Discussion: Using the same format as in Table V,

we summarize and compare detection methods of LDDoS
flooding attacks in Table VII.

From the table, we can observe that detection methods for
LDDoS flooding attacks are different from the detection meth-
ods for the first two types of attacks. As opposed to the high-
rate DDoS flooding attacks, LDDoS flooding attacks inject
a short burst of traffic periodically to occupy the resources
of victim. These attacks are difficult to detect and defense,
as most of the detection methods for DDoS flooding attacks
are triggered by high-rate and high-volume traffic. The most
efficient way of detecting LDDoS flooding attacks is to find the
periodicity and abruptness of the changes in packet amount,
which is analyzed in frequency domain [96, 98]. Another
way is to find the similar characteristics (such as packet size,
packet rate, etc.) of packets generated by the same botnet to
detect LDDoS flooding attacks [94, 95, 99]. Also, utilizing the
distinct behaviors of LDDoS flooding attacks is an effective
detection method [100, 101]. Obviously, most of the detection
methods for LDDoS flooding attacks are self-adaptive to the
changes of traffic [96, 98, 100, 101] and protocol independent
[94, 95, 99-101]. These methods use the basic characteristics
of the attacks and are very robust. However, the adoption of
dynamic threshold and the problem of flash crowds are not
considered in the above reviewed works.

D. Detection Methods against Reflection Amplification DDoS
Flooding Attacks

In Distributed Reflection DoS (DRDoS) flooding attacks, as
shown in Fig. 6, an attacker employs bots to send massive
request packets with a spoofed source address (a victim’s
address) to reflectors. The reflectors reply corresponding re-
sponse packets to the victim. As a result, the victim receives
a lot of response packets and its system resources will be
drastically consumed. Usually, the size/number of response
packets is many times larger than the size/number of request
packets, so we call this type of DRDoS flooding attacks



Attacker

Bots

Reflectors

Victim

……

……

Response packets

Commands

Spoofed request 

packets

Fig. 6. DRDoS flooding attacks

as reflection amplification DDoS flooding attacks (referred
to as amplification DDoS flooding attacks). There are two
reasons for an attacker to launch DRDoS flooding attacks:
(i) anonymity: an attacker can hide its location with a spoofed
source IP address; (ii) amplification: an attacker can amplify
the impact of attacks by exploiting botnet and unsymmetrical
size of response packets.

The impact of DRDoS flooding attacks can be measured by
two amplification factors: Packet Amplification Factor (PAF)
which is the ratio of the number of response packets to
the number of request packets and Bandwidth Amplification
Factor (BAF) which is the ratio of the payload size of response
packets to the payload size of request packets. Rossow [102]
has evaluated 14 UDP-based protocols, which are vulnerable
to be exploited to launch amplification attacks. They showed
that UDP-based amplification flooding attacks usually have
much higher amplification factors. Moreover, Kuhrer et al.
[103] demonstrated that TCP three-way handshake also has
amplification potential and the amplification factors are around
20.

Detection methods of amplification DDoS flooding attacks
can be classified into two methods: reflector-end and victim-
end. At the reflector-end, the key techniques against amplifica-
tion flooding attacks are the detection of spoofed address. But
there are two drawbacks of reflector-end detection methods:
(i) there exist many potential reflectors, and (ii) illegitimate
incoming requests might look the same as legitimate requests
in reflectors. At the victim-end, typical detection methods
depend on analyzing the unbalance relationship between out-
going request packets and incoming response packets or uti-
lizing attack attributes of DDoS flooding attacks. Ryba et al.
[104] discussed that the victim-end detection methods may be
ineffective. The reason is that after attacks have occurred, the
victim’s bandwidth may already have become saturated or the
volume of traffic is too high for the victim to process. In the
next two subsections, we review current detection methods of
DRDoS flooding attacks from the perspective of security data.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting DRDoS flooding attacks using
flow-level data.

Use flow-level data: Wei et al. [105] found that the rate of
responsive flows from reflectors has linear relationship with
each other because they are simulated by the same attacking
traffic. They defined all packets to a victim through one
router as a flow. Spearman’s rank correlation coefficient was
employed to calculate the flow correlation coefficient between
flow pairs to differentiate attack traffic from legitimate traffic.
Their method exploits the similar characteristics of DRDoS
flooding attack traffic. Thus, the method can support SD and
PI, but cannot satisfy the requirements of DT and DFC. Similar
work was proposed in [106].

2) Machine Learning: In this part, we discuss machine
learning for detecting DRDoS flooding attacks using packet-
level data.

Use packet-level data: Gao et al. [107] found that the
following five features largely change in a time unit during
DRDoS flooding attacks: (i) the number of packets that only
contain IP header without TCP or UDP header, (ii) the sum
sizes of the UDP packets sent to the victim, (iii) the number of
packets sent to the victim, (iv) quantity variance of packets sent
to and received by the victim, and (v) the maximum number
of the packets sent to the victim among all ports. Based on
the variation of these features, a normalized polynomial kernel
based SVM algorithm is applied to decide whether the data
in transiting is attack traffic. The method cannot satisfy all
additional requirements.

Meitei et al. [108] selected several features from DNS
query traffic, such as the mean of inter packet arrival time
from same IP, probability of occurrence of an IP per 15
seconds, minimum, average and maximum packet size, etc.
They classified the DNS traffic into normal and abnormal by
employing Decision Tree, Multilayer Perceptron, Naive Bayes
and SVM. Attribute selection algorithms such as Information
Gain, Gain Ratio and Chi Square are used to reduce the re-
dundant features. The experimental results show that Decision
Tree achieves the highest accuracy of 99.3%. However, their
method cannot support all additional requirements.

Attack packets that are generated by the same botnet have a
high similarity on packet-level data. Cai et al. [109] proposed a
reflector-end detection method for DNS amplification flooding
attacks. They extracted three features per unit time, including
the number of DNS request packets, the ratio of DNS response
packet size to DNS request packet size and the ratio of the
number of DNS response packets to the number of DNS
request packets. Then, they used k-means algorithm to classify
normal and abnormal clusters to make a detection pattern and
calculate reference points. Based on the detection pattern, new
data is whether normal or not is determined by its distance
from the reference point of each group. But the method cannot
support all additional requirements.

3) Knowledge-based Methods: In this part, we discuss
knowledge-based analytic methods for detecting DRDoS
flooding attacks using packet-level data and flow-level data.

a) Use packet-level data: If reflectors are able to de-
tect whether the source address of request packets has been



TABLE VIII
SUMMARY AND COMPARISON OF DETECTION METHODS OF DRDOS FLOODING ATTACKS

References Collected Security Data Analysis Method DA FA SD DT PI DFC Remarks
[105] Flow rate The similarity of

packet rate
N.A. 0.1% Y N Y N Detect two typical scenarios of

DRDoS attacks
[107] The number of packets,

packet size
SVM algorithm 89.74%-

100%
0%-
8.33%

N N N N Detect DRDoS attacks under a
certain assumed conditions

[108] Packet size, packet arrival
time, IP occurrence rate,
etc.

Classification algo-
rithm

94.7%-
98.9%

N.A. N N N N Analyze only the DNS query
traffic.

[109] The number of packets,
packet size

K-means algorithm N.A. N.A. N N N N Specify attack pattern using
three features

[110] Packet size, TTL values,
and the number of packets

Match attack rule N.A. N.A. N N Y N Use some additional features
to detect DRDoS attacks

[111] The number of request
and response packets

Confirmation
mechanism

Around
91%

Around
2.6%

Y N Y N A simple but robust detection
method

[112] Source and destination ad-
dress, and source and des-
tination port

Match attack rule N.A. N.A. Y N N N Detect DNS amplification at-
tacks at a local DNS server

[113] The number of packets Match attack rule 96% N.A. N N N N Analyze several scenarios of
DRDoS attacks

DA: Detection Accuracy; FA: False Alarm; N.A.: Not Available;
SD: Self-adaptive Detection; DT: Dynamic Threshold; PI: Protocol Independence; DFC: Deal with Flash Crowds; Y: Yes; N: No

spoofed, it would be very easy to detect and prevent amplifi-
cation flooding attacks. Through analyzing two large datasets,
Rudman and Irwin [23] showed that the variation of source
address and TTL values are useful for detecting NTP ampli-
fication attack. If the packets from the same source address
have an obvious gap among TTL values, this source address
is an attack target. The reason is attack sources are commonly
distributed in different subnets, so the final TTL values of
packets sent to the same targeted address must be different.

Bottger et al. [110] identified following additional features
to characterize DRDoS flooding attacks and used them to
distinguish legitimate requests from spoofed attack requests:
request and response packet size and payload similarity; the
number of ICMP port unreachable messages; TTL values.
They showed that a protocol-agnostic approach makes detec-
tion process effective to defend not only the attacks on static
port numbers, but also novel DRDoS flooding attacks. The
method can support PI, but cannot satisfy the requirements of
SD, DT and DFC.

Tsunoda et al. [111] proposed a simple but robust method to
detect DRDoS. They summarized the types of response pack-
ets of TCP/IP protocols and their corresponding request types.
Hence, the proposed method used a confirmation mechanism
to confirm the validity of received response packets based on
a request-response relationship. The method can support SD
and PI, but cannot achieve the goals of DT and DFC.

Kambourakis et al. [112] extracted source/destination IP
address and source/destination port number from DNS request
packets to build a DNS request table with four columns.
A DNS responses table that has the same structure as the
request table is built based on the features extracted from DNS
response packets that a client receives. Through comparing
these two tables, a response packet is marked as suspicious if
the features of the response packet do not match the request
packets previously sent in a given period. As soon as the num-
ber of suspicious packets exceeds a given threshold, an alert
is generated. This method can only satisfy the requirement of

SD.
b) Use flow-level data: Huistra [113] stated that DNS

amplification flooding attacks can be detected by observing
the size and the number of DNS packets at reflector-end. He
aggregated packets with Netflow standard. For each DNS re-
quest inflow, flow size is compared with a predefined threshold
to determine whether this flow is suspicious. For each DNS
response outflow, flow size is dealt with the same process
and furthermore the average size of the response packets is
also taken into consideration as a second metric. The method
cannot satisfy all additional requirements.

4) Discussion: Having the same format as in Table V,
we summarize and compare detection methods of DRDoS
flooding attacks in Table VIII.

For DRDoS flooding attacks, existing methods usually use
legitimate request packets to deceive reflectors so as not to
generate anomalies in network traffic. But it is also efficient
to detect them by utilizing similar characteristics of attack
traffic [105, 107-109]. Another way for defending DRDoS
flooding attacks is to monitor the deviation between the
statistical information of outgoing traffic (request traffic) and
the statistical information of incoming traffic (response traffic)
[110-113]. However, the application of dynamic threshold
and the problem of flash crowds are not considered in these
methods.

