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Correction of local deformations in free vibration analysis of ship deck 
structures by equivalent single layer elements 

Equivalent single layer (ESL) elements provide easy and computationally 
effective way to model stiffened plates in Finite Element Analysis of ship 
structures. Secondary stiffeners are incorporated into the plate or shell 
formulation in a way that it results in equally divided equivalent stiffness of the 
element. In the free vibration analysis, these elements do not take into account 
inertia induced local deformation of plating between the secondary stiffeners. 
Oscillating motion causes inertia induced body load that locally deforms the 
plate. This local deformation may have significant effect on the global modal 
frequencies of a deck structure. The effect is highest when local plate natural 
frequency is close to the frequency of the studied global mode of the deck. In 
ship structures such cases can appear e.g. in cabin decks with thin plates and in 
areas with large non-structural masses. This paper presents a method for 
correcting ESL modal frequencies by modifying generalized mass and stiffness 
of the modes. The modification is based on the kinetic and strain energies of the 
local deformations. Energy components are derived from local consideration of 
plate in cylindrical bending under enforced support vibration. Local deformation 
is assumed to be induced only by translational vibration of the ESL elements in 
their normal direction. The method is validated in case study of ship deck 
structure against shell mesh results, and good agreement is found. 
Keywords: free vibration; equivalent single layer; equivalent element; finite 
element method; stiffened panel; deck 

Nomenclature 
A Amplitude / Membrane stiffness 
B Membrane bending coupling stiffness 
D Bending stiffness 
DQ Shear Stiffness 



E Young’s modulus 
f Frequency in Hz 
G Shear Modulus 
h Height 
K Generalized stiffness 
L Length 
m mass of unit area 
M Generalized mass / Moment 
N Number of deck nodes / Normal force 
Q Shear force 
r Response 
s Local coordinate 
S Stiffener spacing 
t Time 
tp Plate thickness 
T Kinetic energy 
U Strain energy 
u,v,w Displacements in x, y, and z directions 



x,y,z Coordinates 

Greek Symbols 
α Effective area 
γ Shear strain 
δ Convergence limit 
ε Normal strain 
θ Slope 
κ Curvature 
υ Poisson’s ratio 
ξ Generalized coordinate 
ρ Mass density per volume 
Ψ Deflection mode shape in z-direction 
ω Frequency in rad-1 

Subscripts and superscripts 
0 Layer mid plane 
C Constant / Not directly function of local deformation 
d Dynamic 
D Deck plate 



ESL Equivalent Single Layer element result 
f Flange 
G Global 
i Iteration step number / index 
L Local 
m Mode number 
n Node number 
NS Non-structural 
p plate 
peak Peak value 
R Relative quantity 
s Static 
w web 

1. Introduction 
During the last decades the passenger ships’ size and complexity has increased, as so 

has the passengers’ expectations for comfort on board. Therefore, in addition to ship 
quasi-static response also the vibration performance needs to be evaluated, and 
advanced numerical methods are needed as the ship geometry is too complex for 
analytical models to handle. A complete vibration analysis of a passenger ship does not 



only include the calculation of global vibration modes, but also detailed examination of 
local structures. Global and local behaviours are often coupled and therefore a method 
is needed that can assess both at the same time. 3D-FEA is effective tool to handle this 
interaction, but suffers for computational cost especially and conceptual design stage 
where time is limited and design space defined multiple materials and structural 
topologies is to be explored. Therefore, there is a need for a method that combines the 
speed of analytical methods and flexibility of FEA.  

Free vibration of the structure is the foundation of all modal type vibration 
analyses, and thus has great practical value. Physics of harmonic vibrations has been 
well known since presented by Lord Rayleigh (1877), whose work was based on the 
assumption that total energy (potential + kinetic) of the system remains constant. Exact 
natural frequencies and mode shapes of free vibration were solved from differential 
equations of motions for beams and plates by direct and approximate methods (known 
as Rayleigh’s method). For more complex structures, these classical solution methods 

soon become cumbersome. Therefore, attention has been paid for iterative algorithms to 
efficiently solve discretized modal eigenvalue problem. The classical works in this 
respect are by Ritz (1909), Krylov (1931) and Lanczos (1950); the latest due to its 
performance has become popular in modal analysis of large structures by present day 
Finite Element Method.  

3D fine mesh finite element analysis (FEA) is regarded as the most reliable 
method to model structural behaviour; however it yields to computationally very 
expensive analyses and therefore is only utilized in small ships; see for example, Boote 
et al. (2013), Macchiavello and Tonelli (2015) and Lin et al. (2009). In larger vessels, 
this approach becomes computationally very expensive due to significant modelling 
efforts and computational time. It also becomes difficult to find global and local modes 



from the large FE-mesh and these modes are important to identify from the engineering 
perspective (vibration control). Therefore, the global FE-model is created using coarse 
mesh, where primary stiffeners i.e. girders and frames are modelled using off-set beam 
elements and secondary stiffeners are incorporated into the shell element formulations 
(Hughes, 1988) or lumped in to the neighbouring nodes (DNV-GL 2016). This 
approach gives the global modes, while the local modes, at smaller length-scale, are 
solved by smaller models representing the representative structural units; these smaller 
units can be solved effectively with analytical methods in certain cases. However, the 
equivalent element techniques consider only the extensional stiffness of the stiffened 
panel. Therefore, they neglect the effect of bending, length-scale interaction and are 
unable to evaluate the vibration performance of a local structure, where bending 
stiffness has significant effect to the total response. In order to remove this deficiency 
equivalent single layer theory can be used where the global and panel level vibrations 
are solved with FEA and local vibration of the rectangular plate between the stiffeners 
analytically.  

