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Abstract—Various signal processing applications can be ex-
pressed as large-scale optimization problems with a composite ob-
jective structure, where the Lipschitz constant of the smooth part
gradient is either not known, or its local values may only be a frac-
tion of the global value. The smooth part may be strongly convex
as well. The algorithms capable of addressing this problem class in
its entirety are black-box accelerated first-order methods, related
to either Nesterov’s Fast Gradient Method or the Accelerated Mul-
tistep Gradient Scheme, which were developed and analyzed using
the estimate sequence mathematical framework. In this paper, we
develop the augmented estimate sequence framework, a relaxation
of the estimate sequence. When the lower bounds incorporated in
the augmented estimate functions are hyperplanes or parabolae,
this framework generates a conceptually simple gap sequence. We
use this gap sequence to construct the Accelerated Composite Gra-
dient Method (ACGM), a versatile first-order scheme applicable
to any composite problem. Moreover, ACGM is endowed with an
efficient dynamic Lipschitz constant estimation (line-search) pro-
cedure. We also introduce the wall-clock time unit (WTU), a com-
plexity measure applicable to all first-order methods that accounts
for variations in per-iteration complexity and more consistently
reflects the running time in practical applications. When analyzed
using WTU, ACGM has the best provable convergence rate on the
composite problem class, both in the strongly and non-strongly con-
vex cases. Our simulation results confirm the theoretical findings
and show the superior performance of our new method.

Index Terms—Acceleration, composite objective, estimate
sequence, first-order method, large-scale optimization, line-search,
optimization algorithm.

I. INTRODUCTION

NUMEROUS signal processing applications in compres-
sive sensing, medical imaging, geophysics, bioinformat-

ics, and many other areas are currently empowered by large-
scale optimization methods (see [1]–[3] and references therein).
These applications, due to their size, can only be modeled as
optimization problems for which simple operations such as the
first-order derivative of the objective function are computation-
ally tractable but complex operations such as Hessian inversion
are not (large-scale problems [4]). When these problems are
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additionally convex, algorithms employing calls to first-order
operations (first-order methods) are able to obtain arbitrarily
precise estimates of the optimal value given a sufficient number
of iterations. Nesterov has demonstrated that first-order meth-
ods can be accelerated, when he proposed his breakthrough Fast
Gradient Method (FGM) [5]. FGM was constructed using the
simple mathematical machinery of the estimate sequence [6].
The estimate sequence is a collection of estimate functions,
each being a scaled version of a function that incorporates a
global lower bound while having an optimal value that is a
local upper bound on the objective function. The local upper
bounds tighten as the algorithm progresses, thereby ensuring a
provable convergence rate.

Using the estimate sequence, the design process of FGM
is straightforward and, by exploiting the structure of smooth
problems, simultaneously produces state-of-the art convergence
guarantees. FGM converges for non-strongly convex objectives
at an optimal rate O(1/k2) and for strongly convex objectives
at a near-optimal rate O((1 −√

q)−k ), where k is the iteration
index and q is the inverse condition number of the objective [6].
However, FGM requires that the objective be continuously dif-
ferentiable with Lipschitz gradient, the Lipschitz constant be
known in advance, and the problem be unconstrained.

A broad range of problems, including the most common
constrained smooth optimization problems, many inverse prob-
lems [7], and several classification and reconstruction problems
in imaging [8], have a composite structure, wherein the objec-
tive is the sum of a smooth function f with Lipschitz gradi-
ent (Lipschitz constant Lf ) and a simple function Ψ, that may
embed constraints by including the indicator function of the
feasible set. By simple function, we mean here that the proxi-
mal operator of Ψ is exact (for treatment of inexact oracles see,
e.g., [9]) and has a negligible cost compared to other opera-
tions. We stress that while many specialized methods have been
introduced to tackle composite problems with additional struc-
ture, such as sparsity (e.g., [10]–[13]), we focus on methods
applicable to the entire problem class. In particular, we follow
the black-box oracle model [14]. Namely, we assume that the
exact nature of the objective function is not known by the op-
timization algorithms (outside the assumptions of the problem
class) and they can only obtain information on the problem by
calling oracle functions. Apart from generality and theoretical
simplicity, this model is also well suited for software libraries.
Optimization algorithms can be implemented as methods that
take as arguments callback oracle functions. Solving a particular
problem reduces to providing an implementation of the oracle
functions.

To address the demand for fast algorithms applicable to this
problem class, as well as to alleviate the need to know Lf
in advance, Nesterov has introduced the Accelerated Multistep
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Gradient Scheme (AMGS) [15] that relies on composite gradi-
ents to overcome the limitations of FGM. This algorithm also
adjusts an estimate of Lf at every step (a process often called
“line-search” in the literature [7], [16]) that reflects the local
curvature of the function. The information collected by AMGS
to estimate Lf is reused to advance the algorithm. However,
AMGS requires line-search to complete before proceeding to
the next iteration. This increases the per-iteration complexity of
AMGS to at least twice that of FGM. Consequently, the the-
oretical convergence guarantees of AMGS, while being better
than FGM when measured in iterations, are in fact considerably
inferior to FGM in terms of running time (see Appendix A for
a detailed analysis).

The Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [7] decouples the advancement phase from the adjust-
ment phase, stalling the former phase only during backtracks.
Decoupling renders the computational complexity of a FISTA
iteration comparable to that of FGM. However, FISTA has a
fixed O(1/k2) provable convergence rate even when the ob-
jective is strongly convex, and the line-search strategy cannot
decrease the Lf estimate. Similar algorithms to FISTA have
been collectively analyzed in [17], but none overcome these
drawbacks.

While preparing this manuscript, we became aware of a
strongly convex generalization of FISTA, recently introduced
in [8], which we designate by FISTA-Chambolle-Pock (FISTA-
CP). It has the same convergence guarantees as FGM in both the
non-strongly and the strongly convex cases. The monograph [8]
hints at but does not explicitly state any line-search strategy. Two
recent works also seek to overcome the drawbacks of backtrack-
ing FISTA in the strongly convex case.

The first work [18] introduces a family of methods with two
notable members. One is the Monteiro-Ortiz-Svaiter (MOS)
method, which can be regarded as a simplification of Nesterov’s
AMGS, obtained by discarding the line-search procedure. MOS
has better convergence guarantees than AMGS but it cannot
surpass FISTA-CP. The other member is the Adaptive Accel-
erated (AA) method, which is obtained from MOS by adding
an estimate sequence based acceleration heuristic that increases
empirical performance on the applications studied in [18] but
weakens the theoretical convergence guarantees, making them
poorer than those of AMGS (see also Appendix A). The two
restart heuristics proposed in [18] are altogether incompatible
with the convergence analysis.

The second work [19] proposes a strongly convex Accelerated
Proximal Gradient (scAPG) method, which can be regarded as
a line-search extension of FISTA-CP applicable to problems
where the smooth part f is strongly convex. The convergence
guarantees however do not apply outside this scenario.

Thus, a multitude of methods have already been proposed
to tackle composite problems with specific additional structure,
but none of them successfully combine the strengths of FGM,
AMGS, and FISTA.

A. Contributions
� In this work, we give a new interpretation of Nesterov’s

first-order accelerated optimization algorithms and formu-
late a generic design pattern for these algorithms based on
local upper bounds and global lower bounds. The global
lower bounds are incorporated in the estimate functions
whereas the local upper bounds are defined separately.

� Nesterov’s estimate sequence can be relaxed to produce an
augmented estimate sequence. Augmentation renders the
estimate sequence invariant to the tightness of the global
lower bounds.

� When these lower bounds take the form of generalized
parabolae (hyperplanes or quadratic functions with Hes-
sians equal to multiples of the identity matrix), the aug-
mented estimate sequence property can be insured by
maintaining a non-increasing (Lyapunov property) gap se-
quence.

� We provide, using the above design pattern and the gap se-
quence, a step-by-step derivation of our Accelerated Com-
posite Gradient Method (ACGM), a versatile first-order
scheme for the class of large-scale problems with compos-
ite objectives, which has the convergence guarantees of
FGM in both the non-strongly and strongly convex cases.
ACGM is equipped with an efficient adaptive line-search
procedure that is decoupled from the advancement phase
at every iteration. ACGM does not require a priori knowl-
edge of the Lipschitz constant and can converge even when
the Lipschitz property holds only locally.

� ACGM is derived in an estimate sequence based form but
it can be brought to an equivalent extrapolation based form
that is more similar to FISTA and its extensions.

� We introduce the wall-clock time unit (WTU), a complex-
ity measure that accounts for variations in the per-iteration
complexity of black-box optimization algorithms. WTU
more accurately reflects the actual performance of such
algorithms in practical applications.

� When analyzed using WTU, ACGM has the best provable
convergence rate both in the strongly and non-strongly
convex cases.

� We corroborate the theoretical arguments with simulation
results. Specifically, we show that on a popular instance of
the non-strongly convex l1-regularized image deblurring
problem and on a random instance of the strongly convex
logistic regression with elastic net regularization problem,
each with the Lipschitz constant assumed unknown, our
method surpasses the state-of-the-art in terms of WTU
usage.

