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Abstract

One of the most spectacular discoveries made in superfluid 3He confined in a nanos-
tructured material like aerogel or nafen was the observation of the destruction of the
long-range orientational order by a weak random anisotropy. The quenched random
anisotropy provided by the confining material strands produces several different glass
states resolved in NMR experiments in the chiral superfluid >He-A and in the time-
reversal-invariant polar phase. The smooth textures of spin and orbital order parameters
in these glasses can be characterized in terms of the randomly distributed topological
charges, which describe skyrmions, spin vortices and hopfions. In addition, in these
skyrmion glasses the momentum-space topological invariants are randomly distributed
in space. The Chern mosaic, Weyl glass, torsion glass and other exotic topological
states are examples of close connections between the real-space and momentum-space
topologies in superfluid 3He phases in aerogel.

Keywords Topological matter - Disorder - Glass - Superfluid *He - Larkin—Imry—Ma
effect - Skyrmion - Hedgehog - Hopfion - Half-quantum vortex - Chern mosaic

1 Introduction

The spin-triplet p-wave superfluid phases of liquid *He [1] immersed in the aerogel
matrix provide the arena for experimental and theoretical investigations of different
types of spin and orbital orientational disorder, induced by the quenched orientational
disorder of the aerogel strands. Especially interesting phenomena are realized in the
chiral superfluid 3He-A phase, which in addition to superfluidity has the signatures of
the spin nematic [2,3] and orbital ferromagnet. One of the most spectacular discoveries
was the observation of the destruction of the long-range orientational order in *He-A
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by a weak random anisotropy [4]—the so-called Larkin—-Imry—Ma (LIM) effect [5-7]
(see also review paper [8]). This is the orbital glass state of the chiral superfluid He-
A—the bulk 3D topological system with smooth disorder in the field of the orbital
vector I, which describes the orientation of the orbital magnetization of Cooper pairs
in this chiral liquid. The smooth texture of the l-vector can be characterized by the
integer valued topological charges valid for the soft topological objects, such as 2D
and 3D skyrmions [9], merons, continuous vortices [10], topological solitons, domain
walls, monopoles and hedgehogs. Following the notations of Refs. [11,12], the LIM
orbital glass state can be called the intrinsic orbital skyrmion glass.

The intrinsic orbital glass state persists even when the global anisotropy of the
aerogel strands is present. In the polar-distorted 3He-A phase (PdA phase), which is
formed in the aerogel with “nematically ordered” strands, provided by the commer-
cially available nafen material [13], the 2D LIM state is observed with the disordered
planar texture of the l-vector [14].

The intrinsic orbital glass is realized as an equilibrium state. Whether it is the true
glass state or the orbital liquid is an open question. The He-A in aerogel may have
many degenerate ground states (or nearly degenerate states) with the rare events of the
transitions between the states. All these states have smaller energy compared to the
ordered state of the orbital ferromagnet, and thus are not able to relax to the ordered
state with long-range order.

In addition, there are the topological excited states on the background of the intrinsic
LIM glass. In particular, it was found that the aerogel strands strongly pin the singular
topological defects (with hard cores), such as quantized vortices and half-quantum
vortices—Alice strings [15]. The disordered state which contains pinned vortices is
obtained by the Kibble—Zurek mechanism: vortex nucleation by fast cooling through
Tc [16-18].

The formed excited state can be called the vortex glass. This vortex glass is very
different from the Larkin vortex glass in superconductors, where vortices have pre-
ferred orientation of magnetic fluxes along the magnetic field. In the isotropic aerogel,
vortices have random orientation of vortex lines. In the aerogel with preferable ori-
entations of the strands, the vortices form the disordered Ising glass with the random
distributions of the winding numbers N = +1 and N = —1, or N = +1/2 and
N = —1/2 in case of half-quantum vortices in Fig. 1.

The aerogel and nafen also pin the topological defects with the cores of intermediate
sizes, such as spin vortices in Fig. 1. All these possibilities, in addition to the fully
equilibrium LIM state, give rise to a zoo of quasiequilibrium glass states with different
types of the pinned topological excitations. These states can be obtained using different
protocols, see Fig. 2.