E. Detection Methods against Link Flooding Attacks

Link flooding attacks (also called crossfire attacks [114]) are
launched by a botnet to cut off specific links in the Internet
and to make a specific region disconnected from others. Fig.
7 shows an attack model of link flooding attacks [115]. First,
an attacker elaborately selects a target area and decoy servers.
The decoy servers must be located around the target area. A
map of network topology about the paths from the bots to
target servers is created by employing bots to send traceroute
commands to target servers. When all bots complete the work
of finding the paths, the attacker aggregates all traceroute



×

×

×

×

Decoy server

Target server

Bot

Target link

Target area

Fig. 7. Overview of the link flooding attack

results and finds target links that frequently appear in the
results. Then, the attacker selects bot-decoy pairs. A suitable
bot-decoy satisfies the condition that traceroute commands
from the bot to the decoy server contain the target links.
Once target links and bot-decoy pairs are selected, the attacker
blocks target links by commanding bots to send low-rate traffic
to decoy servers. As a result, the target area is isolated from
other regions. Herein, the purpose of introducing link flooding
attacks is to arouse researchers’ attention. This type of attack
has serious attack potential although it needs an elaborate
design.

Through analyzing the generation process of link flooding
attacks, Hirayama et al. [115] found that the number of tracer-
oute packets that are used to find target links between bots and
target/decoy servers increases before the attack occurs. They
employed a detection server to count the number of traceroute
packets at routers. When the cumulative sum is higher than a
predefined threshold, an alarm will be triggered. Hirayama’s
detection method is the first study that can detect link flooding
attacks before link congestion occurs.

Xue et al. [116] proposed a novel system called LinkScope
to detect link flooding attacks and locate target links or
area. As link flooding attacks congest the links around a
target area, following anomalies could happen on these links:
(i) packet loss rate, connection failure rate and Round-Trip
Time (RTT) could drastically increase, (ii) available bandwidth
could decrease, and (iii) packet reordering could increase on
related routers. LinkScope contains three types of probing
patterns to measure these anomalies caused by link flooding
attacks. The first is Round Trip Probing (RTP), mainly used
to measure packet loss rate, RTT and packet reordering. The
second is Extended Two Way Probing (eTWP) that is used
to measure available bandwidth. The third one is Modified
Recursive Packet Train (mRPT) that is used to locate the target
links or the target area by combining hop-by-hop and end-to-
end measurement. Finally, LinkScope correlates the traceroute
data and the measurement data to infer the target links or the
target area.

Rerouting traffic is a feasible method to detect link flooding
attacks. Liaskos et al. [117] formulated a detection method
of link flooding attacks via relational algebra. It represents
the association of bots to potential targets. They continuously

rerouted traffic in a manner so that bots are forced to persistent
participation in link flooding events. Thus, the bots exhibit
suspicious behaviors and reveal their presence. Lee et al.
[118] proposed a collaborative re-routing system that reroutes
legitimate traffic to uncongested links while limits bandwidth
available to attack traffic at congested links.

Actually, it is difficult to detect link flooding attacks by
using current detection methods of DDoS flooding attacks.
There are three reasons behind this [114, 115]: (i) attack traffic
does not reach the target region directly, (ii) bots disguise
as legitimate users with valid addresses to communicate with
decoy servers, (iii) botnets can flood target links without
sending unwanted traffic, e.g., they can send useful packets
to each other.

V. SECURITY DATA ANALYTICS FOR WORM ATTACK
DETECTION

Worms are a kind of self-duplicating and self-propagating
malicious codes that spread themselves across networks with-
out any human interaction. They compromise systems, steal
sensitive information, congest network and launch many kinds
of attacks. A worm’s life consists of following phases [8,
12]: (i) target finding, worm uses scanning technologies to
search vulnerable hosts that can be compromised easily, (ii)
transferring, worm sends its duplication to victims after the
victims are discovered, (iii) activation, malicious activities of
worms can be triggered based on a specific data or under a
certain condition, (iv) infection, once worm has successfully
infected the host, the infected host will exhibit malicious
behaviors. During the first two phases, the worm is active over
the Internet and causes some network anomalies, making it
possible to be detected by exploiting its special behaviors.

The categories of worms are classified by the different
characteristics in target finding and transferring phases [8],
as shown in Fig. 8. According to the manners in the tar-
get finding phase, we can classify worms into scan-based
worms, topology-based worms and passive worms. The scan-
based worms search vulnerable hosts by probing IP addresses,
e.g., hit-list scanning worms, routable scanning worms, and
blind scanning worms. The topology-based worms use the
information contained in a victim machine to search new
targets, e.g., email worms and social network worms. The
passive worms wait for a host request and reply with worm
duplication, e.g. CRClean worm. According to the ways in
propagation, worms can be divided into self-carried worms,
second channel worms and embedded worms. The self-carried
worms straightforwardly transfer malicious codes embedded
in payload by itself. The second channel worms obtain ma-
licious codes by visiting specific public servers or infected
machines through a backdoor. The embedded worms mix its
malicious codes in legitimate traffic to hide themselves. Based
on the ways in transmission, there are TCP-based worms that
transmit malicious codes with TCP protocol and UDP-based
worms that transmit malicious codes with UDP protocol. The
difference between these two transmission schemes is that
the TCP-based worms are latency-limited and the UDP-based
worms are bandwidth-limited. According to the format of



Target finding 

scheme

Propagation 

scheme

Transmission 

scheme

Worms

Scan-based 

Topology-based 

Passive 

Self-carried 

Second channel

Malicious code 

format

Embedded 

TCP-based 

UDP-based 

metamorphic 

polymorphic 

monomorphic 

Fig. 8. The classification of worm characteristics

malicious codes that worms carry, worms can be classified
into three types. The first one is monomorphic worms that do
not change the sequence of malicious codes and always send
the same content to targets. The second one is polymorphic
worms that mutate malicious codes by using some encryption
or semantics-preserving code manipulation techniques [119].
The polymorphic worms are the mostly prevalent over the
Internet. The last one is metamorphic worms that perform
different behaviors under different environments.

Comparing with the DDoS flooding attacks, worms are more
difficult to detect. Herein, we discuss some typical detection
methods for worm attacks based on the methods of data
analytics and the data categories they used. Most methods
detect worms by exploiting its special behaviors in target
finding and transferring phases. Therefore, packet-level data
and flow-level data are mainly used, while connection-level
data (such as connection count) is analyzed by knowledge-
based methods [8] and the host-level data is rarely analyzed
alone to detect such kind of attacks. Moreover, we give
a summary and comparison of detection methods of worm
attacks in the last subsection of Section V.

A. Statistical Methods against Worm Attacks

In statistical methods, behavior-based techniques are widely
employed to capture essential characteristics of worms that
reflect the unique behaviors in target finding and transfer-
ring phases. They inspect the headers of packets instead of
checking the payload information. In the following, we discuss
statistical analytic methods for detecting worms using packet-
level data and flow-level data.

1) Use Packet-Level Data: Yang et al. [120] proposed a
method for detecting local worms by analyzing the charac-
teristics of the traffic generated by TCP-based worms. The
TCP-based worms often send SYN packets to scan destination
addresses and ports that are randomly selected. So there will
be many SYN packets with no corresponding received SYN-
ACK packets. The authors respectively counted the number of
SYN packets sent out and the number of SYN-ACK packets

received in the adjacent time interval. CUSUM algorithm is
used to monitor the abrupt changes of the balanced relationship
between SYN and SYN-ACK packets. By adjusting CUSUM
algorithm with different collection methods, the proposed
method can be applied to detect both high-speed and low-
speed scanning. But their method cannot support all additional
requirements.

Guo et al. [121] proposed a behavior-based detection
method for Instant Messaging worms. They first defined
three characteristic functions of Instant Messaging worms: the
number of different users (distinct IP addresses) that one user
communicates with using the same content, the number of
users (distinct IP addresses) that one user communicates with
in a certain period, and the number of packets with same size
that one user sends out. Mahalanobis distance was employed to
calculate the distance between the characteristic distributions
of the normal behavior profile established in training phrase
and newly observed traffic. Instead of setting a static threshold
to measure the distance, the authors used CUSUM algorithm
to monitor the distance changes to detect Instant Messaging
worms during detection stage. The method cannot satisfy all
additional requirements.

Zou et al. [122] presented a worm detection method by
using the notion of “detecting monitored traffic trend, not
burst” [123]. The “trend detection” method based on the basic
characteristic of worms that a worm propagates exponentially
with a constant and positive exponential rate in its early stage.
They designed an Internet worm monitoring system. In the
system, monitors record the number of scanning packets (such
as TCP SYN) and the amount of different source addresses to
calculate the average scan rate and scan distribution in a unit
time. These two features were analyzed by Kalman filter to
estimate whether there exist some illegitimate scan activities
caused by a worm in the monitored traffic. In addition, the
authors presented a formula to predict a worm’s population
size to show how many computers over the Internet are really
infected based on monitored data. The method can support PI,
but cannot achieve the goals of SD, DT and DFC.



2) Use Flow-Level Data: Yu et al. [124] introduced a
new worm class, called Camouflaging Worm (C-Worm, in
short). The C-Worm intelligently manipulates the volume of
its scanned traffic in order to avoid generating any noticeable
trends that are tracked by existing worm detection systems.
The intelligent manipulation of C-Worm means that there is
no significant difference between its traffic and non-worm
traffic. However, the recurring manipulative nature of the C-
Worm can be used as a basic characteristic to discriminate C-
Worm since it is found that its distinction is clear in frequency
domain. In the frequency domain, the Power Spectral Density
(PSD) function shows a comparatively even distribution across
a wide spectrum range for non-worm scan traffic, while the
PSD of C-Worm scan traffic show spikes or noticeably high
concentrations at a certain range of spectrum. The function
of Spectral Flatness Measure (SFM) is applied to measure
the degree of flatness of PSD, a bigger SFM value implies
flatter PSD distribution and vice versa. Based on the above
knowledge, they aggregated packets into flows with the same
port number. For each flow, the distribution of PSD of the
number of unique destination IP addresses and its correspond-
ing SFM are calculated. If the SFM value is smaller than a
predefined threshold, a C-Worm propagation alert is generated.
This method satisfies the requirements of SD and PI, but
cannot achieve the goals of DT and DFC.

Comparing with normal TCP-based traffic, the traffic gen-
erated by TCP-based scanning worms has a determinate rate
prescribed by worm’s self-propagation codes. This leads to
different characteristics in frequency domain that can be used
to distinguish worm traffic from normal traffic. Kim et al. [125]
employed autocorrelation and Power Spectral Density (PSD)
estimations to extract the frequency characteristic of SYN
packet arrival time from a flow defined as SYN arrivals with
the same source and destination address pair. The estimation
methods showed that the frequency characteristic of arrival
time of SYN packets from legitimate hosts spreads out all
over the frequency band, whereas the packets from a worm
infected host does not. Their method has low implementation
complexity and the parameters of the method are independent
from the network size and time-of-day. Thus, the method can
support SD, but cannot achieve the goals of DT, PI and DFC.

Because the hit-list makes worm scan more targeted, the
infection speed is much higher than the initial spreading
phase. Based on this intrinsic property of hit-list scanning
worms, Collins and Reiter [126] used Netflow traffic to detect
them. They built protocol graphs that each of them is a
representation of a traffic log for a single protocol (e.g., HTTP,
FTP, SMTP and Oracle). In the graph, the vertices represent
the IP addresses used by clients or servers for a particular
protocol, and the edges represent communications between
those addresses. Normally, the number of vertices in the graph
is stable over time and also the pattern of communications
has the same property. Under the attack of hit-list scanning
worms, these regularities will be disturbed with a large number
of vertices in the graph (the scanned hosts) and enlarged
communications. Their method can support PI, but cannot
satisfy the requirements of SD, DT and DFC.