Avi, Lillemäe, et al. (2015) developed the Equivalent Single Layer (ESL) 
Mindlin-element for a stiffened panel which includes the membrane, membrane-
bending coupling, bending and out-of-plane shear stiffness based on the work of 
Romanoff and Varsta (2007).  They also presented the interaction modelling between 
the primary stiffeners by offset beams. Case studies showed that it is possible to capture 
static response with excellent accuracy and the free vibration results agreed very well 
with the 3D fine mesh model. However, in vibration modes where plate between the 
stiffeners participates in the fine mesh global mode, see Fig.1, larger differences in 
frequency were observed. This effect of inertia induced local plate deformations was 
included in analytical study of cabin decks by Laakso et al. (2013). They showed that 



adding the local deformations into model can have significant effect on the global deck 
frequencies for certain geometries. The problem with ESL arises from the fact that the 
homogenized stiffness properties are used, which means that only the averaged response 
of the panel is considered and the local behaviour between the discrete stiffeners is 
neglected. For static case this limitation can be corrected using simple superposition 
principle as was shown by (Avi, Lillemäe, et al. 2015), but in vibration the problem is 
more complex. Existing equivalent elements used for vibration analysis of sandwich 
panels: Kolsters and Wennhange (2009), Lok and Cheng (2000) and Lok and Cheng 
(2001) do not consider local deformation effects on vibration either. In order to correct 
this, Avi, Laakso, et al. (2015) proposed approach to correct natural frequencies of the 
equivalent element results by combining them with the local plate frequencies, which 
were separately calculated using sub-modelling technique. The combination was done 
using assumption that stiffeners with plate between them act as springs and masses in 
series. The method showed very good agreement with 3D fine mesh validation models. 
However, the study was limited to stiffened panels only, and is not easily extensible for 
deck structures including girders and other external structures. Laakso et al. (2017) 
applied analytically a local deformation correction for thin-walled beams, which is 
utilized by modifying modal generalized mass and stiffness based on the energy 
involved in the local deformations. This approach requires iteration of local response 
which introduces a slight additional computational cost, but adds rapidly accuracy for 
the coupled problems. The benefit of the method is that iterations happen mainly in 
analytical calculations and that the correction can be precomputed for simple shapes. 
This accelerates the design process.  



The aim of this paper is to develop a correction method for ESL equivalent 
element free vibration results, which follows the principles presented in Laakso et al. 
(2017) and which can be utilized in analysis of ship deck structure. 

 [Figure 1 near here] 

1.1. Equivalent Single Layer Element– Relation between Stress Resultants and 
Strains 
According to (Avi, Lillemäe, et al. 2015), a stiffened panel can be modelled with three-
layered laminate element. Plate layer has the thickness of the plate tp, web layer 
thickness is equal to the height of the stiffener web hw and the flange layer has the 
height equal to the stiffener flange hf.  
Displacement relations are given in (Avi, Lillemäe, et al. 2015) as follows: 

𝑢𝑖 = 𝑢0(𝑥, 𝑦) − 𝑧𝑖𝜃𝑥(𝑥, 𝑦), 𝑖 ∈ {𝑝, 𝑤, 𝑓}

𝑣𝑖 = 𝑣0(𝑥, 𝑦) − 𝑧𝑖𝜃𝑦(𝑥, 𝑦), 𝑖 ∈ {𝑝, 𝑤, 𝑓}

𝑤 = 𝑤(𝑥, 𝑦)

  (1) 

In Eq. (1) u, v, and w are the displacements in x, y and z-directions respectively, 
and θ the slope around x, and y axis as marked by sub-indexes. Sub-index 0 denotes the 
layer mid plane, and the layers are referenced through index i as: p is the plate layer, w 
is the web layer, and f is the flange layer. These variables are shown in Fig. 2. 