The rich glass states in superfluid phases of *He could be useful for studies of
different problems related to spin glasses [19-21]. Our measurements in superfluid
*He confined within nafen, Fig. 3, demonstrate that there are at least three types
of spin-glass states with different NMR signatures. One of them is the equilibrium
spin-glass state: due to spin—orbit interaction the orbital glass serves as the quenched
orientational disorder acting on the spin-nematic vector d. The d vector is a unit vector
(director) along the spontaneous uniaxial spin anisotropy of the A phase. As a result
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Fig. 1 Zoo of topological defects pinned by aerogel. Hard-core topological defects (half-quantum vortices
and hedgehogs), intermediate-core defects (spin vortices), and soft objects (skyrmions, hopfions and spin
solitons). Images adapted: skyrmion and hedgehog from Ref. [22], hopfion from Ref. [23], spin vortex from
Ref. [24] and columnar skyrmion from Ref. [25] (Color figure online)

the LIM state of the d vector is formed with the characteristic LIM scale larger than
LIM scale in the orbital glass.

Other possible spin-glass states can be considered as the topological excited states
of the spin LIM. These are the spin-skyrmion and spin-vortex glass states, which pin
the spin skyrmions and spin vortices in Fig. 1. The spin-skyrmion glass is formed
when the transition from the normal liquid to the A phase is accompanied by strong
magnetic perturbations [4]. The same state is obtained by the first-order transition
from the B phase to the A phase. As distinct from the orbital glass, which is realized
as the equilibrium state (or as a manifold of nearly degenerate states), the spin glass in
3He-A is not an equilibrium state and can be annealed. Following notations [11,12],
we call it spin-skyrmion glass.

The spin-vortex glass states are obtained by cooling from the normal liquid to the
polar phase under strong magnetic perturbations. This spin glass can be represented
as a chaotic system of spin vortices pinned by the aerogel.

Here, we consider how different topological charges characterize different types
of glass states and apply the simplest Larkin—-Imry—Ma arguments to describe the
properties of these glasses leaving a more detailed consideration for the future.
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Fig.2 Variety of glass states obtained by different protocols

Topology of skyrmion glasses is discussed in Sects. 2 and 3; the orbital LIM glass
is in Sect. 5; the spin glasses including spin-vortex glass are in Sect. 6; the vortex
glasses are in Sect. 7: the combined effect of real and momentum-space topology is
in Sect. 8.

2 2D Skyrmion Glass
2.1 Skyrmionic Topology of 2D Glass

Both the equilibrium LIM glasses emerging in magnets with random anisotropy or
with random field and the quasiequilibrium skyrmionic glasses can be described in
terms of the skyrmionic topological invariants. For the 2D Heisenberg spin glasses,
the relevant invariant is 712(52) = Z, see, e.g., Refs. [11,12]:

) eikl ) ) )
02 = /dS “qe(x), g5 = b MCSERD )

Here § is the unit vector of magnetization in ferromagnets. It should be substituted
by the nematic vector (director) d in the chiral A phase and in the polar phase of
superfluid 3He, by the orbital vector 1in the A phase and by the antiferromagnetic
vector in antiferromagnets.
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Fig. 3 Sketch of the experimental setup for measurements of glass states of topological superfluid 3He
confined in nafen nanostructured material. (Right) Nafen consists of nearly parallel Al,O3 strands, while
liquid 3He penetrates between strands. Two different nafen variants with densities of 90 and 243 mg/cm3
have been used. The confinement parameters are shown in the middle [13]. The nafen possesses two types
of disorder which allows formation of glass states in topological superfluid: (i) orientational disorder in
strands direction and (ii) density fluctuations (variation of d3). (Left) The nafen is placed into the cylindrical
sample container (height 4 mm and diameter 4 mm) with the average strand direction along the cylinder’s
axis, denoted as z. The sample is surrounded by NMR pickup coils and the static magnetic field can be
oriented at an arbitrary angle p with respect to nafen strands. To avoid formation of paramagnetic solid
3He on all surfaces, the sample is preplated by 2.5 atomic layers of *He [32] (Color figure online)

2.2 Fluctuations of Topological Charges in 2D Skyrmion Glass

Consider the mean square fluctuations of the total topological charge, (Q%), assuming
that (Q2) = 0. Of course, if one fixes the topological charge by boundary conditions,
then Q> does not fluctuate. If the order parameter is fixed at the boundaries, then the
change of the total topological charge of the whole texture is possible only by singular
process of creation of topological charge inside the sample—this is the instanton
process, in which the system crosses the singularity in the 2 4+ 1 spacetime—the
spacetime hedgehog with topological charge 775(S%) = Z. If the boundary conditions
are fixed and the instanton processes are ignored, one can choose the finite region of
the intermediate size L inside the glass, which is much smaller than the dimension of
the system and much larger than the LIM scale & v. Then, the total charge Q5 in this
region is fluctuating. In general, one may expect

(03) ~ (L/gLn)™ 2)