Wagner and Plattner [127] developed a Netflow-based en-

tropy analysis that highlights outbreaks of fast worms. During
worm scanning, the flow count with the same source IP
address (the scanning host) will drastically increase. This
changing characteristic leads to the decrease of the entropy
in the distribution of the source IP addresses. At the same
time, the flow count with different destination IP addresses
will also increase since the scanning host attempts to contact
others. This changing characteristic leads to the increase of
the entropy in the distribution of destination IP addresses.
By observing variations of the entropy values, the source of
worms (the scanning host) will be detected efficiently. But
their method cannot satisfy all additional requirements. Based
on the same principle, Stoecklin et al. [128] also measured the
variation of these two types of flow counts to detect attacks.
Unlike Wagner’s work, Gates et al. [129] used histogram-based
analysis instead of entropy-based analysis.

Liu et al. [130] introduced a protocol independent flow
analysis method based on NetFlow. They used the number of
transmitting bytes (sent/received), outgoing flow records and
bidirectional flow records to build a feature vector for each
flow. Variance similarity or Euclidean distance is calculated
between monitored flows and normal profile that is trained
as the average of normal traffic records. If the value of
similarity or distance is greater than a predefined threshold,
the flow is considered as an attack flow. This method is
capable of detecting worms, Trojan horses, malicious network
attacks, and unexpected network applications. Their method
can support PI, but cannot satisfy the requirements of SD, DT
and DFC.

Muraleedharan and Arun [131] presented a behavior-based
detection for TCP-based fast and slow scanning. They gen-
erated two profiles namely short-term profile and long-term
profile of TCP scanning. The short-term profile is a time-based
profile for fast scanning, which works with flow duration, flow
size, average packet size in each flow, etc. Differently, the
long-term profile is independent of time and is used to detect
slow scanning. It takes source address and port, destination
address and port, and packet size as parameters and applies
entropy to build the profile. Both fast and slow scanning can be
detected by measuring the distance between currently collected
traffic and the two profiles. However, their method cannot
support all additional requirements.

B. Machine Learning against Worm Attacks

The main role of machine learning in worm detection is
to discriminate worm traffic from legitimate traffic. It learns
the distinct characteristics between worm traffic and legitimate
traffic and then builds a judge criterion. According to the
criterion, the current collected network traffic is analyzed in
order to determine whether the traffic is generated by a worm.
In the following, we discuss machine learning for detecting
worms using packet-level data, flow-level data and host-level
data.

1) Use Packet-Level Data: Farag et al. [132] designed a
model that consists of four modules to identify worm traffic
from normal traffic and predict infection percentage in a net-
work. The first module is Traffic Statistical Analyzer Module



that collects traffic and then calculates traffic features in terms
of packet rate, the number of packets generated by each
source/destination port in a unit time period, and the number of
packets per protocol in a unit time period. The second module
is Port Matching Module that records the number of packets
per port that matches worm infection behaviors. The third
module is ANN Module that takes the above traffic features as
input and identifies the worm traffic from normal traffic. The
last module is Classification/Prediction Separated Model that
employs two ANNs, one is used to generate worm behavior
class and normal behavior class, the other is used to obtain the
percentage of infection in the network. But the method cannot
satisfy all additional requirements.

Sun et al. [133] proposed a clustering and rough set based
worm detection method to distill and block worm traffic in an
early stage. They extracted many header features to construct
feature vector for each packet, such as packet size, source
and destination addresses, TTL value, header length, etc. An
improved clustering algorithm was used to cluster packets.
After that, similar clusters, measured by a matching value
that represents the number of equivalent characteristic values
between two clusters, were merged to generate a super cluster.
This super cluster is a suspicious cluster due to the similarity
among the worm traffic. The authors also measured the growth
rate of the super cluster to confirm its suspiciousness. If it
exceeds a pre-defined threshold, the super cluster is highly
possible a result of worm attacks. This step eliminates the
false alarm caused by flash crowds. Blocking rules were
established by employing a rough set theory to calculate
boundary approximation and lower approximation of super
cluster. Thus, their method can satisfy the requirements of
SD, PI and DFC, but cannot support DT.

2) Use Flow-Level Data: Comar et al. [134] designed a
novel integrated detection method that leverages the accuracy
of supervised classification in detecting known attacks and
holds the adaptability of unsupervised learning for detecting
new attacks. First, they extracted 108 flow-level and packet-
level features in each flow, such as flow duration, flow direc-
tion, flow size, statistical values of packet size, etc. Then, they
used an effective tree-based feature transformation approach
to mitigate data imperfection issues and construct informa-
tive, non-linear features for accurate detection. Meanwhile,
an intrusion detection system module performs Deep Packet
Inspection (DPI) and tags each flow whether it belongs to some
threat. Otherwise, the flow is labeled as “good/unknown”.
By combining the results of these two processes, a macro-
level binary classifier and many micro-level classifiers are
built to detect malicious flows. Their method can not only
detect worms but also some malwares. Thus, their method
can support PI, but cannot satisfy the requirements of SD, DT
and DFC.

Email worms remain a serious security threat over the
Internet. It causes network congestion and delivers many kinds
of viruses. The propagation strategy of email worms relies on
social engineering, spreading via email among social contacts.
Due to its specific propagation strategy, traditional worm
detection methods are incapable of detecting this class of
Internet worms. But by analyzing the traffic that email worms

generate, researchers found that it can lead some anomalies in
DNS traffic [135,136]. Based on this knowledge, Nikolaos and
Radu [135] proposed a method that can detect email worms in
a local name server at early stage. They aggregated DNS query
packets with source IP addresses. Normal DNS query flows
share many same canonical behaviors, while abnormal DNS
query flows that email worms generate are also similar to each
other. Thus, Hierarchical clustering and similarity search over
time series based on flow sizes were used to find the classes
of normal and abnormal traffic respectively. The method can
only support SD.

Email worm generates a large number of traffic that does
not rely on DNS to translate names into numeric IP addresses.
Based on the similar principle, Abdulla et al. [137] captured
flow-level data using Netflow standard within a certain period
of time and classified the DNS flows into four types: DNS
request data, DNS response data, DNS normal data that the
DNS flows sent by using fully qualified domain names, and
DNS anomalies that the DNS flows sent by using IP addresses
rather than fully qualified domain names. The flow counts
of the above types of flows were considered as inputs of
K-Nearest Neighbors and Naive Bayes to judge whether the
traffic in this period of time is abnormal. But their method
cannot support all additional requirements.

3) Use Host-Level Data: Stopel et al. [138] presented a
novel approach based on Artificial Neural Network (ANN) for
analyzing computer behaviors to detect worms. They collected
many features from equipment operation logs (e.g., about
writable objects, cursor changes, windows, and keyboard,
etc.), system operation logs (e.g. about memory, network
interface, physical disk, processes, processor, etc.) and network
behaviors (e.g., the statistic information of TCP, UDP and
ICMP). These features are merged to generate a vector of
323 features. Fisher’s score ranking is preferable applied to
select important behavior features that can be used to detect
the presence of worms. Although their method exhibits a sound
performance in detecting new behaviors of known worms, the
process of measuring features consumes significant amount
of computing power. The method can support PI, but cannot
satisfy the requirements of SD, DT and DFC.

Corporations usually deployed many defensive mechanisms
to protect themselves from worm attacks while personal com-
puter (PC) users have insufficient protection [139]. Major
obstacles for detector deployment are the high false posi-
tive alarms and the operation overload. Early work such as
BINDER [139], based on the intuition that network connec-
tions initiated by worms are rarely triggered by user inputs
(e.g., keyboard and mouse click events), so it uses time differ-
ence between network connections and user triggered events as
a detection feature. BINDER’s detection method is incapable
of detecting unknown worms and can be evaded by attackers
with fake user events or infected normal programs. Seo et al.
[140] designed an improved detection method called PC-WDS
based on the extend ideas proposed in BINDER. It applies
sophisticated features to improve detection accuracy while
reducing false alarms. PC-WDS conducts the following analy-
sis: (i) user interaction analysis: analyzing the time difference
between equipment operation logs and network connections



to estimate the likelihood that a user’s interaction that really
triggers network connections, (ii) destination address analysis:
analyzing the change rate of destination addresses to predict
whether the system is undertaking the worm scanning, (iii)
network connection analysis: analyzing the number of failed
network connections to calculate the likelihood of machine-
triggered activity for every event of failed network connection,
(iv) port creation analysis: analyzing system operation logs to
calculate the likelihood that port creation has been triggered by
user events. A normal behavior profile is built based on the
likelihood of machine-triggered failed network connections,
port creations and new destination addresses. Finally, a one-
class SVM algorithm is used to detect outliers as the Internet
worm behaviors by using the normal profile. Experimental
results show that PC-WDS that utilizes the basic characteristic
of worms has the ability of detecting unknown worms with
high accuracy. Thus, PC-WDS can support PI, but cannot
satisfy the requirements of SD, DT and DFC.

C. Knowledge-based Methods against Worm Attacks

In knowledge-based methods, some techniques are widely
employed to detect worms. One is signature-based techniques.
There are three types of signatures: content-based, semantic-
based and vulnerability-based. Content-based signatures are
established based on strings or substrings in byte sequences.
Semantic-based signatures are generated by using the structure
of the executable code or the analysis information of worms.
Vulnerability-based signatures are generated by capturing the
characteristics of the vulnerability the worm exploits. Another
technique is expert system that matches network activities with
prebuilt attack rules of worms. In the following, we discuss
knowledge-based methods for detecting worms using packet-
level data, flow-level data and connection-level data.

1) Use Packet-Level Data: Many worms use a pseudo
random number generator to generate random addresses as
infection targets. This behavior without undertaking a DNS
query is different from legitimate publicly available services
and then is considered as a sign of propagation of worms.
Ahmad el al. [141] presented a detection system that keeps
tracking outgoing SYN and UDP packets of monitored traffic.
They correlated SYN and UDP packets with a DNS resolution
cache to determine the absence of DNS lookup. If the number
of this type of packets exceeds a threshold, the propagation of
worms is detected. Then a containment solution starts to block
traffic. Their method can only support SD. Similar approach
is proposed in [142].

When spreading, worms always exploit the same set of
vulnerabilities and try to infect others as soon as they have
infected the current host. Chen et al. [143] proposed a real-time
detection called WormTerminator. They set a virtual machine
that clones the host and runs in parallel to the host. Any
outgoing traffic from the host is firstly delivered to the virtual
machine. Therefore, if a worm has successfully infected the
current host, the virtual machine must be subsequently infected
after receiving the traffic that the worm generated. Then the
virtual machine will exhibit malicious behaviors and start to
infect other hosts. Two timing correlation parameters are used:

(i) Ttime, the maximum time interval between the time when
the virtual machine receives traffic and the time when the
virtual machine starts to send out traffic, (ii) Tsize, the time that
is consumed to transfer all the traffic. Fast spreading worms
strive to propagate to and infect as many other hosts as possible
in the shortest possible time and the size of them is usually
small. So, if the virtual machine receives some continuous
traffic whose transmission time is less than Tsize, and starts
to send similar traffic to other hosts within time Ttime, the
delivered traffic is considered as worm traffic. However, their
method cannot satisfy all additional requirements.