B. Assumptions and Notation

We consider the following convex optimization problem

min
x∈Rn

F (x) � f(x) + Ψ(x),

where x is a vector of n optimization variables. In this work,
we consider only large-scale problems [4]. The composite ob-
jective F has a non-empty set of optimal points X∗. Function
f : Rn → R is convex differentiable on Rn with Lipschitz gra-
dient (Lipschitz constantLf > 0) and a strong convexity param-
eter μf ≥ 0. The regularizer Ψ : Rn → R ∪ {∞} is a proper
lower semicontinuous convex function with a strong convex-
ity parameter μΨ . This implies that F has a strong convexity
parameter μ = μf + μΨ . The regularizer Ψ embeds constraints
by being infinite outside the feasible set. It does not have to be
differentiable. However, its proximal map, given by

proxτΨ(x) � arg min
z∈Rn

(
Ψ(z) +

1
2τ

‖z − x‖2
2

)
,
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for all x ∈ Rn and τ > 0 can be computed with complexity
O(n). Here ‖.‖2 denotes the Euclidean norm. The optimization
problem is treated by algorithms in a black-box setting [14],
i.e. algorithms can only access oracle functions f(x), ∇f(x),
Ψ(x), and proxτΨ(x), with arguments x ∈ Rn and τ > 0.

We define a parabola as a quadratic function ψ : Rn → R of
the form

ψ(x) � ψ∗ +
γ

2
‖x − v‖2

2 , x ∈ Rn ,

where γ > 0 gives the curvature, v ∈ Rn is the vertex, andψ∗ is
the optimal value. We also defineP as the set of all parabolae, H
as the set of all linear functions h : Rn → R (which we denote
as hyperplanes), and G as the set of generalized parabolae, G �
P ∪H. We define two abbreviated expressions, Pf,y(x) ∈ H
and Qf,γ ,y(x) ∈ G, as

Pf,y(x) � f(y) + 〈∇f(y),x − y〉,
Qf,γ ,y(x) � Pf,y(x) +

γ

2
‖x − y‖2

2 , (1)

for any x,y ∈ Rn and γ > 0, where 〈., .〉 denotes the inner
product. Using expression Q, we introduce the proximal gradi-
ent operator Tf,Ψ ,L (y) as

Tf,Ψ ,L (y) � arg min
x∈Rn

(Qf,L,y(x) + Ψ(x))

= prox 1
L Ψ

(
y − 1

L
∇f(y)

)
, y ∈ Rn , (2)

where L > 0 is a parameter corresponding to the inverse of the
step size.

II. THEORETICAL BUILDING BLOCKS

First, we present the mathematical machinery used in con-
structing ACGM. We begin this section with a novel interpreta-
tion of Nesterov’s estimate sequence, we proceed by introducing
a generic design pattern for estimate sequence based algorithms,
and conclude with the properties of the composite gradient that
allow us to design the relaxed lower bounds of ACGM.

A. Estimate Sequence

For the class of composite problems with non-strongly con-
vex objectives, regardless of the optimization algorithm used,
the convergence of the iterates can be arbitrarily slow [6], [20].
Consequently, we express the convergence rate of first-order
schemes on the entire composite problem class as the decrease
rate of the distance between the objective value and the optimal
value. We define a convergence guarantee (provable conver-
gence rate) as the decrease rate of a theoretical upper bound on
this distance. When designing algorithms, we index objective
values based on iterations.1 The bound is expressed in terms of
points in the domain space (see also [15]) as

Ak (F (xk ) − F (x∗)) ≤ 1
2
‖x0 − x∗‖2

2 , (3)

for any x∗ ∈ X∗ and k ≥ 0. Without loss of generality, we will
fix x∗ to be an arbitrary element ofX∗ throughout the remainder
of this work. The weight sequence {Ak}k≥0 with Ak > 0 for

1This does not necessarily reflect the actual performance of the algorithm.
See Section IV for a detailed discussion.

all k ≥ 1 gives the convergence guarantees. Since the starting
point x0 is assumed to be arbitrary, the composite function
value F (x0) may not be finite and no guarantee can be given
for k = 0. Therefore, A0 is set to 0 to ensure that (3) holds.

The provable convergence rate expression (3) translates to

AkF (xk ) ≤ Hk, (4)

where

Hk � AkF (x∗) +
1
2
‖x0 − x∗‖2

2 , k ≥ 0, (5)

is the highest allowable upper bound on the weighted objective
values AkF (xk ). The convexity of F ensures that there exists
a sequence {Wk}k≥1 of global convex lower bounds on F ,
namely

F (x) ≥Wk (x), x ∈ Rn , k ≥ 1. (6)

We define an estimate sequence {ψk (x)}k≥0 as

ψk (x) � AkWk (x) +
γ0

2
‖x − x0‖2

2 , 0 < γ0 ≤ 1, k ≥ 0.
(7)

Here ψk for k ≥ 0 are estimate functions and γ0 is the curvature
of the initial estimate function ψ0 . Since A0 = 0, there is no
need to define W0 . Both AMGS and FGM are built to maintain
the following estimate sequence property2

AkF (xk ) ≤ ψ∗
k , (8)

where

ψ∗
k � min

x∈Rn
ψk (x), k ≥ 0.

The estimate sequence property states that the estimate function
optimal value is a scaled (by Ak ) local (at xk ) upper bound on
the objective F . Since the weights are increasing, it follows that
the local upper bounds 1

Ak
ψ∗
k for k ≥ 1 are increasingly tight,

while incorporating the global lower bounds Wk . The provable
convergence rate bound in (4) follows naturally from (6), (7),
and (8). Thus, we have

AkF (xk ) ≤ ψ∗
k ≤ ψk (x∗) ≤ Hk , k ≥ 0.

The estimate sequence property in (8) is more stringent than
the provable convergence rate expression in (4). The gap be-
tween ψ∗

k and Hk is large and, as we shall see in Subsection
III-B, can be reduced to yield a relaxation of the estimate se-
quence with remarkable properties.

B. A Design Pattern for Nesterov’s First-order Accelerated
Algorithms

Nesterov’s FGM and AMGS share the structure outlined in
Algorithm 1.

Algorithm 1 takes as input the starting point x0 ∈ Rn , an
initial estimate of the Lipschitz constant L0 > 0, the total
number of iterations K > 0, the initial weight A0 ≥ 0, and the
initial curvature 0 < γ0 ≤ 1. At every iteration k, the future
value of the main iterate xk+1 is generated using majorization
minimization, i.e., it is set as the minimum of uk+1 , a local upper

2The definition in (7) corresponds to the “newer variant”, introduced in [15]
to analyze AMGS in the context of composite functions and, in particular,
of infeasible start. For FGM, the estimate sequence definition differs slightly
(see [6], [9]).
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TABLE I
DESIGN CHOICES OF FGM AND AMGS AT EVERY ITERATION k ≥ 0

Algorithm 1: A Design Pattern for Nesterov’s First-order
Accelerated Algorithms.

1: ψ0(x) = A0F (x0) + γ0
2 ‖x − x0‖2

2
2: for k = 0, . . . ,K − 1 do
3: Lk+1 = S(xk , ψk , Ak , Lk ) “line-search”
4: ak+1 = Fa(ψk ,Ak , Lk+1)
5: yk+1 = Fy (xk , ψk , Ak , ak+1)
6: Ak+1 = Ak + ak+1
7: xk+1 = arg min

x∈Rn

uk+1(x)

8: ψk+1(x) = ψk (x) + ak+1wk+1(x)
9: end for

bound on F (Algorithm 1, line 7). Note that uk+1 is not related
to ψ∗

k . The estimate function ψk is incremented with a global
lower bound wk+1 weighted by ak+1 (Algorithm 1, line 8).
This ensures that the next estimate function ψk+1 retains the
canonical form in (7), where the lower bounds Wk are given by

wk+1 =
1
Ak

k∑
i=1

aiwi(x), x ∈ Rn , k ≥ 1.

The weight ak+1 and the test point yk+1 are obtained as func-
tions Fa and Fy , respectively, of the state variables at each iter-
ation (Algorithm 1, lines 4 and 5). These functions are derived
in the algorithm design stage to guarantee that the estimate se-
quence property in (8) carries over to the next iterate, regardless
of the algorithmic state. The line-search procedure S (Algo-
rithm 1, line 3) outputs an estimate of Lf , denoted by Lk+1 .

Table I lists the expressions of functions Fa and Fy as well
as the lower bounds wk+1 and upper bounds uk+1 for both
FGM and AMGS. Note that FGM does not use line-search nor
the input parameter L0 . It assumes that Ψ(x) = 0 and that Lf
is known in advance. It defines the local upper bounds based
directly on Lf . The estimate functions of FGM and AMGS take
the form of

ψFGM
k (x) = (ψ∗

k )
FGM +

γk
2
‖x − vk‖2

2 ,

ψAMGS
k (x) = (ψ∗

k )
AMGS +

1
2
‖x − vk‖2

2 +AkΨ(x),

for all x ∈ Rn and k ≥ 0. Both methods enforce γ0 = 1 (our
notation differs from the one in [6]). The convergence analysis
of AMGS requires thatA0 = 0 (also argued in Subsection II-A)
while for FGM we have 0 < A0 ≤ 1/Lf .