In the simplest model of the Gaussian distribution, the (Q%) is proportional to the area
S of the region, and one has m = 2:

(03) ~ Sad)stm ~ (L/ELw)’, @)
where we use the dimensional analysis result

(@3) ~ & 4
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3 3D Skyrmion Glasses
3.1 Topology of 3D Skyrmion Glasses

In the 3D Heisenberg magnetic glasses and in the superfluid A and polar phases of
3He, the skyrmionic charge is described by 73(S?) = Z topology. The topological
charge is the Hopf invariant, which can be expressed in terms of helicity of the effective
gauge field [26]:

ikl

0; = / Prg3(x), ga3x) = 3"27 A Fu, Q)

where the synthetic gauge field has the following connection to the vector field:
Fiy = 0k A; — 0/ Ax =8 - (38 x 9;8) (6)

For 3D ferromagnets, the synthetic gauge field A is the Berry phase field [27]. In these
solid-state magnetic materials, the particle-like topological excitations described by
the Hopf invariant—hopfions in Fig. 1 (or knots [28])—are suggested for spintronics
applications [29,30].

3.2 Fluctuations of Hopf Topological Charge in 3D Skyrmion Glass

Let us consider fluctuations in the 3D skyrmion glasses, assuming that there are no
singular defects (hedgehogs, strings and domain walls). The absence of the singular
defects allows us to use for their description both topological charges, which charac-
terize the continuous configurations, Q, and the Hopf invariant, Q3 = f d3x q3(x) ~
f d3x A (V x A). As before we consider fluctuations in the volume V which is much
smaller than the total volume of the sample and much larger than the volume of LIM
scale. If the regions with positive and negative ¢g3(x) are randomly distributed, and we
assume the Gaussian distribution, then (Q%) is proportional to the volume V:

(03) ~ V/&'m- )

On the other hand, as follows from Eq. (5), (Q%) can be expressed in terms of the
distributions of the synthetic gauge field A and the topological density ¢>:

(03) ~ VE (A (g3). (8)

This allows us to estimate the fluctuations of the effective gauge field, (A?), using
Eqgs.(4), (7) and (8):

(A% ~ & - )
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3.3 Fluctuations of Q, Topological Charge in 3D Skyrmion Glass

In the 3D skyrmion glass, it is instructive to consider the fluctuations of the topological
charge Q2. In 3D systems, this invariant describes the columnar textures, the line
object described by the mapping of the cross section of the skyrmion to the sphere
of the unit vector I, which form the homotopy group m>(S?) = Z, see columnar
skyrmions in Fig. 1. For example, in *He-A this texture represents the vortex line
with the continuous order parameter [10]. The similar linear skyrmions are formed in
magnets with Dzyaloshinskii-Moriya interaction. Let us consider fluctuations (Q%)
in the 2D cross section of the 3D system. We again assume that the equilibrium LIM
state is smooth and does not contain the singular structures, such as singular vortices
and hedgehogs. Then, integral (1) over any closed surface, which is equal to the total
topological charge of the hedgehogs inside the surface, is zero. This gives reduction
of (Q%) imposed by the constraint: all the surfaces which have the common boundary
have the same value of the topological invariant. The reduced scaling law for (Q%)
can be obtained from Eq. (9):

2
(03) ~ (yﬁ A dx) ~ (A%) L& ~ L& (10)

So in the pure 2D system one has Eq. (3), which corresponds to m = 2 in Eq. (2),
while for the 3D systems one has Eq. (10), which corresponds to m = 1 in Eq. (2).
The crossover from 2D to 3D takes place at the thickness L, ~ & .

4 Glasses in Chiral Superfluids

The spin-triplet p-wave order parameter Ayg(K) = (i 020“)05,3 kKA i of chiral super-
fluid He-A is given by

Ay = Aae'®d, (@) + i8));. (11)

Here d is the spin-nematic vector; the unit vectors €; L € describe the orbital degrees
of freedom.! The unit vector] = & x & plays several roles in chiral superfluid: it shows
the direction of the orbital angular momentum of Cooper pairs and thus determines
the orbital magnetization of chiral superfluid; it determines the easy axis of the orbital
anisotropy; it shows the direction to the Weyl nodes in the fermionic quasiparticle
spectrum in momentum space; together with vectors €; and €, it forms the analog of
the tetrad fields in general relativity; it is also responsible for continuous vorticity of
the superflow velocity.