Xiao et al. [144] proposed a detection method based on the
traffic information of each single process instead of all the pro-
cesses. For one process whose traffic is TCP or UDP protocol
based, they considered it as suspicious in case that the number
and change rate of source ports exceed a threshold. For one
process based on ICMP protocol, if it has sent out too many
ICMP packets and these packets have different destination
addresses, this process is considered as suspicious. Then they
used the traffic similarity among suspicious processes to check
worm traffic. But the method cannot satisfy all additional
requirements.

Tang et al. [145] analyzed the characteristics of polymor-
phic worms in detail and then introduced a new Position
Aware Distribution Signature (PADS)-based detection method
to resist them. They first partitioned network traffic into
clusters using Normalized Cuts algorithm. After partitioning,
Expectation-Maximization and Gibbs Sampling are used to
compute PADSs. Instead of using single PADS, the multi-
segment position-aware distribution signature that contains a
set of PADSs is utilized to match incoming byte sequence to
identify potential worms. However, their method cannot satisfy
all additional requirements.

2) Use Flow-Level Data: The worms that utilize buffer
overflow vulnerabilities often send longer length of certain
protocol fields than those in normal packets to overflow
the buffer. Wang et al. [146] proposed the first network-
based vulnerability-signature method that generates length-
based signatures for detecting buffer overflow worms. They
first classified network traffic into different protocol flows
based on port numbers or other protocol identifiers. Then, for
each protocol, they filtered out known worms and separated
the traffic into a suspicious traffic pool and a normal traffic
pool. Both the pools are analyzed by a protocol parser to obtain
each protocol message of a set of packet header fields in flows.
Each field is expressed with a type and a length. The field
length information of both the pools is then considered as
input to generate signatures. The length-based signatures are
effectively used to detect buffer overflow worms, and are very
hard for attackers to evade. Their method can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

Wang et al. [147] designed a payload-based system for poly-
morphic worm detection and signature extraction. As a front-
end processing stage, a multi-dimensional traffic clustering
and classification scheme is used for flow classification and
separating clusters into anomaly/attack. Then, a generalized
suffix tree is built based on the payload of all packets in flows
in suspicious clusters. After building the tree, all nodes are



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2863942, IEEE
Communications Surveys & Tutorials

27

traversed and the prefix of each selected node is taken as a
putative worm signature. Their method can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

3) Use Connection-Level Data: Worms send out large
numbers of scanning packets to find victims. During blind
scanning, the scan includes unused addresses and closed ports,
causing the failure of connection attempts. Keeping track of
the outbound connection attempts is a traditional way to detect
worms in the scanning phase. Rasheed et al. [148] recorded
the number of first failed connection by counting ICMP error
packets or TCP RST packets returned from external destination
addresses in each connection. An alarm will be raised when
the number of first failed connections is higher than an
estimated threshold. The detection method is flexible because
it calculates the alarm threshold at different time. The method
can achieve the goals of SD and DT, but cannot support PI
and DFC. Moreover, based on the high failure probability of
First Contact Connections (FCCs) of worms, some detection
methods were proposed [149-152].

After analyzing real worms and botnet traffic with Snort,
Braun et al. [153] concluded that the majority of the signatures
of such attacks can be found by checking the first few kilobytes
of payload during TCP connections. They employed two time-
out Bloom filters that are composed of timestamps instead of
bits to respectively store the start and end time of a connection.
Meanwhile, one sketch was employed to store the number
of payload bytes in a connection. Then they used a packet
sampling algorithm to collect the first N bytes of payload
of a connection to find whether there are existing attack
signatures. However, their method cannot satisfy all additional
requirements.

D. Discussion

With the same format as in Table V, we summarize and
compare detection methods of worm attacks in Table IX. From
the table, we find that IP address, port and the volume of traffic
are widely used to detect worms due to the basic characteristics
of worm scanning [120-122, 124-127, 130, 131, 141, 143, 144,
148]. Some works used the features such as packet rate, packet
arrival time, packet size, payload, etc., to detect worms in their
transferring phase [132-135, 137, 138, 140, 145-147, 153].
Host-level data are used in conjunction with packet-level and
flow-level data because worms are malicious programs that
directly execute at host-side [138, 140]. Each kind of worms
has different reflecting characteristics. Thus, detection methods
for worms are also quite different. Normally, we should make
full use of the specific behaviors of worms in both scanning
and transferring phases to detect them.

Besides, most of the worm detection methods do not con-
sider the problem of flash crowds. A worm can easily hide
its malicious activities under the flash crowds. Also, dynamic
thresholds are not widely employed to measure the changes of
network traffic, which may lead to low detection performance
due to the variability of worms.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

A. Open Issues

According to the above literature review and comparisons,
we figure out a number of open issues with regard to the
detection of DDoS flooding and worm attacks, security data
collection and data analytics.

First, at present, the configuration of reasonable relation-
ships among data types for generating a normal profile is not
well solved. Entropy and probability distributions are widely
used in the calculation of deviation/information distance be-
tween the normal profile and a real-time traffic profile. But
during daily network traffic transmission, inevitable network
congestion or other abrupt events may change the relationships
among data types that were set up in advance and saved
in the normal profile. The normal profile that represents
fragile relationships among data types could cause a high
false alarm rate. For example, some methods detect SYN
flooding attacks by monitoring the changes in the balanced
relationship between the numbers of SYN packets and SYN-
ACK packets. However, in actual network transmission, the
number of SYN packets is much higher than that of SYN-ACK
packets due to network congestion. It is hard to accurately
decide quantitative deviation as an alert threshold for SYN
flooding attacks. In another instance, some detection methods
for SIP flooding attacks build a normal profile based on the
probability distributions of the number of SIP INVITE, SIP
200 OK, SIP ACK and SIP BYE packets. But the detection
methods will become ineffective if the four packet counts are
simultaneously and proportionally increased. Thus, setting up
a high-quality normal profile that can effectively detect the
abnormal still need further and deep investigation.

Second, energy and cost efficiency are not considered in the
most of current detection methods, which impacts practical
deployment of the proposed methods. Especially when using
machine learning technologies to detect attacks. Massive fea-
tures of network traffic are needed in order to achieve high
detection accuracy, as shown in Table V-IX. But extracting
massive features for analysis could consume time and many
resources. Energy efficient solutions are highly expected in
practice. But only a few existing studies take this factor into
consideration.

Third, context-aware and flexible detection methods are
seldom studied at present. There are two main issues. First,
most threshold-based detection methods set a static threshold.
Since network traffic fluctuates over time, a static threshold
lacks flexibility and is unable to be applied into different
networking scenarios. How to dynamically set a threshold
that is adaptive to networking contexts at real time should
be urgently studied. Second, how to effectively discriminate
attack traffic from flash crowds is still an open issue. Most of
the detection methods do not take the problem of flash crowds
into account. Flash crowds are unexpected, but inevitable.

Forth, the literature still lacks a comprehensive and holistic
detection method that can fully make use of all four categories
of security data to measure the Internet security. There are
few studies about combining host-level data, connection-level
data with packet-level data and flow-level data to detect



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2863942, IEEE
Communications Surveys & Tutorials

28

TABLE IX
SUMMARY AND COMPARISON OF DETECTION METHODS OF WORM ATTACKS

References Collected Security Data Analysis Method DA FA SD DT PI DFC Remarks
[120] The number of packets CUSUM algorithm N.A. N.A. N N N N Detect both high-speed and

low-speed scanning
[121] The number of packets,

packet size, packet pay-
load, destination address

Distance variation
and CUSUM algo-
rithm

Around
80%

N.A. N N N N Detection method is flexible
and short latency

[122] The number of packets,
source address

Kalman filter Around
95%

N.A. N N Y N The trend detection method
poses many interesting re-
search issues

[124] Destination address Frequency domain
analysis

99.3% 1% Y N Y N Superior detection
performance against
Camouflaging worm

[125] Packet arrival time Frequency analysis N.A. 0% Y N N N Detect both high-speed and
low-speed scanning

[126] Source and destination ad-
dress

Graph theory anal-
ysis

Around
95%

Around
5%

N N Y N This detection method can be
applied into a large-scale net-
work

[127] Flow count, source and
destination address

Entropy variation N.A. N.A. N N N N This detection method does
not need parametrization

[130] Netflow records, the num-
ber of transmitting bytes

Similarity/distance
variation

99% 1% N N Y N This detection method is easily
expanded

[131] Flow duration, flow count,
flow size, source address
etc.

Distance variation N.A. N.A. N N N N Detect both high-speed and
low-speed scanning

[132] Packet rate, the number of
packets

ANN 99.71% 0.07% N N N N Have the ability to predict the
infection percentage of worms
in a network

[133] Packet size, source and
destination address, TTL
value, etc.

Clustering
algorithm

99.82%/
99.93%

1.67%/
0.48%

Y N Y N The detection and blocking
scheme is very effective and
accurate

[134] Flow duration, flow size,
flow direction, packet size,
etc.

SVM with a
weighted linear
kernel

Around
95%

10% N N Y N Use of two-level classifier to
address the problem of data
quality

[135] Flow size, source and des-
tination port

Hierarchical clus-
tering

99.5% 1% Y N N N Utilize common spreading be-
havior to detect worms

[137] Flow count, source and
destination port

KNN and Naive
Bayes

85.64%-
98.07%

1%-16% N N N N Tested the method with real-
life worm variants

[138] The number of packets,
operation logs

ANN Around
90%

0.04% N N Y N Select important features by
applying feature selection
techniques

[140] Source and destination ad-
dress, source port, opera-
tion logs, etc.

SVM algorithm 100% 0.08% N N Y N Detect worms at personal com-
puters

[141] Destination address, desti-
nation port

Match attack rule 100% 0% Y N N N Utilize specific transferring be-
haviors to detect worms

[143] Packet rate, inter-arrival
time of packets

Match attack rule N.A. 0% N N N N Have the ability to detect zero-
day and polymorphic worms

[144] Destination address,
source and destination
port , the number of
packets

Match attack rule N.A. Around
1.5%

N N N N Detect worms at end hosts

[145] Packet payload Signature-based
detection

N.A. 0% N N N N Have the ability of separating
new worm variants

[146] Packet size in each flow Length-based sig-
nature detection

100% 0% N N Y N The first network-based
length-based signature
generator

[147] Packet payload in each
flow

Signature-based
detection

100% 0% N N Y N Use different granularity of
network traffic

[148] Connection count Match attack rule N.A. N.A. Y Y N N Have the ability of detecting
stealthy and unknown worms

[153] Packet payload in each
connection

Signature-based
detection

N.A. Around
7%

N N N N Only check the first N bytes in
each connection

DA: Detection Accuracy; FA: False Alarm; N.A.: Not Available;
SD: Self-adaptive Detection; DT: Dynamic Threshold; PI: Protocol Independence; DFC: Deal with Flash Crowds; Y: Yes; N: No



DDoS flooding and worm attacks. For example, an attacker
can launch application layer DDoS flooding attacks by using
legitimate connection. In this condition, tracking connection
status and drilling down packet-level data or flow-level data are
necessary. It is also possible to detect worms at the propagation
stage. Moreover, quite a number of detection methods do not
consider host-level data that provides comprehensive informa-
tion of system events. Some work applies host-level data (such
as application operation logs, equipment operation logs, host
behaviors, etc.) to detect network intrusions on hosts [154-
159] and concerns host data privacy protection during data
collection and processing [160]. A comprehensive detection
method by applying all four categories of security data still
lacks, but highly expected in the literature for detecting all
or most security threats for the purpose of network security
measurement.