[Figure 2 near here] 
Strain vector {ε} is given in (Avi, Lillemäe, et al. 2015) in terms of mid-plane 

strain vectors {ε}0 and vector of curvature {κ} as follows:  

{

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

}

𝑖

= {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}

𝑖

+ 𝑧𝑖 {

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

} , 𝑖 ∈ {𝑝, 𝑤, 𝑓}  (2) 



Strains and curvatures of the Eq. (2) in terms of displacement are given in Eq. 
(3) as taken from (Avi, Lillemäe, et al. 2015): 

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} = {

𝜕𝑢0/𝜕𝑥
𝜕𝑢0/𝜕𝑥

𝜕𝑢0/𝜕𝑦 + 𝜕𝑣0/𝜕𝑥
}  & {

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

} = {

−𝜕2𝑤𝐺/𝜕𝑥2

−𝜕2𝑤𝐺/𝜕𝑦2

−2𝜕2𝑤𝐺/𝜕𝑥𝜕𝑦

} (3) 

In order to properly model the stiffness couplings and mass distribution between 
stiffened panel and T-girder, the reference plane of the laminate element should be 
offset to top of the deck plate where the 3D-product model reference plane is, see Fig. 3. 
The laminate element follows ESL theory presented by Reddy and Ochoa (1992), where 
the relationship between homogenized internal forces, strain and curvatures are 
presented as a single matrix form:  

{
𝑁
𝑀
𝑄

} = [

𝐴 𝐵 0
𝐵 𝐷 0
0 0 𝐷𝑄

] {

𝜀
𝜅
𝛾

}   (4) 

Normal force {N}, moment {M} and shear force {Q} vectors in Eq. (4) are 
related to strain {ε}, curvature {κ} and out of plane shear strain {γ} vectors by stiffness 

matrix that consists of membrane [A], membrane-bending [B],  bending [D], and out-of-
plane shear [DQ] stiffness matrices. The stiffness matrixes for stiffened panel are 
obtained from Eqs. (5), (6), (7) and (8) respectively: 

[𝐴] = ∫ [𝐸]𝑝
0

−𝑡𝑝
dz + ∫ [𝐸]𝑤

ℎ𝑤

0
dz + ∫ [𝐸]𝑓

ℎ𝑤+ℎ𝑓

ℎ𝑤
dz (5) 

[𝐵] = ∫ [𝐸]𝑝
0

−𝑡𝑝
𝑧dz + ∫ [𝐸]𝑤

ℎ𝑤

0
𝑧dz + ∫ [𝐸]𝑓

ℎ𝑤+ℎ𝑓

ℎ𝑤
𝑧dz (6) 

[𝐷] = ∫ [𝐸]𝑝
0

−𝑡𝑝
𝑧2dz + ∫ [𝐸]𝑤

ℎ𝑤

0
𝑧2dz + ∫ [𝐸]𝑓

ℎ𝑤+ℎ𝑓

ℎ𝑤
𝑧2dz, (7) 



In Eqs (5-7) the plate layer elasticity matrix [E]p is described as a 2D isotropic 
shell element. The web and flange layers are described as 2D orthotropic shell elements, 
where the components of the elasticity matrix [E]w and [E]f are found by applying the 
Rule of Mixtures. The out-of-plane shear stiffness matrix [DQ] contains the shear 
stiffness in stiffener direction DQx and transverse to stiffener direction DQy: 

[𝐷𝑄] = [
𝐷𝑄𝑥 0

0 𝐷𝑄𝑦
], 𝐷𝑄𝑥 = 𝑘𝑥𝑧(𝐺𝑝𝑡𝑝 + 𝐺𝑤ℎ𝑤 + 𝐺𝑓ℎ𝑓), 𝐷𝑄𝑦 = 𝑘𝑦𝑧(𝐺𝑝𝑡𝑝) (8) 

In Eq. (8), kxz and kyz are shear correction factors in xz-plane and yz-plane 
respectively. Gp is the shear modulus for the plate layer and Gw and Gf are the shear 
moduli for web and flange layers, respectively, which are calculated according to Rule 
of Mixtures, see (Avi, Lillemäe, et al. 2015).  

Free vibration modes of ESL model are found by solving the eigenvalues and 
vectors of displacement based equations of motion presented by Reddy and Ochoa 
(1992). Algorithms to solve the eigenvalue problem, such as Lanczos (1950), are 
available in many commercial computer programs such as Abaqus, Ansys and Nastran. 

[Figure 3 near here] 

2. Correction method 
2.1. Assumptions and limitations 
This study considers ship deck structures that can include, in addition to the deck plate 
and its stiffeners, also T-girders, pillars, adjacent bulkheads and other structures. 
However, the present correction is limited to only include local deformations induced 
by translational inertia of the deck plate in its normal direction. Coordinate system is 
defined so that the deck reference plane coincides with the xy-plane. Coordinate x is 
pointing in the stiffener direction, y is perpendicular to x, and z is normal to the deck 



plate. An additional coordinate s is used for describing local transversal distance from 
stiffeners. The used coordinate system is illustrated in Fig. 4. 

Small amplitude free vibration of a linear system is assumed. Stiffener and plate 
connections are assumed to follow global reference plane obtained by the ESL FEM. 
The study is limited to correct global modes where global flexural waves are long in 
comparison of local plate field dimensions. This limitation leads to an assumption that, 
in local consideration, the deck plate is supported by the global reference plane only 
through the stiffener and plate connections.  