Under the above assumptions, by replacing the symbols in
Algorithm 1 with the corresponding expressions in Table I, we
recover FGM and AMGS, respectively.

C. Composite Gradient

A further link between FGM and AMGS has been provided
in [15] by means of the composite gradient, defined as

gL (y) � L (y − Tf,Ψ ,L (y)), y ∈ Rn , L > 0. (9)

As we shall see in (18), there is no need specify functional pa-
rameters. The composite gradient substitutes the gradient for
composite functions and shares many of its properties. Most
notably, the descent update (Algorithm 1, line 7) in FGM,
given by

xk+1 = yk+1 − 1
Lf

∇f(yk+1),

can be written similarly in AMGS using the composite
gradient as

xk+1 = yk+1 − 1
Lk+1

gLk + 1 (yk+1).

In addition, the descent rule [6], which for FGM takes the
form of

f(xk+1) ≤ f(yk+1) − 1
2Lf

‖∇f(yk+1)‖2
2 , (10)

is obeyed by the composite gradient in AMGS as well (see
Lemma 1), that is,

F (xk+1) ≤ F (yk+1) − 1
2Lk+1

‖gLk + 1 (yk+1)‖2
2 .

These properties suggest that FGM could be applied to compos-
ite objectives simply by replacing the gradient call with a com-
posite gradient call, yielding an algorithm that has the superior
convergence guarantees of FGM and the applicability of AMGS.

III. ACGM

The convergence analysis of FGM in [6] requires only two
properties of the gradient to hold: the descent rule in (10) and
the supporting generalized parabola condition, i.e.,Qf,μ,yk + 1 is
a lower bound on function f for all k ≥ 0. However, the naive
extension of Qf,μ,yk + 1 (x) to composite gradients, written as

F (yk+1) + 〈gLk + 1 (yk+1),x − yk+1〉 +
μ

2
‖x − yk+1‖2

2 ,

(11)
x ∈ Rn , is not guaranteed to be a valid lower bound on F for
any value of Lk+1 > 0. Hence, this convergence analysis of
FGM does not apply to composite objectives.
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A. Relaxed Lower Bound

We seek a suitable replacement for the FGM supporting gen-
eralized parabolae, bearing in mind that the accuracy of the
lower bounds at every iteration impacts the convergence rate
of the algorithm. At every iteration k, the lower bound in FGM
takes the form of an approximate second order Taylor expansion
of f at yk+1 . For ACGM, we produce a similar lower bound on
F by transferring all strong convexity, if any, from Ψ to f as

f ′(x) � f(x) +
μΨ

2
‖x − x0‖2

2 , (12)

Ψ′(x) � Ψ(x) − μΨ

2
‖x − x0‖2

2 , (13)

x ∈ Rn . Note that the center of strong convexity in (12) and (13)
can be any point in Rn . We choose x0 only for convenience.
Function f ′ has Lipschitz gradient with constant Lf ′ = Lf +
μΨ and a strong convexity parameter μf ′ = μ. Naturally, this
transfer does not alter the objective function

F (x) = f(x) + Ψ(x) = f ′(x) + Ψ′(x)

and gives rise to the following remarkable property.
Proposition 1: By transferring convexity as in (12) we have

Qf ′,L+μΨ ,y(x) = Qf,L,y(x) +
μΨ

2
‖x − x0‖2

2 ,

for all x,y ∈ Rn and L > 0.
Proof: See Appendix B. �
From Proposition 1 and (12) it follows that the descent con-

dition for f at every iteration k, given by

f(xk+1) ≤ Qf,Lk + 1 ,yk + 1 (xk+1), (14)

is equivalent to that of f ′, stated as

f ′(xk+1) ≤ Qf ′,L ′
k + 1 ,yk + 1 (xk+1), (15)

where L′
k+1 � Lk+1 + μΨ .

When designing ACGM, we assume no upper bound on Ψ.
Therefore, we have to choose a composite parabolic upper bound
on F at every iteration k ≥ 0, that is,

uk+1(x) = Qf,Lk + 1 ,yk + 1 (x) + Ψ(x), x ∈ Rn . (16)

From Proposition 1 we can also see that the strong convexity
transfer in (12) and (13) does not alter the upper bound, namely

uk+1(x) = Qf ′,L ′
k + 1 ,yk + 1 (x) + Ψ′(x), x ∈ Rn . (17)

The invariance shown in (16) and (17) implies that the update
in line 7 of Algorithm 1 remains unchanged as well:

xk+1 = Tf,Ψ ,Lk + 1 (yk+1) = Tf ′,Ψ ′,L ′
k + 1

(yk+1). (18)

We are now ready to formulate the sought after lower bound.
The following result can be regarded as a generalization of
Theorem 2.2.7 in [6], Lemma 2.3 in [7], and (4.37) in [8].

Lemma 1: If the descent condition in (14) holds at iteration
k ≥ 0, then the objective F is lower bounded as

F (x) ≥ RL ′
k + 1 ,yk + 1 (x), x ∈ Rn ,

where we denote with RL ′
k + 1 ,yk + 1 (x) the relaxed supporting

generalized parabola ofF at yk+1 using inverse step sizeL′
k+1 ,

given by

RL ′
k + 1 ,yk + 1 (x) � F (xk+1) +

1
2L′

k+1
‖gL ′

k + 1
(yk+1)‖2

2

+ 〈gL ′
k + 1

(yk+1),x − yk+1〉 +
μ

2
‖x − yk+1‖2

2 , x ∈ Rn ,

with xk+1 given by (18).
Proof: See Appendix C. �
The relaxed supporting generalized parabola thus differs from

the naive extension of Qf,μ,yk + 1 (x) to composite gradients in
(11) by a small constant factor.

B. Augmented Estimate Sequence

Recall that the estimate sequence property in (8) produces a
gap between ψ∗

k and Hk . This allows us to introduce the more
relaxed augmented estimate sequence {ψ′

k (x)}k≥0 which we
define, using the notation and conventions from Subsection II-A,
as

ψ′
k (x) � ψk (x) +Ak (F (x∗) −Wk (x∗)), x ∈ Rn , k ≥ 0.

(19)
Augmentation consists only of adding a non-negative constant
(due to the lower bound property of Wk ) to the estimate func-
tion, thus preserving its curvature and vertex. The augmented
estimate sequence property, given as

AkF (xk ) ≤ ψ′∗
k , k ≥ 0, (20)

can be used to derive the provable convergence rate because,
along with definitions (5), (7), and (19), it implies that

AkF (xk ) ≤ ψ′∗
k = ψ∗

k +Ak (F (x∗) −Wk (x∗))

≤ ψ∗
k +Hk − ψk (x∗) ≤ Hk , k ≥ 0.

Note that by subtracting the lower bound constant term
Wk (x∗), augmentation renders property (20) invariant to the
tightness of the lower bounds.

C. Gap Sequence

Maintaining the augmented estimate sequence property in
(20) across iterations is equivalent to ensuring that the gap be-
tween the weighted function values and the augmented estimate
function optimal value, defined as

Γk � AkF (xk ) − ψ′∗
k , k ≥ 0,

is non-positive. Given that initially Γ0 = A0F (x0) − ψ′∗
0 = 0, a

sufficient condition for this guarantee is that Γk is monotonically
decreasing, that is

Γk+1 ≤ Γk , k ≥ 0. (21)

Since the initial estimate function is a parabola and the lower
bounds are generalized parabolae, we can write the estimate
function at any iteration k, along with its augmented variant, as
the following parabolae:

ψk (x) = ψ∗
k +

γk
2
‖x − vk‖2

2 , (22)

ψ′
k (x) = ψ′∗

k +
γk
2
‖x − vk‖2

2 , (23)
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x ∈ Rn . The gap between AkF (xk ) and ψ′∗
k can be expressed

as

Γk
(19)
= Ak (F (xk ) − F (x∗)) +AkWk (x∗) − ψ∗

k

(7)
= Ak (F (xk )−F (x∗)) + ψk (x∗) − ψ∗

k −
γ0

2
‖x∗ − x0‖2

2

(22)
= Ak (F (xk )−F (x∗))+

γk
2
‖vk−x∗‖2

2−
γ0

2
‖x∗−x0‖2

2

for all k ≥ 0. We define the gap sequence {Δk}k≥0 as

Δk � Ak (F (xk ) − F (x∗)) +
γk
2
‖vk − x∗‖2

2 , k ≥ 0.

With the quantity γ0
2 ‖x∗ − x0‖2

2 being constant across itera-
tions, the sufficient condition (21) can be rewritten as

Δk+1 ≤ Δk , k ≥ 0. (24)

The benefits of the augmented estimate sequence now become
evident. We have replaced the estimate sequence property with
a gap sequence that has a simple closed form. The gap sequence
is an example of a Lyapunov (non-increasing) function, widely
used in the convergence analysis of optimization schemes (e.g.,
[21]).