Last but not the least, a generic and pervasive solution
for detecting various attacks and providing a thorough view
on the Internet security at real time is still missing but
highly expected in practice. Such a solution is of significantly
important to network security.

B. Future Research Directions
All above open issues motivate future research. We suggest

a number of interesting future research directions as outlined
below.

First, adaptive security data collection methods should be
researched for achieving efficient and comprehensive data
collection. Current detection methods choose data category in
advance and then collect data constantly in any cases. As we
have discussed in Section II, collection methods of packet-
level data are not suitable in high-speed network. Likewise,
collection methods of flow-level data convey less information
about network traffic than packet-level data. Different network
contexts request different traffic collection methods. Moreover,
as we have presented in Section IV and V, each kind of attacks
exhibits its own characteristics and can be detected in different
circumstances by selecting appropriate data categories and data
items. In order to counter any abrupt changes in network
traffic, data collection methods that can adaptively collect
appropriate data are urgently needed.

Second, a generic and pervasive Internet security measure-
ment solution should be studied by applying all four typical
categories of security data. Each security data category reveals
different information about network traffic. How to efficiently
and effectively make use of these data categories to detect all
potential attacks in different circumstances is worth exploring.
We should make use of each data category in an integrated
way to figure out the Internet security in general. For example,
it has potential to work out advanced detection methods for
detecting AL-DDoS flooding attacks by using connection-level
data, packet-level and flow-level data, for detecting DRDoS
flooding attacks by combining flow-level data with packet-
level data, and for designing worm detection methods by using
all four data categories. In addition, how to economically
collect sufficient data to detect synthetic attacks (different
types of attacks happening at the same time) is an interesting
and significant research topic.

Third, the Internet security measurement with efficiency and
traceability is a very interesting research topic. It is significant
to explore new theories and methods or apply some existing
theories for addressing this issue. For example, Granular Com-
puting as a growing and powerful theory for complex problem
solving, large-scale data mining and fuzzy information pro-
cessing can be applied to detect and trace attacks. Yao et al.
[161] classified granular computing research into three groups:
philosophical and fundamental views of Granular Comput-
ing, individual Granular Computing techniques, and Granular
Computing applications. It is anticipated that Granular Com-
puting can lead to new computational paradigms. Throughout
the developments in these years, Granular Computing has
shown many advantages when dealing with big data, such as
attribute reduction [162], multi-source data aggregation [163],
and feature selection [164]. We can apply the same theory
into network security data collection and analytics. In terms
of network security data, packets as the basic granules can
be constructed into flows with flow keys and flows can be
further constructed into connection data with addresses and
ports. Each connection data drills down into flows or packets.
Based on these relationships, selecting appropriate original
information granularity and optimal granular description of
network security data in different network scenarios can not
only reduce the size of data used for analytics, but also has
the ability of dealing with elaborate attacks.

Forth, trustworthy security data fusion is an essential and
significant research topic for the purpose of measuring the
Internet security as a whole. Efficient and effective preprocess-
ing of network security data is the precondition for detecting
attacks. Incomplete, uncertain, imprecise or vague information
is the main reason of wrong or poor-quality detection. How
to efficiently process these data in a trustworthy (at least
dependable and reliable) way is still an open research issue.
In the future, it is beneficial to pay more attention to data
fusion and composition methods to deal with network security
data, such as the sketch technique applied in [73, 74]. Data
composition represents a process of data preprocessing and
aims to extract most valuable and useful data with high
trustworthiness. It is an essential step for intrusion detection
and security level calculation, considering the big data feature
of network security data over the Internet.

VII. CONCLUSION

Although there are numerous surveys about detection meth-
ods for network attacks, there is still an acute lack of a
perspective from the viewpoint of the categories of security
data. In this paper, we first classified security data into four
categories and presented a detailed description of each of
them. For each category, we discussed its types that are
commonly used to detect network attacks. We also discussed
analytic methods of security data and proposed four additional
requirements for evaluating their performance in order to sup-
port detection scalability and flexibility. Then, we thoroughly
surveyed current detection methods for DDoS flooding and
worm attacks from the perspective of security data and data
analytic methods. We elaborated in detail what categories of



data are used and which analytic method is applied. Each
attack has its own specific characteristics. When designing
a detection method, we should thoroughly understand attack
characteristics and select appropriate data categories and data
analytic methods to meet the needs. Some open issues and
future research directions show that there is still a long way to
go, especially from the view of the Internet security measure-
ment. For achieving this goal, we should figure out all potential
threats by processing all categories of security data. Working
out effective data composition or fusion methods is essential
for realizing efficient and economic security data analytics.
Forming more effective analytic methods can emerge as a
promising direction worth following.

ACKNOWLEDGMENT

This work is sponsored by the National Key Research and
Development Program of China (grant 2016YFB0800704),
the NSFC (grants 61672410 and U1536202), the Project
Supported by Natural Science Basic Research Plan in Shaanxi
Province of China (Program No. 2016ZDJC-06), the 111
project (grants B08038 and B16037), and Academy of Finland
(grant 308087).

REFERENCES

[1] Y. L. Zou, J. Zhu, X. B. Wang, and L. Hanzo, “A Survey on Wireless
Security: Technical Challenges, Recent Advances, and Future Trends,”
Proceedings of the IEEE, vol. 104, no. 9, pp. 1727-1765, 2016.

[2] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in
Software Defined Networks: A Survey,” IEEE Communications Surveys
and Tutorials, vol. 17, no. 4, pp. 2317-2346, 2015.

[3] M. Ali, S. U. Khan,and A. V. Vasilakos, “Security in cloud computing:
Opportunities and challenges,” Information Sciences, vol.305, pp. 357-
383, 2015.

[4] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A Survey of
Security Attacks in Information-Centric Networking,” IEEE Commu-
nications Surveys and Tutorials, vol. 17, no. 3, pp. 1441-1454, 2015.

[5] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based
defense mechanisms countering the DoS and DDoS problems,” ACM
Computing Surveys, vol. 39, no. 1, 2007.

[6] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE
Communications Surveys and Tutorials, vol. 15, no. 4, pp. 2046-2069,
2013.

[7] Q. Yan, F. R. Yu, Q. X. Gong, and J. Q. Li, “Software-Defined
Networking (SDN) and Distributed Denial of Service (DDoS) Attacks
in Cloud Computing Environments: A Survey, Some Research Issues,
and Challenges,” IEEE Communications Surveys and Tutorials, vol. 18,
no. 1, pp. 602-622, 2016.

[8] P. L. Li, M. Salour, and X. Su, “A survey of internet worm detection
and containment,” IEEE Communications Surveys and Tutorials, vol.
10, no.1, pp. 20-35, 2008.

[9] R. Kaur and M. Singh, “A Survey on Zero-Day Polymorphic Worm
Detection Techniques,” IEEE Communications Surveys and Tutorials,
vol. 16, no. 3, pp. 1520-1549, 2014.

[10] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS
Attacks: Trends and Challenges,” IEEE Communications Surveys and
Tutorials, vol. 17, no. 4, pp. 2242-2270, 2015.

[11] M. F. Umer, M. Sher, Y. X. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers and Security, vol. 70, pp. 238-
254, 2017.

[12] Y. Tang, J. Q. Luo, B. Xiao, and G. Y. Wei, “Concept, Characteristics
and Defending Mechanism of Worms,” IEICE Transactions on Infor-
mation and Systems, vol. 92, no. 5, pp. 799-809, 2009.

[13] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
Anomaly Detection: Methods, Systems and Tools,” IEEE Communi-
cations Surveys and Tutorials, vol. 16, no. 1, pp. 303-336, 2014.

[14] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, R. Buyya, “DDoS attacks
in cloud computing: Issues, taxonomy, and future directions,” Computer
Communications, vol. 107, no. 10, pp. 30-48, 2017.

[15] V. Jacobson, C. Leres, and S. McCanne, “The tcpdump manual page,”
Lawrence Berkeley Laboratory, Berkeley , CA, 1989.

[16] G. Combs, Wireshark, [Online], Available: http://www.wireshark.org.
[17] Snort 3.0, [Online], Available: https://www.snort.org.
[18] G. F. Lyon, “Nmap Network Scanning: The Official Nmap Project

Guide to Network Discovery and Security Scanning,” Insecure, 2009.
[19] S. Alcock, P. Lorier, and R. Nelson, “Libtrace: A Packet Capture

and Analysis Library,” in Proceedings of ACM Sigcomm Computer
Communication Review, pp. 42-48, 2012.

[20] J. Weber, “The fundamentals of passive monitoring access,” Net Optics,
Inc., Santa Clara, CA, USA, 2006.

[21] M. V. Mahoney and P. K. Chan, “PHAD: Packet Header Anomaly
Detection for Identifying Hostile Network Traffic,” FL Inst.Tech. tech.
rep, 2001.

[22] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: an effective
defense against spoofed DDoS traffic,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, 2003, pp. 30-
41.

[23] L. Rudman and B. Irwin, “Characterization and Analysis of NTP
Amplification Based DDoS Attacks,” in Proceedings of Information
Security for South Africa, 2015, pp. 1-5.

[24] L. Kavisankar, C. Chellappan, P. Sivasankar, A. Karthi, and A. Srinivas,
“A pioneer scheme in the detection and defense of DRDoS attack
involving spoofed flooding packets,” KSII Transactions on Internet and
Information Systems, vol. 8, no. 5, pp.1726-1743, 2014.

[25] T. AbuHmed, A. Mohaisen, and D. Nyang, “A Survey on Deep
Packet Inspection for Intrusion Detection Systems,” Magazine of Korea
Telecommunication Society, vol. 24, no. 2, pp. 25-36, 2008.

[26] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037-2064, 2014.

[27] Netflow, [Oneline], Available: https://www.cisco.com/c/en/us/tech/quality-
of-service-qos/netflow/index.html.

[28] T. Fioreze, M. O. Wolbers, R. van de Meent, and A. Pras, “Finding
elephant flows for optical networks,” in Proceedings of 10th IFIP/IEEE
International Symposium on Integrated Network Management, 2007,
pp. 627-640.

[29] B. D. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network
flow applications,” Journal of Network and Computer Applications, vol.
36, no. 2, pp. 567-581, 2013.

[30] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B.
Stiller, “An Overview of IP Flow-Based Intrusion Detection,” IEEE
Communications Surveys and Tutorials, vol. 12, no. 3, pp. 343-356,
2010.