[Figure 4 near here] 

2.2. Modes as generalized single degree of freedom systems 
Free harmonic vibration modes of undamped linear vibration systems are orthogonal; 
see e.g. (Feeny and Kappagantu 1998). Thus each individual mode can be considered 
separately as single degree of freedom system with generalized stiffness Km, and 
generalized mass Mm, as shown in Fig.5.  

[Figure 5 near here] 
Displacement of deck plate in z-direction w of each mode m in free vibration can 

be defined by a harmonic function of time, such as sine: 
𝑤𝑚(𝑥, 𝑦, 𝜔𝑚, 𝑡) = 𝛹𝑚(𝑥, 𝑦, 𝜔𝑚)sin(𝜔𝑚𝑡)  (9) 

In Eq. (9) the mode shape Ψm defines the relative amplitude distribution within 
the structure. In this study, it consists of a global part obtained by modal FE analysis for 
the ESL model, and a local part, which is considered analytically. The local part of the 
mode shape is a function of frequency. The mode shape is considered closer in Chapter 
2.3.  

Let us now define a generalized coordinate ξm: 



𝜉𝑚(𝑡) = 𝑤𝑚(𝑥0, 𝑦0, 𝜔𝑚, 𝑡)  (10) 
Such point (x0, y0) is chosen that Eq. (11) holds. 

𝛹𝑚(𝑥0, 𝑦0, 𝜔𝑚) ≠ 0  (11) 
 The modal vibration Eq. (9) can now be written as motion of the generalized 

degree of freedom, Eq. (10), as follows: 
𝜉𝑚(𝑡) = 𝐴𝑚 sin(𝜔𝑚𝑡)  (12) 

In Eq. (12) Am is amplitude, which depends on selection of the generalized 
coordinate, and the mode shape Ψm. Generalized properties of the single degree of 
freedom system Eq.(12) can now be defined. Modal angular frequency ωm is defined by 
the square root of the ratio between the generalized stiffness Km and generalized mass 
Mm, as written in Eq. (13). 

𝜔𝑚 = √
𝐾𝑚(𝜔𝑚)

𝑀𝑚(𝜔𝑚)
  (13) 

Generalized mass and stiffness are derived from kinetic and strain energies 
respectively, as presented in Chapters 2.4, and 2.5. Iterative approach to find the angular 
frequency from Eq. (13) is presented in Chapter 2.6. 

2.3. Mode shape 
Free vibration of global mode m is considered. Displacement as function of time was 
given in Eq. (9). Displacement mode shape, Ψm(x, y, ωm), can be divided into sum of 
global reference plane (ESL) mode shape ΨGm, and local plate deformation shape ΨLm as 
illustrated in Fig. 6: 



𝛹𝑚(𝑥, 𝑦, 𝑠, 𝜔𝑚) = 𝛹𝐺𝑚(𝑥, 𝑦) + 𝛹𝐿𝑚(𝑥, 𝑦, 𝑠, 𝜔𝑚) (14) 
According to Clough and Penzien (1993), response of the assumed linear 

vibration is directly proportional to the excitation amplitude. Due to the long 
wavelength assumption, the local plate in location x, y is supported (and excited) only 
by the global reference plane through deck plate and stiffener connection points. 
Therefore the local amplitude is directly proportional to the amplitude of the global 
reference plane in those points which equals the global ESL mode shape ΨGm(x, y). 
Local part of the mode shape, ΨLm in Eq (14), can thus be written as:  

𝛹𝐿𝑚(𝑥, 𝑦, 𝑠, 𝜔𝑚) = 𝛹𝐺𝑚(𝑥, 𝑦)𝛹𝐿𝑅(𝑠, 𝜔𝑚)  (15) 
In Eq. (15), ΨLR is the local plate mode shape relative to the global reference 

plane amplitude i.e. the deformation caused by unit amplitude enforced displacement of 
global reference plane. By combining Eq. (14) and Eq. (15), total mode shape gets the 
form: 

𝛹𝑚(𝑥, 𝑦, 𝑠, 𝜔𝑚) = 𝛹𝐺𝑚(𝑥, 𝑦)[1 + 𝛹𝐿𝑅(𝑠, 𝜔𝑚)] (16) 
It should be noticed that global reference plane mode shape ΨGm(x, y) is not 

function of frequency, and remains constant during the correction process. 
[Figure 6 near here] 

2.4. Generalized mass from kinetic energy 
Kinetic energy Tm of the generalized single degree of freedom system can be defined by 
generalized mass Mm as follows: 

𝑇𝑚(𝑡) =
1

2
𝑀𝑚𝜉�̇�

2
=

1

2
𝐴𝑚

2𝜔𝑚
2𝑀𝑚cos2(𝜔𝑚𝑡) (17) 



The generalized mass can thus be found by considering the peak value of kinetic 
energy of the vibration mode. That occurs at the time when cos2ωmt = 1. The 
generalized mass can be solved from Eq. (17). It is written in Eq. (18): 

𝑀𝑚 =
2𝑇𝑚

𝑝𝑒𝑎𝑘

𝐴𝑚
2𝜔𝑚

2  (18) 

The translation kinetic energy of the vibration mode Tm can be written as sum of 
kinetic energy of z-directional translation of the deck plate TDz and kinetic energy of 
other structures and directions TC.  