D. Formulating ACGM

We proceed with the design of our method, ACGM, based on
the pattern presented in Algorithm 1. The building blocks are as
follows:

1) The Lyapunov property of the gap sequence in (24);
2) The composite parabolic upper bounds in (16);
3) The relaxed supporting generalized parabola lower

bounds from Lemma 1, namely

wk+1(x) = RL ′
k + 1 ,yk + 1 (x), x ∈ Rn , k ≥ 0. (25)

The upper bounds in (16) imply that line 7 of Algorithm 1 is
the proximal gradient step in (18). For the relaxed supporting
generalized parabola to be a valid global lower bound on F ,
Lemma 1 requires that, at every iteration k, the descent condition
for f in (14) holds. This is assured in the worst case when
Lk+1 ≥ Lf . The structure of the lower bounds implies that
the estimate functions and their augmented counterparts take
the form in (22) and (23), respectively. Substituting the lower
bound from (25) in the estimate sequence update in line 8 of
Algorithm 1 and differentiating with respect to x gives the
curvature and vertex update rules for all k ≥ 0 as

γk+1 = γk + ak+1μ, (26)

vk+1 =
1

γk+1

(
γkvk − ak+1(gL ′

k + 1
(yk+1) − μyk+1)

)
. (27)

Next, we devise update rules for ak+1 and yk+1 to ensure that
the Lyapunov property of the gap sequence in (24) is satisfied
at every iteration k ≥ 0 for any algorithmic state.

Theorem 1: If at iteration k ≥ 0, the descent condition for f
in (14) holds, then

Δk+1 + Ak+1 + Bk+1 ≤ Δk ,

where subexpressions Ak+1 , Bk+1 , sk+1 , and Yk+1 are, respec-
tively, defined as

Ak+1 � 1
2

(
Ak+1

L′
k+1

− a2
k+1

γk+1

)
‖gL ′

k + 1
(yk+1)‖2

2 ,

Bk+1 � 1
γk+1

〈
gL ′

k + 1
(yk+1) − μ

2Yk+1
sk+1 , sk+1

〉
,

sk+1 � Akγk+1xk + ak+1γkvk − Yk+1yk+1 ,

Yk+1 � Akγk+1 + ak+1γk .

Proof: See Appendix D. �
Theorem 1 implies that (24) holds if, regardless of the algo-

rithmic state, Ak+1 ≥ 0 and Bk+1 ≥ 0. The former inequality
translates to

Ak+1γk+1 ≥ L′
k+1a

2
k+1 = (Lk+1 + μΨ)a2

k+1 . (28)

The vector terms in Bk+1 may form an obtuse angle so we
imposeBk+1 = 0 by setting sk+1 = 0. This gives an expression
for Fy in Algorithm 1 in the form of

yk+1 = Fy (xk, ψk , Ak , ak+1)

=
1

Akγk+1 + ak+1γk
(Akγk+1xk + ak+1γkvk ) , (29)

where γk+1 is obtained from (26).
We choose the most aggressive accumulated weight update by

enforcing equality in (28) and by setting γ0 = 1, which ensures
that γk+1 is as large as possible. Update (28) becomes

(Lk+1 + μΨ)a2
k+1 = Ak+1γk+1

(26)
= (Ak + ak+1)(γk + μak+1).

(30)
Given that ak+1 , Lk+1 > 0 and Ak ≥ 0, we can write Fa in
closed form as

ak+1 = Fa(ψk ,Ak , Lk+1) =
1

2(Lk+1 − μf )(
γk +Akμ+

√
(γk +Akμ)2 + 4(Lk+1 − μf )Akγk

)
.

(31)

By using the definition of the composite gradient in (9), the
update rule for the vertices in (27) becomes

vk+1 =
1

γk+1

(
γkvk − ak+1(L′

k+1(yk+1 − xk+1) − μyk+1)
)

=
1

γk+1
(γkvk + ak+1(Lk+1 + μΨ)xk+1

− ak+1(Lk+1 − μf )yk+1). (32)

Finally, we select the same Armijo-type [22] line-search strat-
egy SA as AMGS [15], with parameters ru > 1 and 0 < rd ≤ 1
as the increase and decrease rates, respectively, of the Lipschitz
constant estimate.

In summary, we have established the values of the initial pa-
rameters (A0 = 0, γ0 = 1, and v0 = x0), the upper bounds in
(16) which give the iterate update in (18), the relaxed support-
ing generalized parabola lower bounds in (25) that yield the
curvature update in (26) and the vertex update in (32), the line-
search strategy SA , as well as the expressions of functions Fa

in (31) and Fy in (29). Based on Algorithm 1, we can now write
down ACGM as listed in Algorithm 2. Temporary estimates of
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Algorithm 2: ACGM in Estimate Sequence Form
ACGM(x0 , L0 , μf , μΨ ,K).

1: v0 = x0 , μ = μf + μΨ , A0 = 0, γ0 = 1
2: for k = 0, . . . ,K − 1 do
3: L̂k+1 := rdLk
4: loop
5: âk+1 := 1

2(L̂k + 1 −μf )(
γk +Akμ+

√
(γk +Akμ)2 + 4(L̂k+1 − μf)Akγk

)

6: Âk+1 := Ak + âk+1
7: γ̂k+1 := γk + âk+1μ
8: ŷk+1 := 1

Ak γ̂k + 1 + âk + 1 γk

(Ak γ̂k+1xk + âk+1γkvk )
9: x̂k+1 := prox 1

L̂ k + 1
Ψ

(
ŷk+1 − 1

L̂k + 1
∇f(ŷk+1)

)
10: if f(x̂k+1) ≤ Qf,L̂k + 1 ,ŷk + 1

(x̂k+1) then
11: Break from loop
12: else
13: L̂k+1 := ru L̂k+1
14: end if
15: end loop
16: Lk+1 := L̂k+1 , xk+1 := x̂k+1

17: Ak+1 := Âk+1 , γk+1 := γ̂k+1

18: vk+1 := 1
γ̂k + 1

(γkvk + âk+1(L̂k+1 + μΨ)x̂k+1

−âk+1(L̂k+1 − μf )ŷk+1)
19: end for
20: return xK

algorithm parameters are marked with (̂.) and the updates in
which they appear use the := operator.

E. Convergence Analysis

The convergence of ACGM is governed by (3), with the guar-
antee given by Ak . The growth rate of Ak is affected by the
outcome of the line-search procedure. We formulate a simple
lower bound for Ak that accounts for the worst case search
behavior. To simplify notation, we introduce the local inverse
condition number

qk+1 � μ

L′
k+1

=
μ

Lk+1 + μΨ
, k ≥ 0.

If Lk+1 ≥ Lf , then the descent condition for f in (14) holds
regardless of the algorithmic state. Therefore, the backtracking
search will guarantee that

Lk+1 ≤ Lu � max{ruLf , rdL0}, k ≥ 0. (33)

Let the worst case local inverse condition number be defined as

qu � μ

Lu + μΨ
≤ qk+1 , k ≥ 0.

Theorem 2: The convergence guarantee Ak for ACGM is
lower bounded in the non-strongly convex case (μ = 0) by

Ak ≥ (k + 1)2

4Lu
, k ≥ 1, (34)

and in the strongly convex case (μ > 0) by

Ak ≥ 1
Lu − μf

(1 −√
qu )−(k−1) , k ≥ 1. (35)

Proof: See Appendix E. �

F. ACGM in Extrapolated Form

An interesting property of FGM is that for all k ≥ 0, the point
yk+2 where the gradient is queried during iteration k + 1 can
be expressed in terms of the previous two iterates xk+1 and xk

by extrapolation, namely

yk+2 = xk+1 + βk+1(xk+1 − xk ), k ≥ 0,

where βk+1 is an auxiliary point extrapolation factor. To bring
ACGM to a form in which it can be easily compared with
FGM, as well as with FISTA and FISTA-CP, we demonstrate
that ACGM (Algorithm 2) also exhibits an auxiliary point ex-
trapolation property. The difference is that βk+1 can only be
computed during iteration k + 1 due to uncertainties in the out-
come of line-search. First, we show the following property of
ACGM, which carries over from FGM.

Lemma 2: The estimate function vertices can be obtained
from successive iterates through extrapolation as

vk+1 = xk +
Ak+1

ak+1
(xk+1 − xk ), k ≥ 0.

Proof: See Appendix F. �
By combining Lemma 2 with (29) and rearranging terms,

we obtain the auxiliary point extrapolation expression for
ACGM as

yk+1 = xk + βk (xk − xk−1), (36)

where the extrapolation factor βk is given by

βk =
ak+1γk

(
Ak

ak
− 1

)
Akγk+1 + ak+1γk

, k ≥ 1. (37)

We denote the vertex extrapolation factor in Lemma 2 as

tk �
{

Ak

ak
, k ≥ 1,

0, k = 0.
(38)

The accumulated weights and the curvature ratios γk/γk+1
can be written in terms of tk for all k ≥ 0 as

Ak+1
(30)
=

A2
k+1γk+1

(Lk+1 + μΨ)a2
k+1

(38)
=

γk+1t
2
k+1

Lk+1 + μΨ
, (39)

A0 = 0
(38)
=

γ0t
2
0

L0 + μΨ
, (40)

γk
γk+1

(30)
= 1 − Ak+1ak+1μ

(Lk+1 + μΨ)a2
k+1

(38)
= 1 − qk+1tk+1 . (41)

Expressions (38), (39), (40), and (41) facilitate the derivation of
a recursion rule for tk that does not depend on either ak or Ak

for all k ≥ 0 and μ ≥ 0 as follows:

(Lk+1 + μΨ)Ak+1 − (Lk+1 + μΨ)ak+1

−Lk+1 + μΨ

Lk + μΨ
(Lk + μΨ)Ak = 0

⇔ γk+1t
2
k+1 − γk+1tk+1 − Lk+1 + μΨ

Lk + μΨ
γk t

2
k = 0

⇔ t2k+1 + tk+1(qk t2k − 1) − Lk+1 + μΨ

Lk + μΨ
t2k = 0. (42)
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Algorithm 3: ACGM in Extrapolated Form
ACGM(x0 , L0 , μf , μΨ ,K).