[31] Collectl, [Online], Available: http://collectl.sourceforge.net/index.html.
[32] Loadrunner, [Online], Available: https://saas.hpe.com/zh-cn/software/

loadrunner.
[33] P. Berezinski, B. Jasiul, and M. Szpyrka, “An Entropy-Based Network

Anomaly Detection Method,” Entropy, vol. 17, no. 4, pp. 2367-2408,
2015.

[34] W. Lee and D. Xiang, “Information-theoretic measures for anomaly
detection,” in Proceedings of 2001 IEEE Symposium on Security and
Privacy, 2001, pp. 130-143.

[35] M. Yu, “A Nonparametric Adaptive CUSUM Method and Its Ap-
plication in Network Anomaly Detection,” International Journal of
Advancements in Computing Technology, vol. 4, no. 1, pp. 280-288,
2012.

[36] N. Ye, S. Vilbert, and Q. Chen, “Computer intrusion detection through
EWMA for autocorrelated and uncorrelated data,” IEEE Transactions
on Reliability, vol. 51, no .1 , pp. 75-82, 2003.

[37] J. D. Brutlag, “Aberrant behavior detection in time series for network
service monitoring,” in Proceedings of Usenix Conference on System
Administration, 2000, pp. 139-146.

[38] A. Patcha and J. M. Park, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Computer
Networks, vol. 51, no. 12, pp. 3448-3470, 2007.

[39] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys and Tutorials, vol. 10, no. 4, pp. 56-76, 2008.

[40] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 2, pp. 1153-1176,
2016.



[41] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine Learning for Internet of Things Data
Analysis: A Survey,” Digital Communications and Networks, Doi:
10.1016/j.dcan.2017.10.002.

[42] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”
Software Quality Journal, pp. 1-29, 2017.

[43] J. Peng, K. R. Choo, and H. Ashman, “User profiling in intrusion
detection: A review,” Journal of Network and Computer Applications,
vol. 72, pp. 14-27, 2016.

[44] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam,
“A Taxonomy of Botnet Behavior, Detection, and Defense,” IEEE
Communications Surveys and Tutorials, vol. 16, no.2 , pp. 898-924,
2014.

[45] M. Bellaiche and J. C. Gregoire, “SYN Flooding Attack Detection
Based on Entropy Computing,” in Proceedings of Global Telecommu-
nications, 2009, pp. 1-6.

[46] H. Sengar, Wang Haining, D. Wijesekera, and S. Jajodia, “Detecting
VoIP Floods Using the Hellinger Distance,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 6, pp. 794-805, 2008.

[47] D. Boro, H. Basumatary, T. Goswami, and D. K. Bhattacharyya,
“UDP Flooding Attack Detection Using Information Metric Measure,”
in Proceedings of International Conference on ICT for Sustainable
Development, 2016, pp. 143-153.

[48] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, “PacketScore:
a statistics-based packet filtering scheme against distributed denial-
of-service attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 2, pp. 141-155, 2006.

[49] P. E. Ayres, H. Z. Sun, H. J. Chao, and W. C. Lau, “ALPi: A DDoS
Defense System for High-Speed Networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 10, pp. 1864-1876, 2006.

[50] Q. Chen, W. M. Lin, W. C. Dou, and S. Yu, “CBF: A Packet
Filtering Method for DDoS Attack Defense in Cloud Environment,” in
Proceedings of IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing, 2012, pp. 427-434.

[51] L. Zhou, M. C. Liao, C. Yuan, Z. Y. Sheng, and H. Y. Zhang,
“DDoS attack detection using packet size interval,” in Proceedings
of International Conference on Wireless Communications, Networking
and Mobile Computing, 2015, pp. 1-7.

[52] J. David and C. Thomas, “DDoS Attack Detection using Fast Entropy
Approach on Flow Based Network Traffic,” Procedia Computer Sci-
ence, vol. 50, no. 4, pp. 30-36, 2015.

[53] A. Saied, R. E. Overill, and T. Radzik, “Detection of known and
unknown DDoS attacks using Artificial Neural Networks,” Neurocom-
puting, vol. 172, pp. 385-393, 2016.

[54] R. Vijayasarathy, B. Ravindran, and S. V. Raghavan, “A System
Approach to Network Modeling for DDoS Detection using a Naive
Bayesian Classifier,” in proceedings of Third International Conference
on Communication Systems and Networks, 2011, pp. 1-10.

[55] M. Y. Su, “Real-time anomaly detection systems for Denial-of-Service
attacks by weighted k-nearest-neighbor classifiers,” Expert Systems
with Applications, vol. 38, no. 4, pp. 3492-3498, 2011.

[56] B. Kong, K. Yang, D. G. Sun, M. M. Li, and Z. X. Shi, “Distinguishing
flooding distributed denial of service from flash crowds using four data
mining approaches,” Computer Science and Information Systems, vol.
14, no. 3, pp. 839-859, 2017.

[57] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “DDoS attack detec-
tion method using cluster analysis,” Expert Systems with Applications,
vol. 34, no. 3, pp. 1659-1665, 2008.

[58] L. F. Zi, J. Yearwood, and X. W. Wu, “Adaptive Clustering with
Feature Ranking for DDoS Attacks Detection,” in Proceedings of
Fourth International Conference on Network and System Security,
2010, pp. 281-286.

[59] P. Xiao, W. Y. Qu, H. Qi, and Z. Y. Li, “Detecting DDoS attacks against
data center with correlation analysis,” Computer Communications, vol.
67, pp. 66-74, 2015.

[60] C. Wagner, J. Francois, R. State, and T. Engel, “Machine Learning
Approach for IP-Flow Record Anomaly Detection,” in Proceedings of
International IFIP TC 6 Conference on Networking, 2011, pp. 28-39.

[61] X. Qin, T. G. Xu, and C. Wang, “DDoS Attack Detection Using Flow
Entropy and Clustering Technique,” in Proceedings of International
Conference on Computational Intelligence and Security, 2015, pp. 412-
415.

[62] P. A. Kumar and S. Selvakumar, “Distributed denial of service attack
detection using an ensemble of neural classifier,” Computer Communi-
cations, vol. 34, no. 11, pp. 1328-1341, 2011.

[63] C. Sun, C. Hu, and B. Liu, “SACK2: effective SYN flood detection
against skillful spoofs,” LET Information Security, vol. 6, no. 3, pp.
149-156, 2012.

[64] V. K. Yadav, M. C. Trivedi, and B. M. Mehtre, “DDA: An Approach to
Handle DDoS (Ping Flooding) Attack,” in Proceedings of International
Conference on ICT for Sustainable Development, 2016, pp. 11-23.

[65] A. Sanmorino and S. Yazid, “DDoS Attack Detection Method and
Mitigation Using Pattern of the Flow,” in Proceedings of International
Conference of Information and Communication Technology (ICoICT),
2013, pp. 12-16.

[66] L. H. Miao, W. Ding, and J. Gong, “A Real-time Method for Detecting
Internet-wide SYN Flooding Attacks,” in Proceedings of International
Workshop on Local & Metropolitan Area Networks, 2015, pp. 1-6.

[67] H. Rahmani, N. Sahli, and F. Kamoun, “DDoS flooding attack detection
scheme based on F-divergence,” Computer Communications, vol. 35,
no. 11, pp. 1380-1391, 2012.

[68] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “DDoS-Shield:
DDoS-Resilient Scheduling to Counter Application Layer Attacks
under Imperfect Detection,” IEEE/ACM transactions on Networking,
vol. 17, no.1, pp. 26-39, 2009.

[69] M. H. Jiang, C. X. Wang, X. P. Luo, M. T. Miu, and T. Chen,
“Characterizing the Impacts of Application Layer DDoS Attacks,” in
Proceedings of IEEE International Conference on Web Services, 2017,
pp. 500-507.

[70] R. Alonso, R. Monroy, and L. A. Trejo, “Mining IP to Domain Name
Interations to Detect DNS Flood Attacks on Rescursive DNS servers,”
Sensors, vol. 16, no. 8, 2016.

[71] M. Alenezi and M. J. Reed, “Denial of Service Detection Through TCP
Congestion Window Analysis,” in Proceedings of World Congress on
Internet Security, 2013, pp. 145-150.

[72] W. Zhou, W. J. Jia, S. Wen, Y. Xiang, and W. L. Zhou, “Detection and
defense of application-layer DDoS attacks in backbone web traffic,”
Future Generation Computer Systems, vol. 38, pp. 36-46, 2014.

[73] J. Tang, Y. Cheng, Y. Hao, and W. Song, “SIP Flooding Attack Detec-
tion with a Multi-Dimensional Sketch Design,” IEEE Transactions on
Dependable and Secure Computing, vol. 11, no. 6, pp. 582-595, 2014.

[74] C. X. Wang,T. T.N. Miu, X. P. Luo , and J. H. Wang, “SkyShield:
A Sketch-Based Defense System Against Application Layer DDoS
Attacks,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 3, pp. 559-573, 2018.

[75] T. Thapngam, S. Yu, W. L. Zhou, and G. Beliakov, “Discriminating
DDoS Attack Traffic from Flash Crowd through Packet Arrival Pat-
terns,” in Proceedings of IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2011, pp. 952-957.

[76] S. Yu, S. Guo, and I. Stojmenovic, “Fool Me If You Can: Mimick-
ing Attacks and Anti-attacks in Cyberspace,” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 139-151, 2014.

[77] S. Bhatia, “Ensemble-based Model for DDoS Attack Detection and
Flash Event Separation,” in Proceedings of Future Technologies Con-
ference, 2017, pp. 958-967.

[78] S. Yu, W. L. Zhou, W. J. Jia, S. Guo, Y. Xiang, and F. L. Tang, “Dis-
criminating DDoS Attacks from Flash Crowds Using Flow Correlation
Coefficient,” IEEE Transactions on Parallel & Distributed Systems, vol.
23, no. 6, pp. 1073-1080, 2012.

[79] R. Saravanan, S. Shanmuganathan, and Y. Palanichamy, “Behavior-
based detection of application layer distributed denial of service attacks
during flash events,” Turkish Journal of Electrical Engineering &
Computer Sciences, vol.24, no. 2, pp. 510-523, 2016.

[80] L. C. Giralte, C. Conde, I. M. de Diego, and E. Cabello, “Detecting
denial of service by modelling web-server behaviour,” Computers &
Electrical Engineering, vol. 39, no. 7, pp. 2252-2262, 2013.

[81] M. Zolotukhin, T. Kokkonen, T. Hamalainen, and J. Siltanen,
“Weighted Fuzzy Clustering for Online Detection of Application DDoS
Attacks in Encrypted Network Traffic,” in Proceedings of International
Conference on Next Generation Wired/Wireless Networking Conference
on Internet of Things and Smart Spaces, 2016, pp. 326-338.

[82] H. Beitollahi and G. Deconinck, “ConnectionScore: a statistical tech-
nique to resist application-layer DDoS attacks,” Journal of Ambient
Intelligence and Humanized Computing, vol. 5, no. 3 , pp. 425-442,
2014.