𝑇𝑚(𝜔𝑚, 𝑡) = 𝑇𝐶𝑚(𝜔𝑚, 𝑡) + 𝑇𝐷𝑧𝑚(𝜔𝑚, 𝑡)  (19) 
The term TC in Eq. (19) represents the kinetic energy that does not depend 

directly on the local deformation part of the mode shape. However, it is a function of 
frequency due to the fact that velocity changes with the frequency.  This effect is taken 
into account by Eq. (38) in Chapter 2.6.  

The deck plate z-direction part of the kinetic energy TDz is more interesting as it 
includes the kinetic energy of the local deformation. The energy term is by definition: 

𝑇𝐷𝑧𝑚(𝜔𝑚, 𝑡) = ∯ [
1

2
𝑚(𝑥, 𝑦) (

∂𝑤𝑚(𝑥,𝑦,𝜔𝑚,𝑡)

𝜕𝑡
)

2

] (20) 

In Eq. (20) z-velocity can be written in terms of mode shape of Eq. (9) yielding: 
∂𝑤𝑚(𝑥,𝑦,𝜔𝑚,𝑡)

𝜕𝑡
= 𝜔𝑚𝛹𝑚(𝑥, 𝑦, 𝜔𝑚)cos(𝜔𝑚𝑡)  (21) 

Peak velocity of Eq. (21) occurs when cos(ωm) = 1. Now, peak value for the 
kinetic energy of Eq. (19) can be written: 

𝑇𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) = 𝑇𝐶𝑚

𝑝𝑒𝑎𝑘(𝜔𝑚) +
𝜔𝑚

2

2
∯[𝑚(𝑥, 𝑦)𝛹𝑚(𝑥, 𝑦, 𝜔𝑚)2] (22) 



By assuming constant mass distribution, and inserting mode shape of Eq. (16) 
into Eq. (22): 

𝑇𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) = 𝑇𝐶𝑚

𝑝𝑒𝑎𝑘(𝜔𝑚) +
𝜔𝑚

2𝑚

2
∯ [𝛹𝐺𝑚(𝑥, 𝑦)2 ∫ (1 + 𝛹𝐿𝑅(𝑠, 𝜔𝑚))

𝑆

0

2
𝑑𝑠] (23) 

In Eq. (23), global mode shape ΨGm is the only function of the global location (x, 
y) inside the integral. The part independent of location can now be defined as local 
kinetic energy factor TLR. It represents kinetic energy of unit area of the deck under 
enforced excitation of unit amplitude of the global reference plane: 

𝑇𝐿𝑅(𝜔𝑚) =
𝜔𝑚

2𝑚

2𝑆
∫ (1 + 𝛹𝐿𝑅(𝑠, 𝜔𝑚))2𝑑𝑠

𝑆

0
  (24) 

Closed form solution for local kinetic energy factor of Eq. (24) is defined in 
Appendix A. Alternatively; it can be calculated by a sub model. The generalized mass 
of Eq. (18) now gets the form: 

𝑀𝑚(𝜔𝑚) =
2

𝜔𝑚
2𝐴𝑚

2 [𝑇𝐶𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) + 𝑇𝐿𝑅(𝜔𝑚) ∯(𝛹𝐺𝑚(𝑥, 𝑦))

2
] (25) 

For application with Finite elements method, area integral in Eq. (25) is replaced 
by area weighted summation of nodal z-translation values of the deck plate nodes in 
ESL model. The resulting definition for generalized mass is written: 

𝑀𝑚(𝜔𝑚) =
2

𝜔𝑚
2𝐴𝑚

2 [𝑇𝐶𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) + 𝑇𝐿𝑅(𝜔𝑚) ∑ (𝛼𝑛𝛹𝐺𝑚𝑛

2)𝑁
𝑛=1 ] (26) 

In Eq. (26), αn is effective area of deck plate of node n, ΨGmn is the nodal z-
translation value of the global mode shape vector in node n, and N the number of nodes 
connected to the deck plate. 



2.5. Generalized stiffness from strain energy 
Generalized stiffness Km of mode m is considered. Starting point of the consideration is 
the definition of strain energy Um for generalized single degree of freedom system in 
Eq. (27). 

𝑈𝑚(𝑡) =
1

2
𝐾𝑚𝜉𝑚

2 =
1

2
𝐴𝑚

2𝐾𝑚 sin(𝜔𝑚𝑡)  (27) 

Generalized stiffness can now be solved as function of peak strain energy: 

𝐾𝑚 =
2

𝐴𝑚
2 𝑈𝑚

𝑝𝑒𝑎𝑘  (28) 

Strain energy Eq. (27) for the considered deck structure can be presented as sum 
of strain energy of local deformation ULm and a constant part of strain energy UCm . The 
constant part UCm includes all strain energy of the mode shape received by FE analysis 
of the ESL model as the global reference plane deformation shape is constant in the 
correction. 