1 Traditionally in 3He literature, the orbital vector & is named i and vector & is named fi. We use &2
notation to stress connection to tetrad field. Also the vector € introduced later in the polar phase is usually
named m.
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As distinct from the >He-A, the polar phase, which appears in the nematically
ordered aerogel or nafen [31] is not chiral and is time-reversal invariant:

Ay = Ape'®dyé;. (12)

The orbital vector € is oriented along the strands of nafen. In nafen also the intermediate
chiral phase takes place—the polar-distorted A phase—with

Aui = Apaae'®d, (&) +ibéy);, (13)

where |b| < 1.
Let us consider *He-A in Eq. (11) in isotropic aerogel. The superfluid velocity vS
is determined both by the gradient of the phase @ and by the twist of the tetrad field:

h h N N
visz %Didi =%(V,'Cb—e2~vie1). (14)

As follows from Eq. (14), the second term in the rhs plays the role of the vector
potential of the synthetic U (1) gauge field in Eq. (6):

Aj =& - Ve, (15)

and Eq. (6) is equivalent to the Mermin—Ho relation [33],
Syi h kg 7 7
(V x v5) =—e/1.(aj1xakl). (16)
4m

In 3He-A, several types of skyrmionic glass state exist:

(1) First is the equilibrium orbital LIM glass state of the orbital vector 1in Sect. 5.
This equilibrium LIM state is obtained by slow cooling from the equilibrium
normal (paramagnetic) state through the superfluid transition temperature 7; [4].

(i) Due to a weak spin—orbit interaction, the obtained random orientation of the
orbital vector I in turn serves as the quenched random anisotropy disorder for the
spin-nematic vector d. As a result, the equilibrium spin-nematic LIM glass state
is formed, with much larger length scale, & 1vq > &€p > &Livi, Where &p is the
characteristic length scale of spin—orbit interaction, see Sect. 6.1.

(iii) There is also the nonequilibrium spin-nematic skyrmion glass state. It is obtained
when the large enough resonant continuous radio-frequency excitation is applied
during the cooling through 7¢ [4]. The characteristic length scale of this d glass
is smaller than &p, see Sect. 6.2. In theory such metastable skyrmion glass is
obtained by relaxation from the random initial configurations of the order param-
eter [34].
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5 Orbital LIM Glass
5.1 Larkin-Imry-Ma Orbital Glass in Isotropic Aerogel

The LIM state has been realized in the chiral Weyl superfluid *He-A immersed in
aerogel [4,7,35,36]. The random anisotropy of the aerogel strands destroys the long-
range orientational order of the orbital vector I giving rise to the LIM disordered state.
In equilibrium LIM state, the singular topological defects, such as singular vortices
and the hedgehogs (analogs of Nambu monopoles [37], which are the end points of
the singular Dirac strings [38—40]), are absent. That is why the LIM state can be
characterized by two types of skyrmionic topological charge: the homotopy group
72(S?) = Z describing linear skyrmions, and the homotopy group m3(S%) = Z,
which describes the hopfions. According to the Mermin—Ho relation, the 773(5%) = Z
Hopf invariant in Eq. (5) is expressed in terms of the superfluid helicity [26,41,42]:

m 2
03 = Nt = (55) " [ v® - (¥ x v (7)

According to Eq. (7), the typical value of the Hopf invariant in the sample of volume
Vs | Npopt | ~ (V /&l /2.

5.2 LIM Glass in Anisotropic Aerogel

In infinitely stretched aerogel, like nafen which we have in our experiments, the 3D
LIM state discussed in Sect. 5.1 is not realized. Instead, fluctuations of the interstrand
distance lead to disordered orientation of the 1 vector in the plane perpendicular to
the strands. We have indication of such 2D LIM state from the measurements of the
Leggett frequency in the polar-distorted A phase confined in nafen, Fig. 4. This is the
glass state with the fluctuations of the QO charge describing columnar skyrmions in
Fig. 1. But in the nonequilibrium state it can also contain merons—the 27 -vortices in
the vector 1 field (disclinations), whose winding number is given by

leifdsi.(ixasi). (18)
2

The core of the vortices with Q| = =1 is soft and is characterized by the half-integer
topological charge 0> = 41/2. The integral in Eq. (18) is around the soft core. In
bulk *He-A, merons are known as Mermin—Ho vortices, see review [10].