1: x−1 = x0 , μ = μf + μΨ , t0 = 0, q0 = μ
L0 +μΨ

2: for k = 0, . . . ,K − 1 do
3: L̂k+1 := rdLk
4: loop
5: q̂k+1 := μ

L̂k + 1 +μΨ

6: t̂k+1 := 1
2

(
1 − qk t

2
k+√

(1 − qk t2k )2 + 4 L̂k + 1 +μΨ
Lk +μΨ

t2k

)

7: ŷk+1 := xk + tk −1
t̂k + 1

1−q̂k + 1 t̂k + 1
1−q̂k + 1

(xk − xk−1)

8: x̂k+1 := prox 1
L̂ k + 1

Ψ

(
ŷk+1 − 1

L̂k + 1
∇f(ŷk+1)

)
9: if f(x̂k+1) ≤ Qf,L̂k + 1 ,ŷk + 1

(x̂k+1) then
10: Break from loop
11: else
12: L̂k+1 := ru L̂k+1
13: end if
14: end loop
15: xk+1 := x̂k+1 , Lk+1 := L̂k+1
16: qk+1 := q̂k+1 , tk+1 := t̂k+1
17: end for
18: return xK

Lastly, we write down the auxiliary point extrapolation factor
βk in (37) as

βk
(38)
=

tk − 1
tk+1

Ak+1γk
Akγk+1 + ak+1γk

(26)
=

tk − 1
tk+1

γk
γk + 1

1 − μa2
k + 1

Ak + 1 γk + 1

(41)
=

tk − 1
tk+1

1 − qk+1tk+1

1 − qk+1
, k ≥ 1. (43)

Since x0 = v0 , from (29) we always have that y1 = x0 .
Therefore, to be able to use (36) during the first iteration k = 0,
we have to define x−1 � x0 . Parameter β0 can take any real
value in (36). For simplicity, we choose to compute β0 using
(43) with k = 0.

Now, from (42) and (43), we can formulate ACGM based
on extrapolation, as presented in Algorithm 3. Note that
Algorithms 2 and 3 differ only in form. They are theoretically
guaranteed to produce identical iterates.

IV. WALL-CLOCK TIME UNITS

When measuring the convergence rate, the prevailing index-
ing strategies for objective values found in the literature are
based on either iterations (e.g., [8], [15]–[17]), running time
in a particular computing environment (e.g., [8], [17]), or the
number of calls to a low-level routine that dominates all oth-
ers in complexity (e.g., [15], [23]). The first approach cannot
cope with the diversity of methods studied. For example, AMGS
makes two gradient steps per iteration whereas FISTA makes
only one. The latter two approaches do not generalize to the
entire problem class. Running time, in particular, is highly sen-
sitive to system architecture and implementation details. For
instance, inadequate cache utilization can increase running time
by at least an order of magnitude [24].

Optimization algorithms must also take into account the
constraints determined by computer hardware technology,

especially the limitation on microprocessor frequency imposed
by power consumption and generated heat [24]. This restriction,
along with the increase in magnitude of large-scale problems,
has rendered serial machines unsuitable for the computation of
large-scale oracle functions. Therefore, large-scale optimization
algorithms need to be executed on parallel systems. To account
for parallelism, we extend the oracle model by introducing the
following abstraction. We assume that each oracle function call
is processed by a dedicated parallel processing unit (PPU). A
PPU may be itself a collection processors. While we do not set
a limit on the number of processors a single PPU may have,3 we
do assume that all PPUs are identical. For instance, a PPU may
be a single central processing unit (CPU) core or a collection
of graphics processing unit (GPU) cores. Since the exact im-
plementation of the oracle functions need not be known to the
optimization algorithm, the manner in which processors within
a PPU are utilized need not be known as well. However, on a
higher level of abstraction, we are able to explicitly execute an
unlimited number of oracle functions simultaneously, as long as
there are no race conditions. Throughout this work, we consider
only this shared memory parallel model.

To account for the broadness of the problem class, wherein
oracle functions may or may not be separable4 and their relative
cost may vary, we impose that the complexity of computing f(x)
is comparable to that of ∇f(x) [25]. We denote the amount of
wall-clock time required to evaluate f(x) or ∇f(x) by 1 wall-
clock time unit (WTU). In many applications, the two calls
share subexpressions. However, for a given value of x, f(x)
and ∇f(x) are computed simultaneously on separate PPUs,
which merely reduces the cost of a WTU without violating the
oracle model. Because we are dealing with large-scale problems
and Ψ is assumed to be simple, we attribute a cost of 0 WTU to
Ψ(x) and proxτΨ(x) calls as well as to individual scalar-vector
multiplications and vector additions [4].

In the following, we analyze the resource usage and runtime
behavior of FGM, AMGS, FISTA, FISTA-CP, and ACGM under
the above assumptions. FGM and FISTA-CP compute at every
iteration k ≥ 0 the gradient at the auxiliary point (∇f(yk+1))
but lack an explicit line-search scheme. The per-iteration cost
of these methods is therefore always 1 WTU. For methods that
employ line-search, parallelization involves the technique of
speculative execution [24] whereby the validation phase of the
search takes place in parallel with the advancement phase of the
next iteration. When a backtrack occurs, function and gradient
values of points that change have to be recomputed, stalling the
entire multi-threaded system accordingly. It follows that addi-
tional backtracks have the same cost. If the search parameters
are tuned properly, most iterations do not have backtracks.

AMGS requires at iteration k calls to both ∇f(yk+1) and
∇f(xk+1). Iterate xk+1 can only be computed after ∇f(yk+1)
completes and the next auxiliary point yk+2 requires
∇f(xk+1). Hence, an iteration without backtracks entails
2 WTU. A backtrack at iteration k involves the recalculation of
∇f(yk+1), which means that each backtrack also costs 2 WTU.

FISTA advances using one ∇f(yk+1) call. The values of
f(yk+1) and f(xk+1) are only needed to validate the Lips-
chitz estimate. The f(yk+1) call can be performed in parallel

3In practice, the limit on the number of execution threads is imposed by the
communication and synchronization overhead, which varies widely between
implementations.

4For instance, a single matrix-vector multiplication is separable (with respect
to individual scalar operations) whereas a chain of such multiplications is not.
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TABLE II
PER-ITERATION COST IN WTU OF LINE-SEARCH METHODS AMGS,

FISTA, AND ACGM

with ∇f(yk+1) but the calculation of xk+1 utilizes ∇f(yk+1).
The backtracking strategy of FISTA does not require the re-
calculation of yk+1 and its oracle values. However, the need
for a backtrack can only be asserted after the completion of
f(xk+1). Therefore, an iteration without backtracks of FISTA
entails 1 WTU, with each backtrack adding 1 WTU to the cost.

The ability of ACGM to decrease the Lipschitz estimate ne-
cessitates the recalculation of yk+1 , in addition to the delay in
the backtrack condition assessment. As a result, ACGM has an
iteration base cost of 1 WTU and a 2 WTU backtrack cost. Note
that the Algorithm 2 and Algorithm 3 forms of ACGM are iden-
tical with respect to WTU usage. The iteration costs of AMGS,
FISTA, and ACGM are summarized in Table II.

Interestingly, the above algorithms need at most three con-
current high-level computation threads (PPUs) to operate. The
assignment of different computations to different PPUs at every
time unit, along with the iteration that computation are detailed
in Table III for an iteration k ≥ 1 without backtracks and in
Table IV for an iteration where a single backtrack occurs. The
behavior of subsequent backtracks follows closely the pattern
shown in Table IV.

V. SIMULATION RESULTS

We test ACGM against the state-of-the-art methods on a typ-
ical non-strongly convex inverse problem in Subsection V-A
whereas in Subsection V-B we focus on a strongly convex
machine learning problem. Both applications feature l1-norm
regularization [26]. They have been chosen due to their pop-
ularity and simplicity. While effective approaches that exploit
additional problem structure, such as sparsity of optimal points,
have been proposed in the literature (e.g. [10]–[13]), we con-
sider the applications studied in this section as representative
of a broader class of problems to which the above specialized
methodologies may not apply.