𝑈𝑚(𝜔𝑚, 𝑡) = [𝑈𝐿𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) + 𝑈𝐶𝑚

𝑝𝑒𝑎𝑘] sin(𝜔𝑚𝑡) (29) 

Peak values occur when sin(ωmt )= 1: 

𝑈𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) = 𝑈𝐿𝑚

𝑝𝑒𝑎𝑘(𝜔𝑚) + 𝑈𝐶𝑚
𝑝𝑒𝑎𝑘  (30) 

In Eq. (30) peak strain energy induced by the local deformation needs closer 
consideration: 

𝑈𝐿𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) =

1

2
∯

1

𝑆
∫ 𝐷(𝑠) [

𝜕2[𝛹𝐿𝑚(𝑥,𝑦,𝑠,𝜔𝑚)]

𝜕𝑠2 ]
2

𝑑𝑠
𝑆

0
 (31) 

In Eq. (31) D is local bending stiffness of the deck plate, s is the local 
coordinate, and S the stiffener spacing. Local mode shape ΨLm is given in Eq. (15): 



𝑈𝐿𝑚
𝑝𝑒𝑎𝑘

(𝜔𝑚) =
1

2
∯

1

𝑆
∫ 𝐷(𝑠) [

𝜕2[𝛹𝐺𝑚(𝑥,𝑦)𝛹𝐿𝑅(𝑠,𝜔𝑚)]

𝜕𝑠2 ]
2

𝑑𝑠
𝑆

0
 (32) 

By assuming constant local bending stiffness, the peak local strain energy of Eq. 
(32) simplifies into: 

𝑈𝐿𝑚
𝑝𝑒𝑎𝑘(𝜔𝑚) =

𝐷

2𝑆
∫ [

𝜕2[𝛹𝐿𝑅(𝑠,𝜔𝑚)]

𝜕𝑠2 ]
2

𝑆

0
𝑑𝑠 ∯(𝛹𝐺𝑚(𝑥, 𝑦))

2 (33) 

In order to simplify Eq. (33), factor ULR is defined as peak strain energy of unit 
area of the deck under enforced excitation of unit amplitude of the global reference 
plane.  

𝑈𝐿𝑅(𝜔𝑚) =
𝐷

2𝑆
∫ [

𝜕2[𝛹𝐿𝑅(𝑠,𝜔𝑚)]

𝜕𝑠2 ]
2

𝑆

0
𝑑𝑠  (34) 

Closed form solution for Eq. (34) is presented in Appendix A. Alternatively ULR 
can be calculated by a sub model. Modal stiffness of Eq. (28) can now be written: 

𝐾𝑚(𝜔𝑚) =
2

𝐴𝑚
2 [𝑈𝐶𝑚

𝑝𝑒𝑎𝑘 + 𝑈𝐿𝑅(𝜔𝑚) ∯(𝛹𝐺𝑚(𝑥, 𝑦))
2

] (35) 

For application with Finite elements method, area integral in Eq. (35) is replaced 
by area weighted summation of nodal z-translation values of the deck plate nodes in 
ESL model. This is done in Eq. (36). 

𝐾𝑚(𝜔𝑚) =
2

𝐴𝑚
2 [𝑈𝐶𝑚

𝑝𝑒𝑎𝑘 + 𝑈𝐿𝑅(𝜔𝑚) ∑ (𝛼𝑛𝛹𝐺𝑚𝑛
2)𝑁

𝑛=1 ] (36) 

2.6. Frequency by iteration 
Angular frequency of mode m can now be calculated from generalized mass and 
stiffness by Eq. (13). However, in Eq. (13) generalized stiffness and mass are both 
functions of the frequency itself. Iterative approach is thus needed to find the angular 



frequency separately for each mode m. Angular frequency for iteration step i+1 is 
obtained from previous step i by solving following equation: 

𝜔𝑖+1 = √
𝐾𝑚(𝜔𝑖)

𝑀𝑚(𝜔𝑖)
  (37) 

Modal mass and stiffness in Eq. (37) are solved from Eqs. (26) and (36). Initial 
guess of frequency is needed for i = 0. The guess is made based on ESL frequency ωESL 
and local frequency ωL as presented in Table 1. These are educated guesses and there is 
not in depth study behind the values. However, same guesses were applied successfully 
for beams by Laakso et al. (2017). 

[Table 1 near here] 
In equation (26) there is term for kinetic energy TCm that represents all kinetic 

energy of the model other than z-component of the deck plate. As the term is function of 
frequency which changes due to iteration, also that term should change accordingly. 
Kinetic energy is proportional to square of the velocity, thus the term changes in 
relation of squares of the frequencies as written in Eq. (38). 