5.3 Superfluidity of 3D Skyrmion Glass in 3He-A

There were several suggestions that in chiral superfluids, superfluidity can be destroyed
by skyrmions [7,43].
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Fig. 4 Frequency shift of the NMR response of confined 3He as indicator of different order parameter
structures. Measurements are performed at P = 23.1 bar in the magnetic field H oriented along the nafen
strands (u = 0). The corresponding Larmor frequency fi, = |y |H /27 is 841kHz in nafen-90 and 363 kHz
in nafen-243. In these conditions, the NMR spectrum of SHe displays a single absorption line at a frequency
[ shifted from the Larmor frequency f1, as 2(f — fL) fL = (§2/ 27r)2, where §2(T, P) is the appropriate
Leggett frequency. a Frequency shift as a function of temperature. Temperature is given in units of the
normal-superfluid transition temperature of confined 3He, which is Te = 0.9827T¢, for nafen-90 and 7, =
0.97T for nafen-243 and Ty, is the transition temperature in bulk 3He. In nafen-243, only the polar phase
is seen below 7¢ down to the lowest temperatures. In nafen-90, the frequency shift coincides with that in
the denser sample in the range (0.965 = 1)7¢ indicating the polar phase, while at lower temperatures it
deviates downwards signifying the second-order transition to the polar-distorted A (PdA) phase. At even
lower temperature of 0.557¢, the frequency shifts jump upwards at the first-order transition to the polar-
distorted B phase. The solid line corresponds to 2 = /K (Te/Te) 24 (T Tep/Te, P) with K = 1. Here,
§2 4 is the Leggett frequency in bulk (undistorted) A phase. b The factor K extracted from data in panel (a)
compared to earlier measurements and theoretical models. In nafen-243, our measurements agree with the
results from Ref. [31], which are slightly below the weak-coupling value K = 4/3 for the polar phase. In
nafen-90 in the PdA phase, the value of K drops significantly below 1, expected for the uniform A phase.
This signifies formation of the orbital LIM glass with 1 vectors distributed in the plane transverse to nafen
strands. For completely uniform distribution of 1 directions one expects K = 1/2. This is not achieved in
our case, probably indicating residual anisotropy of the confinement (Color figure online)

Let us first consider superfluidity of the LIM state, which has been challenged in
Ref. [7]. According to Eq. (9), the average square of superfluid velocity is:
h2

2
<VS> ~ -

2:2
m3&i v

(19)

and thus for (Q%) the m = 1 scaling law in Eq. (10) is applicable. The power law
m = 1 in Eq. (10) produces the following scaling for the loop function:

(eifc A'dr> oce BN L s E . (20)

According to Ref. [44], the linear in L behavior of the exponent of the loop function
means that superfluidity is not destroyed by the LIM texture. The nonzero superfluid
density of the LIM state in 3He-A hasbeen measured [45-47]. That is why the LIM state
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in 3He-A represents the system where the off-diagonal long-range order is destroyed.
This is a 3D analog of the 2D Berezinskii—Kosterlitz—Thouless superfluid state. >He-
A represents the amorphous topological superfluid. The nonzero superfluid density
ps means that the coarse grained U (1) gauge field has a mass. Such glass state with
nonzero mass of the effective gauge field corresponds to the confined phase suggested
in Ref. [48].

The statement in Ref. [7] has been based on assumption of the m = 2 scaling
law, which is not correct. In case of LIM state, the superfluidity is preserved due to
m = 1 scaling. But the LIM state can be considered as a heat-insulator phase, since
the lowest-energy fermionic states, which live near the Weyl nodes, can be localized.
In principle, one may construct (possibly nonequilibrium) states with orbital disorder,
in which the mass (charge) superfluidity is lost. Other states are possible when the
mass superfluidity is lost, but the spin superfluidity retains, or vice versa: the spin
superfluidity is lost, but the mass superfluidity is not, see Sect. 6.3. Such states would
provide an analog of the separate charge and spin localization under random field [49].
However, it is not excluded that whatever is the scaling law, the glass state remains
superfluid because of the pinning of the texture.

5.4 Skyrme Superfluid Versus Skyrme Insulator

Another theoretical challenge is the stability of superflow in pure *He-A. It has been
suggested that easy creation of skyrmions by the mass current destroys the superfluid-
ity, and possible corresponding nonsuperfluid state has been called Skyrme insulator
[43]. In reality, however, a finite-size system remains superfluid since the Feynman
critical velocity vFeynman. approximately inversely proportional to the system size, is
not zero. In a channel of finite thickness, both the creation of skyrmion in 3He-A
and creation of vortex ring in superfluid “*He require the overcoming of the criti-
cal velocity, at which the creation of these objects become energetically favorable.
The Feynman critical velocity for creation of a vortex ring in superfluid “He is
VFeynman ~ (h/md)In(d/a), where d is the width of the channel or slab, and a is
the core size of the vortex. For skyrmions, the core size a ~ d, and vFeynman ~ h/md,
which is only logarithmically smaller than in superfluid “He.