[83] E. Adi, Z. Baig, and P. Hingston, “Stealthy Denial of Service (DoS)
attack modelling and detection for HTTP/2 services,” Journal of
Network and Computer Applications, vol. 91, pp. 1-13, 2017.

[84] A. Ramamoorthi, T. Subbulakshmi, and Dr S. Mercy Shalinie, “Real
Time Detection and Classification of DDoS Attacks using Enhanced
SVM with String Kernels,” in Proceedings of International Conference
on Recent Trends in Information Technology, 2011, pp. 91-96.



[85] C. Y. She, W. S. Wen, K. S. Zheng, and Y. Y. Lyu, “Application-
Layer DDoS Detection by K-means Algorithm,” in Proceedings of
International Conference on Electrical and Electronics Engineering
and Computer Science, 2016.

[86] K. J. Singh, K. Thongam, and T. De, “Entropy-Based Application Layer
DDoS Attack Detection Using Artificial Neural Networks,” Entropy,
vol. 18, no. 10, pp. 350, 2016.

[87] D. Geneiatakis, N. Vrakas, and C. Lambrinoudakis, “Utilizing bloom
filters for detecting flooding attacks against SIP based services,”
Computers and Security, vol. 29, no. 7, pp. 578-591, 2009.

[88] Q. Liao, H. Li, S. L. Kang, and C. C. Liu, “Application layer
DDoS attack detection using cluster with label based on sparse vector
decomposition and rhythm matching,” Security and Communication
Networks, vol. 8, no. 17, pp. 3111-3120, 2015.

[89] M. Zhang, W. Zhang, and K. Fan, “Application Layer DDoS Detection
Model Based on Data Flow Aggregation and Evaluation,” Communi-
cations and Information Processing, vol. 289, pp. 37-45, 2012.

[90] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial
of service attacks and counter strategies,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 683-696, 2006.

[91] J. T. Luo and X. L. Yang, “The NewShrew Attack: A New Type
of Low-Rate TCP-Targeted DoS Attack,” in Proceedings of IEEE
International Conference on Communications, 2014, pp. 713-718.

[92] G. Macia-Fernandez, J. E. Diaz-Verdejo, P. Garcia-Teodoro, and F. D.
Toro-Negro, “LoRDAS: A Low-Rate DoS Attack against Application
Servers,” in Proceedings of International Workshop on Critical Infor-
mation Infrastructures Security, 2007, pp. 197-209.

[93] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources,” in Proceedings of
the 12th IEEE International Conference on Network Protocols, 2004,
pp. 184-195.

[94] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “FFSc: a novel
measure for low-rate and high-rate DDoS attack detection using mul-
tivariate data analysis,” Security and Communication Networks, vol.9,
no.13, pp. 2032-2041, 2016.

[95] Y. Xiang, K. Li, and W. L. Zhou, “Low-Rate DDoS Attacks Detection
and Traceback by Using New Information Metrics,” IEEE Transactions
on Information Forensics and Security, vol. 6, no. 2, pp. 426-437, 2011.

[96] Z. J. Wu, L. Y. Zhang, and M. Yue, “Low-Rate DoS Attacks Detection
Based on Network Multifractal,” IEEE Transactions on Dependable
and Secure Computing, vol. 13, no. 5, pp. 559-567, 2016.

[97] M. Yue, L. Liu, Z. J. Wu, and M. X. Wang, “Identifying LDoS
attack traffic based on wavelet energy spectrum and combined neural
network,” International Journal of Communication Systems, vol. 31,
no. 2, 2018.

[98] Z. J. Wu, H. T. Zhang, M. H. Wang, and B. S. Pei, “MSABMS-based
approach of detecting LDoS attack,” Computers & Security, vol. 31,
no. 4, pp. 402-417, 2012.

[99] L. Zhou, M. C. Liao, C. Yuan, and H. Y. Zhang, “Low-Rate DDoS
Attack Detection Using Expectation of Packet Size,” Security and
Communication Networks, vol. 2017, no. 1, pp. 1-14, 2017.

[100] L. B. Wu, J. Cheng, Y. X. He, A. Xu, and P. Wen, “A Low-Rate DoS
Detection Based on Rate Anomalies,” in Proceedings of International
Conference on Applied Informatics and Communication, 2011, pp. 189-
196.

[101] C. W. Zhang, Z. P. Cai, W. F. Chen, X. P. Luo, and J. P. Yin, “Flow
level detection and filtering of low-rate DDoS,” Computer Networks,
vol. 56, no. 15, pp. 3417-3431, 2012.

[102] C. Rossow, “Amplification Hell: Revisiting Network Protocols for
DDoS Abuse,” in Proceedings of the 2014 Network and Distributed
System Security (NDSS) Symposium, 2014.

[103] M. Kuhrer, T. Hupperich, C. Rossow, and T. Holz, “Exit from Hell?
Reducing the Impact of Amplification DDoS Attacks,” in Proceedings
of the 23rd USENIX Security Symposium (USENIX Security 14), 2014.

[104] F. J. Ryba, M. Orlinski, M. Wahlisch, C. Rossow, and T.C. Schmidt,
“Amplification and DRDoS Attack Defense - A Survey and New
Perspectives,” Computer Science, 2015.

[105] W. Wei, F. Chen, Y. J. Xia, and G. Jin, “A Rank Correlation Based
Detection against Distributed Reflection DoS Attacks,”IEEE Commu-
nications Letters, vol. 17, no. 1, pp. 173-175, 2013.

[106] L. Xiao, W. Wei, W. D. Yang, Y. L. Shen, and X. L. Wu, “A protocol-
free detection against cloud oriented reflection DoS attacks,” Soft
Computing, vol. 21, no. 13, pp. 3713-3721, 2016.

[107] Y. X. Gao, Y. K. Feng, J. Kawamoto, and K. Sakurai, “A Machine
Learning Based Approach for Detecting DRDoS Attacks and Its
Performance Evaluation,” in Proceedings of Asia Joint Conference on
Information Security, 2016, pp. 80-86.

[108] I. L. Meitei, K. J. Singh, and T. De, “Detection of DDoS DNS
Amplification Attack Using Classification Algorithm,” in Proceedings
of International Conference on Informatics and Analytics, 2016.

[109] L. Z. Cai, Y. K. Feng, J. Kawamoto, and K. Sakurai, “A Behavior-Based
Method for Detecting DNS Amplification Attacks,” in Proceedings of
International Conference on Innovative Mobile & Internet Services in
Ubiquitous Computing, 2016, pp. 608-613.

[110] T. Bottger, L. Braun, O. Gasser, F. V. Eye, H. Reiser, and G. Carle,
“DoS Amplification Attacks - Protocol-Agnostic Detection of Service
Abuse in Amplifier Networks,” in Proceedings of International Work-
shop on Traffic Monitoring and Analysis, 2015, pp. 205-218.

[111] H. Tsunoda, K. Ohta, A. Yamamoto, N. Ansari, Y. J. Waizumi, and
Y. Nemoto, “Detecting DRDoS attacks by a simple response packet
confirmation mechanism,” Computer Communications, vol. 31, no. 14,
pp. 3299-3306, 2008.

[112] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “De-
tecting DNS Amplification Attacks,” in Proceedings of International
Workshop on Critical Information Infrastructures Security, 2007, pp.
186-196.

[113] D. Huistra, “Detecting Reflection Attacks in DNS Flows,” in Proceed-
ings of Twente Student Conference on IT, 2013.

[114] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire Attack,” in
Proceedings of IEEE Symposium on Security and Privacy, 2013.

[115] T. Hirayama, K. Toyoda, and I. Sasase, “Fast Target Link Flooding
Attack Detection Scheme by Analyzing Traceroute Packets Flow,” in
Proceedings of 2015 IEEE International Workshop on Information
Forensics and Security, 2015, pp. 1-6.

[116] L. Xue, X. P. Luo, W. Edmond, W. Chan, and X. Zhan, “Towards
Detecting Target Link Flooding Attack,” in Proceedings of Usenix
Conference on Large Installation System Administration, 2014.

[117] C. Liaskos, V. Kotronis, and X. Dimitropoulos, “A Novel Framework
for Modeling and Mitigating Distributed Link Flooding Attacks,” in
Proceedings of IEEE International Conference on Computer Commu-
nications, 2016.

[118] S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef: Collaborative
Defense Against Large-Scale Link-Flooding Attacks,” in Proceedings
of ACM Conference on Emerging Networking Experiments & Tech-
nologies, 2013, pp. 417-428.

[119] S. A. Aljawarneh, R. A. Moftah, and A. M. Maatuk, “Investigations of
automatic methods for detecting the polymorphic worms signatures,”
Future Generation Computer Systems, vol. 60, pp. 67-77, 2016.

[120] X. Y. Yang, Y. Shi, and H. J. Zhu, “Detection and location algorithm
against local-worm,” Science in China, vol. 51, no. 12, pp. 1935-1946,
2008.

[121] W. Guo, L. Wang, and H. X. Zhou, “A Behavior Approach to
Instant Messaging Worm Detection,” in Proceedings of International
Conference on Artificial Intelligence and Industrial Engineering, 2015.

[122] C. C. Zou, W. B. Gong, D. Towsley, and L. X. Gao, “The Monitoring
and Early Detection of Internet Worms,” IEEE/ACM Transactions on
Networking, vol. 13, no. 5, pp. 961-974, 2005.

[123] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for Internet worms,” in Proceedings of ACM Conference on
Computer and Communications Security, 2003, pp. 190-199.

[124] W. Yu, X. Wang, P. Calyam, D. Xuan, and W. Zhao, “Modeling and
Detection of Camouflaging Worm,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, no. 3, pp. 377-390, 2011.

[125] B. Kim, H. Kim, and S. Bahk, “FDF: Frequency detection-based
filtering of scanning worms,” Computer Communications, vol. 32, no.
5, pp. 847-857, 2009.

[126] M. P. Collins and M. K. Reiter, “Hit-List Worm Detection and Bot Iden-
tification in Large Networks Using Protocol Graphs,” in Proceedings
of International Workshop on Recent Advances in Intrusion Detection,
2007, pp. 276-295.

[127] A. Wagner and B. Plattner, “Entropy based worm and anomaly de-
tection in fast IP networks,” in Proceedings of IEEE International
workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprise, 2005, pp. 172-177.

[128] M. Stoecklin, J. L. Boudec, and A. Kind, “A two-layered anomaly
detection technique based on multi-modal flow behavior models,” in
Proceedings of 9th International Conference on Passive and Active
Measurement, 2008, pp. 212-221.

[129] C. Gates, J. McNutt, J. Kadane, and M. Kellner, “Scan detection on
very large networks using logistic regression modeling,” in Proceedings
Of 11th IEEE Symposium on Computers and Communications, 2006,
pp. 402-408.



[130] B. Liu, C. Lin, J. Qiao, J. P. He, and U. Peter, “A NetFlow based
flow analysis and monitoring system in enterprise networks,” Computer
Networks, vol. 52, no. 5, pp. 1074-1092, 2008.

[131] N. Muraleedharan and P. Arun, “ADRISYA: A Flow Based Anomaly
Detection System for Slow and Fast Scan,” International Journal of
Network Security and Its Applications, vol. 2, no. 4, pp. 234-245, 2010.