A. l1-regularized Image Deblurring

To better compare the capabilities of ACGM (Algorithm 3) to
those of FISTA, we choose the very problem FISTA was intro-
duced to solve, namely the l1-regularized deblurring of images.5

For ease and accuracy of benchmarking, we have adopted the
experimental setup from Section 5.1 in [7]. Here, the composite
objective function is given by

f(x) = ‖Ax − b‖2
2 , Ψ(x) = λ‖x‖1 ,

where A = RW . The linear operator R is a Gaussian blur with
standard deviation 4.0 and a 9 × 9 pixel kernel, applied using
reflexive boundary conditions [28]. The linear operator W is the
inverse three-stage Haar wavelet transform. The digital image
x ∈ Rn1 ×n2 has dimensionsn1 = n2 = 256. The blurred image
b is obtained by applying R to the cameraman test image [7] with

5A particular case of ACGM in estimate sequence form, designed only for
non-strongly convex objectives, was tested on the same problem in [27].

pixel values scaled to the [0, 1] range, followed by the addition
of Gaussian noise (zero-mean, standard deviation 10−3). The
constant Lf can be computed as the maximum eigenvalue of a
symmetric Toeplitz-plus-Hankel matrix (more details in [28]),
which yields a value of Lf = 2.0. The problem is non-strongly
convex with μ = μf = μΨ = 0. The regularization parameter λ
is set to 2 · 10−5 to account for the noise level of b.

We have noticed that several monographs in the field (e.g.
[8], [16]) do not include AMGS in their benchmarks. For com-
pleteness, we compare Algorithm 3 against both FISTA with
backtracking line-search (FISTA-BT) and AMGS. The start-
ing point x0 was set to W−1b for all algorithms. AMGS and
FISTA were run using rAMGS

u = rFISTA
u = 2.0 and rAMGS

d =
0.9 as these values were suggested in [23] to “provide good
performance in many applications”. Assuming that most of
time the Lipschitz constant estimates hover around a fixed
value, we have for AMGS that a backtrack occurs every
−(log rAMGS

u )/(log rAMGS
d ) iterations. The cost ratio between

a backtrack and an iteration without backtracks for ACGM
is double that of AMGS. Therefore, to ensure that the line-
search procedures of both methods have comparable com-
putational overheads, we have chosen rACGM

u = rAMGS
u and

rACGM
d =

√
rAMGS
d .

To showcase the importance of employing an algorithm with
an efficient and robust line-search procedure, we have con-
sidered two scenarios: a normally underestimated initial guess
L0 = 0.3Lf (Fig. 1) and a greatly overestimated L0 = 10Lf .
The convergence rate is measured as the difference between the
objective function values and an optimal value estimate F (x̂∗),
where x̂∗ is the iterate obtained after running fixed step size
FISTA with the correct Lipschitz constant parameter for 10000
iterations.

When indexing in iterations (Figs. 1(a) and 1(d)), ACGM
converges roughly as fast as AMGS. ACGM takes the lead af-
ter 500 iterations, owing mostly to the superiority of ACGM’s
descent condition over AMGS’s stringent “damped relaxation
condition” [15]. When indexed in WTU, ACGM clearly sur-
passes AMGS from the very beginning (Figs. 1(b) and 1(e)),
because of ACGM’s low per-iteration complexity.

FISTA-BT lags behind in the overestimated case, regardless
of the convergence measure (Figs. 1(d) and 1(e)), and it is also
slightly slower in the underestimated case (Figs. 1(a) and 1(b)).
The disadvantage of FISTA-BT lies in the inability of its line-
search procedure to decrease the Lipschitz constant estimate
while the algorithm is running. Consequently, in both cases,
FISTA-BT produces on average a higher Lipschitz estimate than
ACGM. This is clearly evidenced by Figs. 1(c) and 1(f).

B. Logistic Regression With Elastic Net

As a strongly convex application, we choose a randomly gen-
erated instance of the logistic regression classification task [29],
regularized with an elastic net [30]. The objective function com-
ponents are given by

f(x) = −〈y,Ax〉 +
m∑
i=1

log
(
1 + e〈a

T
i ,x〉

)
,

Ψ(x) = λ1‖x‖1 +
λ2

2
‖x‖2

2 ,

where the matrix A ∈ Rm×n has rows aTi , i ∈ {1, . . . ,m},
y ∈ Rm is the vector of classification labels and the elastic net
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TABLE III
RESOURCE ALLOCATION AND RUNTIME BEHAVIOR OF PARALLEL BLACK-BOX FGM, FISTA-CP, AMGS, FISTA, AND ACGM

WHEN NO BACKTRACKS OCCUR (ITERATION k ≥ 1 STARTS AT TIME T)

TABLE IV
RESOURCE ALLOCATION AND RUNTIME BEHAVIOR OF PARALLEL BLACK-BOX AMGS, FISTA, AND ACGM WHEN A

SINGLE BACKTRACK OCCURS (ITERATION k ≥ 1 STARTS AT TIME T)

regularizer Ψ has parameters λ1 and λ2 . The problem size is
m = n = 10000. The matrix A is sparse and has 10% of its
elements non-zero, each sampled as independent and identi-
cally distributed (i.i.d.) from the standard Gaussian distribution
N (0, 1). The labels yi are randomly generated with probability

P (Y i = 1) =
1

1 + e〈aT
i ,x〉 , i ∈ {1, . . . ,m}.

The gradient of function f has a global Lipschitz constant
Lσ = 1

4σmax(A)2 , where σmax(A) is the largest singular value
of A. The computation of σmax(A) is generally intractable for
large-scale problems and optimization algorithms need instead
to rely on an estimate of this value. The smooth part f is not
strongly convex (μf = 0). The elastic net parameters areλ1 = 1
and λ2 = 10−3Lσ . Hence μ = μΨ = λ2 . Elastic net regulariza-
tion is specified by the user [30] and we assume that optimization
algorithms can access μΨ .

We benchmark ACGM against methods that have conver-
gence guarantees. These methods are either equipped with a

line-search procedure, such as FISTA and AMGS, or rely on Lf
being known in advance, namely FISTA-CP and MOS. We do
not include scAPG in our benchmark because μf = 0. We also
do not consider methods that owe their performance on spe-
cific applications to heuristic improvements that either signifi-
cantly degrade the provable convergence rate, such as in AA (see
Appendix A for proof), or invalidate it altogether, like adaptive
restart in FISTA [31] or in AA [18].

The starting point x0 , the same for all algorithms tested,
has entries randomly sampled as i.i.d. from N (0, 1). For
the same reasons as outlined in Subsection V-A, we have
chosen rACGM

u = rAMGS
u = rFISTA

u = 2.0, rAMGS
d = 0.9, and

rACGM
d =

√
rAMGS
d .

We have computed the optimal point estimate x̂∗ as the it-
erate with the smallest objective value obtained after running
AMGS for 500 iterations using Lf = Lσ with the other param-
eters as mentioned above. Methods equipped with a line-search
procedure incur a search overhead whereas the other methods
do not. For fair comparison, we have tested the collection of
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Fig. 1. Convergence results on the l1 -regularized image deblurring problem (μ = 0).

Fig. 2. Convergence results on logistic regression with elastic net (μ = 10−3Lσ ).
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TABLE V
FEATURES OF BLACK-BOX FIRST-ORDER METHODS

methods in the accurate Lf = Lσ case as well as the overesti-
mated Lf = 5Lσ case (Fig. 2).

When indexing in iterations, AMGS converges the fastest
(Figs. 2(a) and 2(d)). However, AMGS has the same asymp-
totic rate (in iterations) as ACGM, despite AMGS performing
around twice the number of proximal gradient steps per itera-
tion. While proximal gradient steps (incurring 1 WTU each) in
AMGS improve the Lipschitz constant estimate (Fig. 2(c)), they
do not appear to be used efficiently in advancing the algorithm.
Therefore, AMGS is inferior to ACGM and FISTA-CP in terms
of WTU usage (Figs. 2(b) and 2(e)). Note that FISTA-CP and
MOS display nearly identical convergence behaviors (Figs. 2(a),
2(b), 2(d), and 2(e)), as theoretically argued in Appendix A.

This particular application emphasizes the importance of tak-
ing into account the local curvature of the function. Whereas
ACGM and FISTA-CP have identical a priori worst-case rates,
FISTA-CP (and consequently MOS) lags behind considerably,
even when an accurate value of Lf is supplied (Figs. 2(a) and
2(b)). The reason is that the Lipschitz estimates of ACGM are
several times smaller than the global value Lf (Fig. 2(c)). The
difference between local and global curvature is so great that
FISTA-CP’s ability to exploit strong convexity does not give it
a sizable performance advantage over FISTA on this problem.6

The benefit of ACGM’s line-search is predictably more evident
in the inaccurate case (Fig. 2(f)). The estimates produced by the
AMGS’s damped relaxation condition are considerably higher
than those of ACGM, further contributing to ACGM’s superior
convergence behavior in WTU (Figs. 2(b) and 2(e)).

VI. DISCUSSION AND CONCLUSIONS

The proposed method, ACGM, when formulated using ex-
trapolation, encompasses several existing optimization schemes.
Specifically, Algorithm 3 without the line-search procedure,
i.e., with Lk = Lf for all k ≥ 0, produces the same iterates as
FISTA-CP with the theoretically optimal step size τFISTA−CP =
1
Lf

. In the non-strongly convex case, ACGM without line-search
reduces to constant step size FISTA. Also for μ = 0, ACGM
with line-search constitutes a simplified and more intuitive alter-
native to a recently introduced (without derivation) line-search
extension of FISTA [32].