The instability of the supercurrent toward creation of skyrmions has been measured
in 3He-A, see discussion in Ref. [40]. The measured threshold is much larger than the
Feynman critical velocity. The reason is that while the creation of the skyrmions
is energetically becomes favorable, the superflow is locally stable and the potential
barrier for creation is by many orders of magnitude larger than the temperature of
the system. That is why the skyrmions are created at the critical velocity, at which
the helical instability of the orbital texture develops. In principle, one can construct
geometry in which the superflow is locally unstable. In this case, the critical velocity
will be reduced to the Feynman critical velocity.
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6 Spin Glasses
6.1 Cascade of LIM Processes

The hierarchy of energy scales and corresponding length scales produces the cascade
LIM processes: the quenched orientational disorder of aerogel strands on nanoscales
gives rise to the orientational disorder in the orbital vector field (orbital glass state) on
a microscale, which in turn leads to the spin disorder (spin-glass state) on a milliscale.
According to the NMR measurements [4], the LIM scale for the disorder of the orbital
vector 1 is smaller than the characteristic scale of spin—orbit interaction, & vy <K &€p.
Then, the corresponding LIM scale of the disordered state of the spin-nematics vector
dis:

4

fLIMa = fD > &p > L. 1)

LIMI

This equilibrium spin-glass state can be characterized by its own 2 (S 2) and 3(S?)
topological numbers. The latter is the spin Hopf invariant:

Nopt = a2 dx ek A Fyy, (22)

where
Fjx = 0;Ax — %Ay = d- (9,8 x 34d) (23)

So this combination of the orbital glass and spin glass represents the hierarchical
double Skyrme glass.

6.2 Skyrmion Spin Glass

The nonequilibrium skyrmion glass state originally has been obtained when the large
enough resonant continuous radio-frequency excitation has been applied during the
cooling through 7, from the normal state to He-A [4]. The NMR signature of this
state demonstrates that the characteristic length scale of textures in this (Al-glass is
smaller than &p, contrary to the equilibrium spin glass in Eq. (21). The nonequilibrium
skyrmion glass with the same NMR signature can be also obtained by warming from
the B phase to the A phase through the first-order phase transition, see Fig. 2 and
spectra (3) and (4) in Fig. 5. Since such spin glass exists due to spin—orbit interaction
with orbital spin glass, which disappears on transition from the A phase to the polar
phase, the spin-skyrmion glass is annealed on this transition. On return back from the
polar phase to the A phase, we observe change from spectra (3) and (4) to (/) and (2),
respectively.

@ Springer



Journal of Low Temperature Physics

2.5

;2 Bulk line R
g It AM
g 1 ﬁM« n‘”‘l‘iu ﬂ/
§ 1.5 1
& \z”)
2 i

[

e |l 1
>

Z

0.5

Fig.5 Spin glasses in the polar-distorted A (PdA) phase of superfluid 3He in NMR observations. The main
panel shows NMR absorption spectra measured at temperature 7 = 0.47; and pressure P = 29.5 bar for
3He confined in nafen-90 with the magnetic field H transverse to nafen strands (i = 90°). The horizontal
axis is the shift of the frequency f of the NMR response from the Larmor frequency fi, = 409 kHz. On
cooling from the normal phase at this pressure and confinement, first the transition to the polar phase occurs,
which is followed by the second-order transition to the PAA phase, similar to Fig. 4. (1) The spectrum is
measured after normal to superfluid transition happened in the transverse magnetic field (« = 90°) and no
rf pumping. In this case, disordered spin structures are not created. The spectrum includes only the bulk
line at zero frequency shift. (2) Here, strong rf drive is applied during the superfluid transition in the field
tilted at © = 20° and the spin-vortex glass is formed, while formation of the HQV glass is suppressed. The
spin-vortex glass is manifested by a satellite peak at f — fi, =~ —.Ql%d A /4'712 fL ~ —8kHz, where £2pgp is
the Leggett frequency in the PdA phase. The satellite peak originates from spin d solitons stretched between
spin vortices. The solitons have thickness of the dipolar length £ ~ 10 um and occupy relatively small
part of the sample volume. (3) Skyrmion spin glass is formed when the state (/) is cooled further through
the first-order phase transition to the polar-distorted B (PdB) phase and then warmed through the first-order
phase transition from the PdB to PdA phase. In contrast to spin-vortex glass in (2), the satellite appears at
less negative frequency shifts and is also wider and larger in intensity, since essentially the whole volume
contributes to absorption. (4) When the spin-vortex glass in (2) is cycled to the PdB phase and back, the
combined spin-vortex and spin-skyrmion glasses are created, as seen from the two satellites present in the
spectrum. Note that the d-soliton satellite is modified when the soliton is embedded in the skyrmion spin
glass. Inset shows zoomed view of the spectral region with the d-soliton satellite (Color figure online)