𝑇𝐶𝑚
𝑝𝑒𝑎𝑘(𝜔𝑖+1) =

𝜔𝑖
2

𝜔𝐸𝑆𝐿
2

𝑇𝐶𝑚
𝑝𝑒𝑎𝑘(𝜔𝐸𝑆𝐿)  (38) 

Now all necessary information is available for carrying out iterative procedure to 
find corrected modal frequency. The iterative procedure is presented in Figure 7. 
Iteration is continued until desired convergence is found. There are only closed form 
formulae inside the iteration loop which makes the process very effective.  

[Figure 7 near here] 

3. Case study 
Case study is performed by using commercial Finite Elements solver NX Nastran 10.0. 



Pre- and post-processing of the models are done by Femap 11.3 software. The presented 
correction method is applied for correcting results obtained by FE model, where deck 
plate and its stiffeners are modelled by ESL elements. Model with shell element deck 
plate with discretely modelled stiffeners is used for validation purposes. Mesh size and 
structures other than the studied stiffened deck plate are similar for ESL and validation 
models. Normalization of the mode shapes is made so that generalized mass of the FE 
results equal unity. 

3.1. Passenger ship deck with pillars and T-girders 
Deck structure from (Avi, Lillemäe, et al. 2015) is chosen for the case study as it 
represents typical passenger ship cabin area. The structure consists of 19.2 meters long 
and 10.88 meters wide steel deck with 7 transversal and one longitudinal T-
440x7+FB150x10 T-girders, and 3 vertical D150x15 pillars in the middle, see Fig. 8. 
The deck plate is 6 mm thick and is stiffened by HP 100x6 stiffeners with spacing 0.68 
m. Only structural mass with density 7850 kg/m3 is applied. 

[Figure 8 near here] 
General mesh size of 100 mm is used, and exactly the same nodes are used for 

both models: the ESL model, and the validation model. Girders are modelled as offset 
beam elements. Pillars are modelled as beam elements. Only the elements of deck plate 
are different between the two models: In the ESL model the stiffened deck plate is 
modelled by ESL elements only, and in the validation model as combination of shell 
elements for the plate and offset beam elements for the stiffeners. This makes 
comparison reasonable for validation purpose, as stiffeners are connected to T-girders 
and constraints only through the nodes in deck reference plane in both models. Both 
models are constrained in the boundaries by putting all 6 degrees of freedom to zero in 
the boundary nodes, including the pillar end nodes above and below the deck.   



Modes that represent global deck vibration are selected for detailed validation of 
the method. The selected 5 modes are denoted by letters as A, B, C, D and E. Their 
properties and frequencies by different methods are compared in Table 2. Four of these 
modes (A, B, D and E) were also studied by (Avi, Lillemäe, et al. 2015). With long 
wavelengths, these modes are in line with the assumptions made for this study. Modes 
A and B appear at mode numbers 1 and 4 respectively in both ESL and Shell models. 
Mode C appears at mode number 11 in the ESL model, and at mode number 28 in shell 
model. Reason for different mode numbers is that several purely local plate modes 
appear in the shell mesh model below this mode.  For the same reason, also modes D 
and E appear at different numbers in the ESL model and the shell model. 

[Table 2 near here] 
Mode shapes of the modes A, B, C, D and E by the validation shell model, and 

the ESL model are presented in Table 3. By visual comparison of the shapes, it is 
possible to verify that they represent physically same modes in both models. It is also 
possible to see the local deformation as part of the shell model mode shape and that 
ESL shapes are lacking the local deformation. This local deformation is further 
visualized in Fig. 9, which shows enlarged view of mode D shapes by the 2 models.  

[Figure 9 near here] 
The ESL frequencies are corrected by adding the missing effect of the local 

deformations by the method presented in this paper. Convergence of the iteration of Fig. 
7 is very fast and is shown in Fig 10. Frequencies of all modes find δ < 10-5Hz 
convergence already in step i = 4. 

[Figure 10 near here] 
Difference in frequencies by corrected ESL and validation model vary between -

1.99 % and +0.05 %. Improvement in accuracy from uncorrected ESL results is 



significant as the difference between frequencies of uncorrected ESL, and the validation 
models are between 4% and 10 %. The correction method tends to slightly 
underestimate the frequency of modes with shorter wavelength in x-direction (modes B 
and A), while being very precise for modes with longer wavelengths (modes D and E). 
Likely reason for this is that assumption of long global waves was made, in order to 
assume that plate is locally supported by stiffeners only. The assumption is less valid for 
modes with shorter wavelengths leading to underestimated of stiffness. 

 [Table 3 near here] 

4. Conclusion 
This study presented a correction method for improving accuracy of modal free 
vibration results of ship deck structures obtained by Equivalent Single Layer (ESL) 
Finite Element model as defined by (Avi, Lillemäe, et al. 2015). Generalized mass and 
stiffness of the modes are redefined while accounting for kinetic and strain energies 
involved in local plate deformation between the stiffeners. The correction method is 
based on the classical assumption of conservation of energy in free undamped vibration 
(Rayleigh 1877), and follows similar principles as correction method for beams by 
Laakso et al. (2017). Correction is carried out by iteration of closed form equations, thus 
it is computationally extremely light. 