However, ACGM is more than an umbrella method. ACGM’s
generality and unique collection of features is a strength in itself.
For instance, FISTA suffers from two drawbacks: the parame-
ter tFISTA

k update is oblivious to the change in local curvature
and the Lipschitz constant estimates cannot decrease. Hence,

6We forward the reader to [8] for a more detailed comparison between FISTA
and FISTA-CP.

if the initial Lipschitz estimate is erroneously large, FISTA
will slow down considerably (exemplified in Subsection V-A).
We formally express the advantages of ACGM’s line-search
over that of FISTA in the following proposition.

Proposition 2: In the non-strongly convex case (μ = 0),
under identical local curvature conditions, when rACGM

u =
rFISTA
u , ACGM has superior theoretical convergence guaran-

tees to FISTA, namely

AACGM
k ≥ AFISTA

k , k ≥ 0.

Proof: See Appendix G. �
The ability to dynamically and frequently adjust to the local

Lipschitz constant gives ACGM an advantage over FISTA-CP
as well, even when an accurate estimate of the Lipschitz con-
stant is available beforehand (illustrated in Subsection V-B).
The advantage over MOS is even greater since MOS is slightly
slower than FISTA-CP (see Appendix A). The scAPG method
is similar to ACGM, but only when μf > 0 and x0 is feasible.
We leave the generalization of ACGM to encompass scAPG,
and thus expand its range of applications, as a topic for future
research.

ACGM is also theoretically guaranteed to outperform AMGS,
as argued in Appendix A. The per-iteration complexity of
ACGM, both in the non-strongly and strongly convex cases
(μ ≥ 0), lies well below that of AMGS. Considering that back-
tracks rarely occur, it approaches that of FISTA (see Table II)
and the absolute minimum of 1 WTU per iteration.

Thus, this is the first time, as far as we are aware, that a
method has been shown to be superior, from theoretical as well
as simulation results (Section V), to AMGS, FISTA, and FISTA-
CP. The aforementioned features of ACGM are summarized
and compared to those of the competing black-box first-order
methods in Table V. As can be discerned from Table V, ACGM is
the only method of its class that is able to combine the strengths
of AMGS (generality) and FGM (speed). The superiority of
ACGM stems from this unique combination.

Furthermore, due to its robustness, ACGM is not only appli-
cable to the entire composite problem class, where the Lipschitz
constant may not be known, but is also able to converge on prob-
lems where the Lipschitz property of the gradient can be proven
to hold only locally.

Alongside of a new algorithm, in this work we have provided
a means of designing algorithms. We have demonstrated that the
estimate sequence concept can be extended to problems outside
its original scope. The augmented estimate sequence actually
links the concepts of estimate sequence and Lyapunov function,
and further argues that both are effective tools not only for the
analysis but also for the design of fast algorithms. Whether
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augmentation leads to efficient algorithms applicable to other
problem classes is a promising topic for future research.

APPENDIX A
THE ASYMPTOTIC CONVERGENCE GUARANTEES OF

ACCELERATED BLACK-BOX FIRST-ORDER METHODS

To be able to compare the provable convergence rates of the
state-of-the-art black-box methods introduced in Section I, we
consider the largest problem class to which they are applicable,
namely the class of composite problems with Lf known in
advance. For ease of analysis, we study ACGM, AMGS, and
scAPG without line-search. This setup does not assume any
particular parallel implementation. Therefore, the results in this
section are of fundamental theoretical importance.

The asymptotic rate of ACGM matches those of FISTA-CP,
scAPG (for strongly convex f and non-strongly convex Ψ), and
FGM (when Ψ = 0). Hence, we limit our analysis to ACGM,
MOS, AMGS, and AA.

In the non-strongly convex case, the convergence guarantees
are, respectively, given for all k ≥ 1 by

AACGM
k = AACGM

i ≥ (k + 1)2

4Lf
=

(i+ 1)2

4Lf
,

AMOS
k = AMOS

i ≥ k2

4Lf
=

i2

4Lf
,

AAMGS
k = AAMGS

i
2

≥ k2

2Lf
=

i2

8Lf
,

AAA
k = AAA

i
2

≥ k2

4Lf
=

i2

16Lf
,

where i gives the number of WTU required by the first k itera-
tions. It trivially follows that

AACGM
i

i2
� AMOS

i

i2
>
AAMGS
i

i2
>
AAA
i

i2
, i ≥ 2. (44)

In the strongly convex case, let q be the inverse condition
number of the objective function, q � μ

Lf +μΨ
. We assume that

q < 1 since for q = 1 the optimization problem can be solved
exactly, using only one proximal gradient step. When employing
AMGS, Nesterov suggests in [15] either to transfer all strong
convexity from f to Ψ, or to restart the algorithm at regular
intervals.7 Both enhancements have the same effect on the con-
vergence guarantee, which can be expressed as

AAMGS
k = AAMGS

i
2

≥ CAMGS (
BAMGS)i

,

where BAMGS is a base signifying the asymptotic convergence
rate, given by

BAMGS �
(

1 +
√

μ

2(Lf − μf )

)2

=
(

1 +
√

q

2(1 − q)

)2

,

and CAMGS is a proportionality constant.

7These suggestions are made in the context of smooth constrained optimiza-
tion but also apply to composite problems.

Fig. 3. Asymptotic rates of ACGM, MOS, AMGS, and AA.

For ACGM, MOS, and AA, we have

AACGM
k = AACGM

i ≥ CACGM (
BACGM)i

,

AMOS
k = AMOS

i ≥ CMOS (
BMOS)i

,

AAA
k = AAA

i
2

≥ CAA (
BAA)i

,

where

BACGM � 1
1 −√

q
,

BMOS �
(

1 +
1
2

√
q

1 − q

)2

,

BAA � 1 +
1
2

√
q

1 − q
.

Assumption 0 < q < 1 implies that

BACGM > BMOS > BAMGS > BAA . (45)

A quantitative comparison of the rates can be found in Fig. 3.
The inverse rates are compared for every possible value of q in
Fig. 3(a) whereas the rates are compared directly in Fig. 3(b) for
the range of q found in the vast majority of practical applications.

It can be clearly discerned from (44), (45), and Fig. 3 that
ACGM is asymptotically more efficient than MOS, AMGS, and
AA, in that order. AMGS is considerably slower than ACGM
due to its computationally expensive line-search procedure. By
removing line-search, MOS achieves a rate similar to ACGM
in the non-strongly convex case and a lower rate (yet compara-
ble when q � 1) for strongly convex objectives. This, however,
comes at the expense of reduced functionality. The heuristic
search of AA incurs an extra 1 WTU per iteration without prov-
ably advancing the algorithm, explaining why AA has the worst
guarantees of the methods studied.

APPENDIX B
PROOF OF PROPOSITION 1

By expandingQf ′,L+μΨ ,y(x) using the definition ofQ in (1)
and the strong convexity transfer in (12) we obtain

Qf ′,L+μΨ ,y(x) = f(y) +
μΨ

2
‖y − x0‖2

2

+ 〈∇f(y) + μΨ(y − x0),x − y〉 +
L+ μΨ

2
‖x − y‖2

2
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− μΨ

2
‖x − x0‖2

2 +
μΨ

2
‖x − x0‖2

2

= f(y) + 〈∇f(y),x − y〉 +
L

2
‖x − y‖2

2 +
μΨ

2
‖x − x0‖2

2 ,

(46)

for all x,y ∈ Rn and L > 0. Rewriting (46) based on (1) com-
pletes the proof.

APPENDIX C
PROOF OF LEMMA 1

From the strong convexity property of f ′, we have a support-
ing generalized parabola at yk+1 , given by

f ′(x) ≥ f ′(yk+1) + 〈∇f ′(yk+1),x − yk+1〉 +
μ

2
‖x − yk+1‖2

2 ,

(47)
for all x ∈ Rn and k ≥ 0. The first-order optimality condition
of (2) implies that there exists a subgradient ξ of function Ψ′ at
point xk+1 such that

gL ′
k + 1

(yk+1) = ∇f ′(yk+1) + ξ, k ≥ 0.

From the convexity of Ψ′, we have a supporting hyperplane at
xk+1 , which satisfies

Ψ′(x) ≥ Ψ′(xk+1) + 〈ξ,x − xk+1〉
= Ψ′(xk+1) + 〈gL ′

k + 1
(yk+1) −∇f ′(yk+1),x − xk+1〉,

(48)

for all x ∈ Rn and k ≥ 0. By adding together (47), (48), and
the descent condition for f ′ in (15), we obtain the desired result.