6.3 Spin-Vortex Glass and Spin-Current Confinement

Spin vortices in the *He-A and in the polar phase are vortices in the d-field in the
presence of large enough magnetic field. If the characteristic magnetic length &maen <

&p, the magnetic field orients dLl H, and the spin vortices are described by w1 (shH =
Z winding number as in Eq. (18):
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01 =L5£ds2.(&xasa). (24)
2

Here the integral is around the vortex line. The core size of spin vortex is determined
by magnetic length, &magn. Such a smooth core of spin vortex represents meron in the

d-field, the half of the skyrmion described by the half-integer topological charge:

1 A N A
0, =1 / dxdyd- (0.d x ,d) = £1/2, (25)
4 ’

Our NMR experiments suggest that spin-vortex glass is formed after phase transition
from the normal state to the polar phase when strong pumping (sufficient to signifi-
cantly saturate normal-state response) is applied during the transition. This spin-vortex
glass is preserved on the transition from the polar phase to the A phase (where spin
vortices are probably pinned by the orbital LIM texture due to spin—orbit interaction),
see Fig. 2, and also on the backward transition. In experiment, spin-vortex glass is seen
via characteristic satellite in the NMR spectra at a relatively large negative frequency
shift, see spectra (2) and (4) in Fig. 5.

Let us consider fluctuations of the topological charge in the spin-vortex state. We
introduce the effective gauge field A describing the U (1) spin vortices with density
of topological charge ¢. This is similar to the effective gauge field representing the
equivalent description of disorder in terms the distributed linear topological defects
in, e.g., Refs. [20,50], where in particular the spin glass has been treated in terms of
the effective SU(2) gauge field. The noise in the distribution of positively charged
01 = +1 and negatively charged Q| = —1 spin vortices gives:

2 2
(0% = <7§A . dx) - (/ dSql) ~ L /8. (26)

Now the power law is m = 2, and Eq. (26) gives the following scaling for the loop
function:

<ei fe A'dr> o e L/, L > & qu. @7)

Such behavior suggests that in spin-vortex glass the spin superfluidity is destroyed, as
distinct from the spin-skyrmion state with m = 1. In gauge theories, the state with the
area law is the confinement phase, because the corresponding charges are confined
there, see, e.g., the book by Polyakov [51]. Again, the role of the pinning remains
unclear: the strong pinning of the topological defects may or may not restore the spin
superfluidity.
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7 Vortex Glasses
7.1 Glass of Half-Quantum Vortices

Quantized vortices strongly pinned by nafen strands form the vortex glass. The vortex
glass is obtained with the Kibble—Zurek (KZ) mechanism [52] by fast cooling through
T to the polar phase, Fig. 6a. As follows from the NMR experiments, the vortex
glass consists of the pinned Alice strings—half-quantum vortices (HQVs) with the
following structure of the order parameter:

(a)

& =a&(tq/t0) /"

o 0.16 f
N C L [ ]
T f, =374.7kHz (c) I
£ 1 7,=36x10"s 0.107
=
2 bulk line 5 0.06
< 05 ~
= V.
E satellite 0.04 ¢ i
g Iy NHQV Ev T(; /
o
z 0 4 2 0 2 0.02—=
- - -5 -4 -3
10 10 10
f—f s kHz -1 1

g -8

Fig. 6 Glass of half-quantum vortices created by the Kibble—Zurek mechanism in the polar phase of
superfluid 3He. a After nonequilibrium phase transition with a finite rate 7 of the temperature sweep
through T¢, the phase ¢ of the superfluid order parameter can develop to different values in the casually
disconnected regions. When such regions meet, a vortex can be trapped if the phase winding is 27 for
conventional superfluids or 7= for HQVs in the polar phase. In unconfined superfluid, KZ vortices rapidly
decay [53], but in the polar phase they are pinned on the nafen strands and remain at their initial density
determined by the KZ length &y. b In a magnetic field, transverse to the strands, d solitons emerge between
vortex segments with opposite orientation of spin-current circulation. For disordered and interlinked loops,
these solitons form Seifert surfaces. The examples here are from Ref. [54]. ¢ Spin waves bound to d solitons
give rise to a characteristic satellite in the NMR spectrum. The measurement here is done at 7 = 0.697; and
P = 7bar. d The normalized area of the satellite /syt is proportional to the number of HQVs Nyqy o< &y 2
and to the average soliton length &y. The experimental points (circles) [15] follow the expected dependence