Methods that take the local deformations between the stiffeners into account 
have been presented before by Laakso et al. (2013) in analytical consideration of cabin 
deck free vibration and (Avi, Laakso, et al. 2015)  for correcting ESL free vibration 
results of stiffened panels. Advantage of the present method is its applicability to more 
general structures, e.g. girders and pillars can be included in the model while the 
correction is made for the stiffened deck. In comparison to fine mesh 3D FEM, main 



advantage of present ESL based model is the possibility to use coarser mesh and thus 
significantly reduce computational effort. 

ESL with the applied correction provides very good accuracy in global modal 
frequencies. Error in comparison of fine mesh is reduced to less than 2 % from 4-10 % 
error of uncorrected ESL results. The method seems to slightly underestimate the modal 
frequencies, but is much more accurate than methods which consider only the 
orthotropic ESL layer response (e.g. Lok and Cheng, 2000). Magnitude of the error 
grows slightly towards modes with shorter global wavelengths. Similar trend was 
observed for thin-walled beams in (Laakso et al. 2017). Reason for this is that 
assumption of long flexural waves is less valid. 

The study was limited to cases where correction was only made for one in-plane 
stiffened deck plate with constant stiffener spacing, mass and stiffness. Generalizing the 
correction into new applications is left for further work. These could include application 
with sandwich panels such as those studied by Kolsters and Wennhage (2009), and 
Romanoff and Varsta (2007). Another direction for further work would be generalizing 
the method to be used with more complex structural applications where local 
deformations are occurring simultaneously in multiple stiffened panels with different 
properties and orientations.  
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Appendix A. Local response and energy factors 
This appendix presents definition of kinetic and strain energy factors of local plate 
deformation for unit area of the stiffened plate excited by unit amplitude enforced 
support motion. For simplicity cylindrical bending of clamped-clamped strip is assumed 
as illustrated in Fig. A1. 

[Figure A1 near here] 
Response is calculated by modal approach assuming that only lowest clamped-

clamped mode is active. Mode shape is given in (Blevins 1979). Response of the mode 
is the following: 



𝛹𝐿𝑅(𝑠, 𝜔) =
𝑟𝑑(𝜔)

𝐵
(σsin (

𝛽𝑠

𝑆
) − 𝜎sinh (

𝛽𝑠

𝑆
) − cos (

𝛽𝑠

𝑆
) + cosh (

𝛽𝑠

𝑆
)) (A1) 

Parameter values for σ≈ 0.982502215 and β ≈ 4.73004074 are given in (Blevins 

1979) for the considered mode. Normalization factor B is solved by setting mid span 
response equal to dynamic response in that point rd. It follows: 

𝐵 = σsin (
𝛽

2
) − 𝜎sinh (

𝛽

2
) − cos (

𝛽

2
) + cosh (

𝛽

2
) ≈  1.58814626 (A2) 

Numeric solutions can be found for the energy factors: Kinetic energy factor 
from Eq. (21): 

𝑇𝐿𝑅(𝜔) =
𝜔2𝑚

2𝑆
∫ (1 + 𝛹𝐿𝑅(𝑠, 𝜔))2𝑑𝑠

𝑆

0
  (A3) 

≈ 𝜔2𝑚 (
1

2
+ 0.523164 𝑟𝑑(𝜔) + 0.198239 𝑟𝑑

2(𝜔)) (A4) 

Strain energy factor from Eq. (30): 

𝑈𝐿𝑅(𝜔) =
𝐷

2𝑆
∫ [

𝜕2[𝛹𝐿𝑅(𝑠,𝜔)]

𝜕𝑠2 ]
2

𝑆

0
𝑑𝑠  (A5) 

≈ 99.23127
𝐷𝑟𝑑

2(𝜔)

𝑆4
  (A6) 

Dynamic response of the mid span rd(ω) is needed. It can be written as 
dynamically amplified static response rs as follows: 

𝑟𝑑(𝜔) =
𝑟𝑠(𝜔)

1−
𝜔

𝜔𝐿

  (A7) 

where modal frequency of the clamped-clamped lowest mode ωL is the 
following (Blevins 1979): 



𝜔𝐿 =
𝛽2

𝑆2
√

𝐷

𝑚
  (A8) 

Static response rs can be found by considering static bending in mid span that 
uniform inertia load of unit amplitude motion would cause. According to Newton’s 2nd 
law, and tabulated solution (Parnes 2001): 

𝑟𝑠(𝜔) =
𝑚𝜔2𝑆4

384𝐷
  (A9) 

Finally bending stiffness D: 

𝐷 =
𝑡𝑝

3𝐸

12(1−𝜐2)
  (A10) 

and mass for unit area of deck plate: 
𝑚 = 𝑡𝑝𝜌 + 𝑚𝑁𝑆  (A11) 

where ρ is material density and mNS non-structural mass per area. 
 