APPENDIX D
PROOF OF THEOREM 1

All the definitions and results within the scope of this proof
hold for all k≥0. Let the residual describing the tightness of the
lower bound wk+1 on the objective F at x∈Rn be denoted by

Rk+1(x) � F (x) − F (xk+1) − 1
2L′

k+1
‖gL ′

k + 1
(yk+1)‖2

2

− 〈gL ′
k + 1

(yk+1),x − yk+1〉 − μ

2
‖x − yk+1‖2

2 . (49)

We introduce the reduced composite gradient Gk+1 in the
form of

Gk+1 � gL ′
k + 1

(yk+1) − μyk+1 . (50)

The reduced composite gradient simplifies the non-constant
polynomial term in residual expression (49) as

〈gL ′
k + 1

(yk+1),x − yk+1〉 +
μ

2
‖x − yk+1‖2

2

= 〈Gk+1 ,x − yk+1〉 +
μ

2
‖x‖2

2 −
μ

2
‖yk+1‖2

2 . (51)

Lemma 1 ensures that Rk+1(x) ≥ 0 for all x ∈ Rn . There-
fore

AkRk+1(xk ) + ak+1Rk+1(x∗) ≥ 0. (52)

By expanding (52) using (49) and (51), we obtain that

Ak (F (xk ) − F (x∗)) −Ak+1(F (xk+1) − F (x∗)) ≥ Ck+1 ,

where the lower bound Ck+1 is defined as

Ck+1 � C(1)
k+1 + 〈Gk+1 , Akxk + ak+1x

∗ −Ak+1yk+1〉

+
Akμ

2
‖xk‖2

2 +
ak+1μ

2
‖x∗‖2

2 −
Ak+1μ

2
‖yk+1‖2

2 , (53)

with

C(1)
k+1 � Ak+1

2L′
k+1

‖gL ′
k + 1

(yk+1)‖2
2 .

Using the reduced composite gradient definition in (50), we
expand C(1)

k+1 as

C(1)
k+1 = Ak+1 +

a2
k+1

2γk+1
‖Gk+1 + μyk+1‖2

2

= Ak+1 + C(2)
k+1 +

a2
k+1μ

γk+1
〈Gk+1 ,yk+1〉 +

a2
k+1μ

2

2γk+1
‖yk+1‖2

2 ,

(54)

where

C(2)
k+1 �

a2
k+1

2γk+1
‖Gk+1‖2

2 . (55)

Applying (50) in vertex update (27) yields

ak+1Gk+1 = γkvk − γk+1vk+1 . (56)

Using (26) and (56) in C(2)
k+1 expression (55) we obtain that

C(2)
k+1 =

1
2γk+1

‖γkvk − γk+1vk+1‖2
2

=
γk+1

2
‖vk+1‖2

2 −
γk
2
‖vk‖2

2 +
μ

2γk+1
ak+1γk‖vk‖2

2

+
1

γk+1
〈Gk+1 , ak+1γkvk 〉 (57)

The coefficients of the yk+1 terms in Ck+1 are given by

Ak+1γk+1 − a2
k+1μ = Akγk+1 + ak+1γk = Yk+1 . (58)

Combining (54) and (57) in (53), rearranging terms, and ap-
plying (58) yields

Ck+1 = Ak+1 + Vk+1 +
1

γk+1
〈Gk+1 , sk+1〉 +

μ

2γk+1
Sk+1 ,

(59)
where Sk+1 and Vk+1 are, respectively, defined as

Sk+1 � Akγk+1‖xk‖2
2 + ak+1γk‖vk‖2

2 − Yk+1‖yk+1‖2
2 ,

Vk+1 � γk+1

2
‖vk+1‖2

2 −
γk
2
‖vk‖2

2 + 〈Gk+1 , ak+1x
∗〉

+
ak+1μ

2
‖x∗‖2

2 . (60)

Applying (26) and (56) in (60) yields

Vk+1 =
γk+1

2
‖vk+1 − x∗‖2

2 −
γk
2
‖vk − x∗‖2

2 . (61)

Putting together (53), (59), and (61) we obtain

Δk+1 + Ak+1 +
1

γk+1
〈Gk+1 , sk+1〉 +

μ

2γk+1
Sk+1 ≤ Δk .

(62)
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For brevity, we define ωk+1 as

ωk+1 � ak+1γk
Yk+1

.

Residuals sk+1 and Sk+1 can thus be written as

sk+1 = Yk+1((1 − ωk+1)xk + ωk+1vk − yk+1), (63)

Sk+1 = Yk+1
(
(1 − ωk+1)‖xk‖2

2 + ωk+1‖vk‖2
2 − ‖yk+1‖2

2
)
.

(64)

Residual Sk+1 can be expressed in terms of sk+1 using the
following identity:

(1 − ωk+1)‖xk‖2
2 + ωk+1‖vk‖2

2 =

((1 − ωk+1)xk + ωk+1vk )
2 + (1 − ωk+1)ωk+1‖xk − vk‖2

2 .
(65)

The proof of (65) is obtained simply by rearranging terms. Using
(63) and (65) in (64), we obtain that

Sk+1 = Yk+1
(
((1 − ωk+1)xk + ωk+1vk )2 − ‖yk+1‖2

2
)

+ S
(1)
k+1 =

〈
1

Yk+1
sk+1 + 2yk+1 , sk+1

〉
+ S

(1)
k+1 , (66)

where S(1)
k+1 is defined as

S
(1)
k+1 � Yk+1(1 − ωk+1)ωk+1‖xk − vk‖2

2

=
ak+1Akγkγk+1

Akγk+1 + ak+1γk
‖xk − vk‖2

2 .

The square term ‖xk − vk‖2
2 is always non-negative, hence

S
(1)
k+1 ≥ 0. (67)

Putting together (50), (66), and (67) yields

1
γk+1

〈Gk+1 , sk+1〉 +
μ

2γk+1
Sk+1

≥ 1
γk+1

〈
Gk+1 +

μ

2

(
1

Yk+1
sk+1 + 2yk+1

)
, sk+1

〉

=
1

γk+1

〈
gL ′

k + 1
(yk+1) +

μ

2Yk+1
sk+1 , sk+1

〉
. (68)

Combining (62) with (68) gives the desired result.

APPENDIX E
PROOF OF THEOREM 2

In the non-strongly convex case, we have

Ak+1 = Ak + ak+1

(28)
≥ Ak +

1 +
√

1 + 4Lk+1Ak

2Lk+1

(33)
≥ Ak +

1
2Lu

+

√
1

4L2
u

+
Ak

Lu
, k ≥ 0. (69)

We prove by induction that (34) holds for all k ≥ 1. First, for
k = 1, (34) is valid since

A1 =
1
L1

≥ (1 + 1)2

4Lu
.

Next, we assume that (34) is valid for k ≥ 1, and show that it
holds for k + 1. From (34) and (69), we have

Ak+1 ≥ (k + 1)2

4Lu
+

1
2Lu

+

√
1

4(Lu )2 +
(k + 1)2

4(Lu )2

=
1

4Lu

(
(k + 1)2 + 2 + 2

√
1 + (k + 1)2

)
≥ (k + 2)2

4Lu
.

In the strongly convex case, the curvature of the estimate
function can be expressed in absolute terms as

γk = γ0 +

(
k∑
i=1

ai

)
μ = γ0 + (Ak −A0)μ = 1 +Akμ, k ≥ 0,

which trivially implies that γk > Akμ. Hence, we have

a2
k+1

A2
k+1

(30)
=

γk+1

(Lk+1 + μΨ)Ak+1
>

μ

Lk+1 + μΨ
= qk+1 ≥ qu ,

for all k ≥ 0. This leads to

Ak+1

Ak
>

1
1 −√

qu
, k ≥ 1.

Using A1 = 1
L1 −μf ≥ 1

Lu −μf , the rate lower bound in (35) fol-
lows by induction.

APPENDIX F
PROOF OF LEMMA 2

By combining (29) with (32), we get

vk+1 =
γk
γk+1

(ak+1γk +Akγk+1)yk+1 −Akγk+1xk

ak+1γk

+
ak+1(Lk+1 + μΨ)

γk+1
xk+1 − ak+1(Lk+1 − μf )

γk+1
yk+1

(30)
=

ak+1γk +Akγk+1 −Ak+1γk+1 − a2
k+1μ

ak+1γk+1
yk+1

+
Ak+1

ak+1
xk+1 − Ak

ak+1
xk

(26)
= xk +

Ak+1

ak+1
(xk+1 − xk ), k ≥ 0.

APPENDIX G
PROOF OF PROPOSITION 2

With judicious use of parameters ru and rd , the average WTU
cost of an ACGM iteration can be adjusted to equal that of FISTA
(also evidenced in Subsection V-A). Consequently, it is adequate
to compare the convergence guarantees of the two algorithms
when indexed in iterations.

Combining (39) and (42), we obtain for all k ≥ 0 that

AACGM
k+1 =

(√
1

4LACGM
k+1

+

√
1

4LACGM
k+1

+AACGM
k

)2

.

Replacing (42) in ACGM with

tFISTA
k+1 =

1 +
√

1 + 4
(
tFISTA
k

)2

2
, k ≥ 0, (70)
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results in an algorithm that produces identical iterates to FISTA.
The convergence analysis of ACGM employing (70) instead of
(42) yields for all k ≥ 0 the following expression:

AFISTA
k+1 =

(√
1

4LFISTA
k+1

+

√
1

4LFISTA
k+1

+
LFISTA
k

LFISTA
k+1

AFISTA
k

)2

.

Both methods start with the same state, in which we have
AACGM

0 = AFISTA
0 = 0. The line-search procedure of ACGM

is guaranteed to produce Lipschitz constant estimates no greater
than those of FISTA for the same local curvature, i.e.,LACGM

k ≤
LFISTA
k , k ≥ 0. FISTA, by design, can only accommodate a Lip-

schitz constant estimate increase, namely LFISTA
k ≤ LFISTA

k+1 ,
k ≥ 0. Thus, for any variation in the local curvature of f , we
have

AACGM
k ≥ AFISTA

k , k ≥ 0.
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