[132] I. A. Farag, M. A. Shouman, T. S. Sobh, and H.. Z. El-Fiqi, “In-
telligent System for Worm Detection,” International Arab Journal of
e-Technology, vol. 1, no. 1, pp. 58-67, 2009.

[133] W. C. Sun and Y. M. Chen, “A rough set approach for automatic
key attributes identification of zero-day polymorphic worms,” Expert
Systems with Applications, vol. 36, no. 3, pp. 4672-4679, 2009.

[134] P. M. Comar, L. Liu, S. Saha, P. N. Tan, and A. Nucci, “Combining
Supervised and Unsupervised Learning for Zero-Day Malware Detec-
tion,” in Proceedings of IEEE INFOCOM, 2013, pp. 2022-2030.

[135] C. Nikolaos and P. Z. Radu, “Flow Level Data Mining of DNS
Query Streams for Email Worm Detection,” in Proceedings of the
International Workshop on Computational Intelligence in Security for
Information Systems Cisis, 2008, pp. 186-194.

[136] N. Chatzis and N. Brownlee, “Similarity Search over DNS Query
Streams for Email Worm Detection,” inProceedings of IEEE Interna-
tional Conference on Advanced Information Networking & Applica-
tions, 2009, pp. 588-595.

[137] S. Abdulla, S. Ramadass, A. Altaher, and A. Al-Nassiri, “Employing
Machine Learning Algorithms to Detect Unknown Scanning and Email
Worms,” The International Arab Journal of Information Technology,
vol. 11, no. 2, pp. 140-148, 2014.

[138] D. Stopel, R. Moskovitch, Z. Boger, Y. Shahar, and Y. Elovici, “Using
artificial neural networks to detect unknown computer worms,”Neural
Computing& Applications, vol. 18, no. 7, pp. 663-674, 2009.

[139] W. Cui, R.H. Katz, and W. Tan, “BINDER: An extrusion-based break-
in detector for personal computers,” in Proceedings USENIX Annual
Technical Conference, 2005, pp. 363-366.

[140] J. Seo, S. Cha, B. Zhu, and D. Bae, “PC Worm Detection System
Based on the Correlation between User Interactions and Comprehensive
Network Behaviors,” LEICE Transactions on Information and Systems,
vol. E96D, no. 8, pp. 1716-1726, 2013.

[141] M. A. Ahmad, S. Woodhead, and D. Gan, “A Countermeasure Mech-
anism for Fast Scanning Malware,” in Proceedings of International
Conference on Cyber Security and Protection of Digital Services, 2016,
pp. 1-8.

[142] K. Shahzad and S. Woodhead, “Towards Automated Distributed Con-
tainment of Zero-Day Network Worms,” in Proceedings of 2014 Inter-
national Conference on Computing, Communication and Networking
Technologies, 2014, pp. 1-7.

[143] S. Q. Chen, L. Liu, X. Y. Wang, X. W. Zhang, and Z. Zhang, “A
Host-Based Approach for Unknown Fast-Spreading Worm Detection
and Containment,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 8, no. 4, pp. 1-18, 2014.

[144] F. T. Xiao, H. P. Hu, B. Liu, and X. Chen, “PTBBWD: A fast Process
traffic behavior based worm detection algorithm,” in Proceedings of
International Seminar on Future Information Technology and Man-
agement Engineering, 2008, pp. 181-186.

[145] Y. Tang and S. G. Chen, “An Automated Signature-Based Approach
against Polymorphic Internet Worms,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 7, pp. 879-892, 2007.

[146] L. J. Wang, Z. C. Li, Y. Chen, Z. Fu, and X. Li, “Thwarting Zero-
Day Polymorphic Worms With Network-Level Length-Based Signature
Generation,” IEEE/ACM Transactions on Networking, vol. 18, no. 1,
pp. 53-66, 2010.

[147] J. Wang, L. Hamadeh, G. Kesidis, and D. J. Miller, “Polymorphic worm
detection and defense: System design, experimental methodology, and
data resources,” in Proceedings of ACM SIGCOMM workshop on
Large-scale Attack Defense, 2006, pp. 169-176.

[148] M. M. Rasheed, N. M. Norwawi, M. M. Kadhum, and O. Ghazali,
“A New Generation For Intelligent Anti-Internet Worm Early System
Detection,” in Proceedings of the International Conference on Com-
puting& Informatics, 2009.

[149] X. H. Pan, X. S. Zhang, and T. Chen, “A Novel Hybrid Method
for Polymorphic Worm Detection,” in Proceedings of International
Conference on E-Business and Information System Security, 2009, pp.
50-54.

[150] Y. F. Chen, Z. T. Xiang, Y.B. Dong, and D. M. Lu, “Cooperation Sys-
tem of Worm Detection and Quarantine in Real Time,” in Proceedings
of the IEEE International Conference on Automation and Logistics,
2008, pp. 1022-1026.

[151] M. M. Rasheed, N. M. Norwawi, O. Ghazali, and M. M. Kadhum, “In-
telligent Failure Connection Algorithm for Detecting Internet aWorms,”
International Journal of Computer Science & Network Security, vol.
9, no. 5, pp. 280-285, 2009.

[152] M. Anbar, S. Ramadass, S. Manicka, and A. Al-Wardi, “Connection
Failure Message-based Approach for Detecting Sequential and Random
TCP Scanning,” Indian Journal of Science and Technology, vol. 7, no.
5, pp. 628-636, 2014.

[153] L. Braun, G. Muenz, and G. Carle, “Packet Sampling for Worm and
Botnet Detection in TCP Connections,” in Proceedings of the 2010
Ieee-Ifip Network Operations and Management Symposium, 2010, pp.
264-271.

[154] F. Tong and Z. Yan, “A Hybrid Approach of Mobile Malware Detection
in Android”, Journal of Parallel and Distributed Computing, vol. 103,
pp. 22-31, 2016.

[155] S. X. Ma and Z. Yan, “PSNController: An Unwanted Content Control
System in Pervasive Social Networking based on Trust Management”,
ACM Transactions on Multimedia Computing Communications and
Applications, vol. 12, no. 1s, pp. 17, 2015.

[156] L. Chen, Z. Yan, W.D. Zhang, and R. Kantola, “TruSMS: a Trustworthy
SMS Spam Control System based on Trust Management”, Future
Generation Computer Systems, vol. 49, pp. 77-93, 2015.

[157] Y. Shen, Z. Yan, and R. Kantola, “Analysis on the Acceptance of
Global Trust Management for Unwanted Traffic Control based on
Game Theory”, Computers & Security, vol. 47, pp. 3-25, 2014.

[158] Z. Yan, R. Kantola, and Y. Shen, “A Generic Solution for Unwanted
Traffic Control through Trust Management”, New Review of Hyperme-
dia and Multimedia, vol. 20, no. 1, pp. 25-51, 2014.

[159] Z. Yan, R. Kantola, L.F. Zhang, and Y.T. Ma, “Unwanted Traffic
Detection and Control based on Trust Management”, Information
Fusion for Cyber-Security Analytics: Trends and Patterns, 2016, pp.
77-109.

[160] L. F. Zhang, Z. Yan, and R. Kantola, “Privacy-Preserving Trust Man-
agement for Unwanted Traffic Control”, Future Generation Computer
Systems, vol. 72, pp. 305-318, 2016.

[161] J. Yao, A. V. Vasilakos, and W. Pedrycz, “Granular computing: per-
spectives and challenges,” IEEE Transactions on Cybernetics, vol. 43,
no. 6, pp. 1977-1989, 2013.

[162] H. Li, D. Y. Li, Y. H. Zhai, S. G. Wang, and J. Zhang, “A novel
attribute reduction approach for multi-label data based on rough set
theory,” Information Sciences, pp. 827-847, 2016.

[163] W. H. Xu and J. H. Yu, “A novel approach to information fusion in
multi-source datasets: A granular computing viewpoint,” Information
Sciences, vol. 378, pp. 410-423, 2017.

[164] R. Jensen and N. M. Parthalain, “Towards scalable fuzzy rough feature
selection,” Information Sciences, vol. 323, pp. 1-15, 2015.

Xuyang Jing is currently working for his PhD
degree in Cyberspace Security at Xidian University,
Xi’an, China. His research interests are in Cy-
berspace Security, Granular Computing, Knowledge
Discovery and Data Mining.



Zheng Yan (M’06, SM’14) received the BEng de-
gree in electrical engineering and the MEng degree
in computer science and engineering from the Xi’an
Jiaotong University, Xi’an, China in 1994 and 1997,
respectively, the second MEng degree in information
security from the National University of Singapore,
Singapore in 2000, and the Licentiate of Science and
the Doctor of Science in Technology in electrical
engineering from Helsinki University of Technology,
Helsinki, Finland in 2005 and 2007. She is currently
a professor at the Xidian University, Xi’an, China

and a visiting professor at the Aalto University, Espoo, Finland. Her research
interests are in trust, security and privacy, social networking, cloud computing,
networking systems, and data mining. Prof. Yan serves as an associate editor
of Information Sciences, IEEE Internet of Things Journal, IEEE Access
Journal, Information Fusion, JNCA, Security and Communication Networks,
etc. She is a leading guest editor of many reputable journals including
ACM TOMM, FGCS, IEEE Systems Journal, MONET, etc. She served
as a steering, organization and program committee member for over 70
international conferences. She is a senior member of the IEEE.

Witold Predrycz (F’98) received the MS.c., Ph.D.,
and D.Sci., degrees from the Silesian University of
Technology, Gliwice, Poland.

He is a Professor and the Canada Research Chair
in Computational Intelligence with the Department
of Electrical and Computer Engineering, University
of Alberta, Edmonton, AB, Canada. He is also
with the Systems Research Institute of the Polish
Academy of Sciences, Warsaw, Poland. He is a
foreign member of the Polish academy of Sciences.
He has authored 15 research monographs covering

various aspects of computational intelligence, data mining, and software engi-
neering. His current research interests include computational intelligence,
fuzzy modeling, and granular computing, knowledge discovery and data
mining, fuzzy control, pattern recognition, knowledge-based neural networks,
relational computing, and software engineering. He has published numerous
papers in the above areas.

Dr. Pedrycz was a fellow of the Royal Society of Canada, Ottawa, ON,
Canada, in 2012, and is currently a member of number of Editorial Boards of
other international journals. He received a prestigious Norbert Wiener Award
from the IEEE Systems, Man, and Cybernetics Society, in 2007, and also
received the IEEE Canada Computer Engineering Medal, a Cajastur Prize
for soft computing from the European Center for Soft Computing, a Killam
Prize, and a Fuzzy Pioneer Award from the IEEE Computational Intelligence
Society. He is a member of numerous program committees of the IEEE
conferences in the area of fuzzy sets and neurocomputing. He is intensively
involved in editorial activities. He currently serves on the Advisory Board
of the IEEE TRANSACTIONS ON FUZZY SYSTEMS. He is the Editor-in-
Chief of Information Sciences, WIREs Data Mining and Knowledge Discovery
(Wiley), and International Journal of Granular Computing (Springer).