Igat ré 1/ 4. Moreover, they are in a reasonable agreement with the theoretical expectation (solid line)

based on the value of a measured in He-B [55] and no further fitting parameters (Color figure online)
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Ay = Apel¥/? <£M cos% + Yy sin %) éi, (28)

where ¢ is the azimuthal angle around the vortex line. The half-quantum vortex is
a combination of the mass vortex with winding number N = 1/2 and spin half-
vortex with Q1 = 1/2. That is why, when the magnetic field is switched on, the spin
half-vortex gives rise to the spin soliton terminating on the vortex, Fig. 6b. The spin
solitons formed between HQVs produce the satellite peak in NMR spectrum, Fig. 6c.
The intensity of the peak allows us to determine the density of half-quantum vortices,
which agrees with the expectations from the KZ mechanism, see Fig. 6d.

The observed vortex glass—the Alice glass—differs from the Larkin vortex glass in
superconductors, where vortices have preferred orientation of magnetic fluxes along
the magnetic field. In the isotropic aerogel vortices have random orientation of vor-
tex lines. In the aerogel with preferable orientations of the strands, the pinned vortex
segments tend to align along the stands and thus they form disordered Ising glass
with the random distributions of the winding numbers N = +1/2and N = —1/2.
This configuration is, however, not uniform along the strand direction, since the same
vortex can be pinned by different strands in different parts of the sample. This type of
vortex matter adds to the Zoo of vortex states in superconductors: Bragg glass, vortex
glass, vortex liquid and the Abrikosov lattice [56,57].

Several types of the solitonic glass are possible. Spin solitons are formed in the glass
or the lattice of half-quantum vortices. They are formed between the half-quantum
vortices due to spin—orbit interaction. In the vortex glass, they form the solitonic
glass, and in the vortex lattice—the analog of Bragg glass (solitonic Bragg glass).

8 Discussion: Topological Fermionic Glasses

The spin-triplet superfluid phases of >He have rich topological properties, which allow
us to produce many types of the glass states classified in terms of the pinned topological
defects (Alice strings, monopoles, domain walls, etc.) and textures (skyrmions, hop-
fions, merons, solitons, etc.). Some of these states have been experimentally identified
in NMR experiments, but many other states are still waiting for their strong identifica-
tion. Experimental and theoretical study of these states may lead to discovery of new
phenomena and new concepts in the physics of the topological disorder.

However, what seems to be the most important, is that all the observed spin-triplet
superfluid phases of He are topological superfluids, described by the topological
invariants in momentum space.

1. The A phase and the polar-distorted A phase are Weyl superfluids with Weyl nodes
in the fermionic spectrum. The Weyl points serve as the Berry phase magnetic
monopoles, but now in momentum space [58]. The corresponding Hamiltonian
for quasiparticles near the Weyl points has the form: H = ¢!, (p; —qA;)o“, where
0@ are the Pauli matrices in the Bogoliubov—Nambu particle-hole space; ¢!, are
the elements of the effective (synthetic) tetrad field; A = k pi is the effective
(synthetic) electromagnetic field; and ¢ = %1 is effective electric charge.
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2. The polar phase has Dirac nodal line in the fermionic spectrum and correspond-
ingly the degenerate tetrad field [59].

3. The B phase and the polar-distorted B phase are fully gapped topological super-
fluids of the DIII class with Majorana fermions on the surface. These phases
become the higher-order topological superfluids in applied magnetic field, see,
e.g., Refs. [60,61]

In the glass phases, the disorder adds new features to the topological structure in
momentum space, and the momentum-space topology meets the real-space topology
[62—-65].

In particular, in the disordered LIM state of 3He-A in isotropic aerogel, the posi-
tions %k £1 of the Weyl nodes and the orientations of the tetrads efl are smoothly and
randomly distributed in space forming a unique example of a Wey! glass. The random
positions of the nodes give rise to the random effective gauge field A = kpV x 1, while
the random orientations of the tetrads with (e ) = 0 form the analog of the torsion
foam in quantum gravity [66,67].

Smooth disorder of superfluid phases of *He allows us to consider the disor-
dered state as collection of domains with different values of the momentum-space
invariants—the Chern numbers [64,68]. Such topological glass state represents the
real-space analog of the Chern mosaic in the space of parameters [69,70].
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