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Abstract

Mobile robots are being increasingly deployed in fields where human intervention is deemed
risky. However, in doing so, one of the prime concern is to prevent complete battery de-
pletion which may in turn lead to immobilization of the robot during the mission. Thus,
we need to carefully manage the energy available to explore as much of the unknown envi-
ronment as feasible whilst guaranteeing a safe return journey to home base. For this, we
need to identify the key components that draw energy and quantify their individual energy
requirements. However, this problem is difficult due to the fact that most of the robots have
different motion models, and the energy consumption usually also varies from mission to
mission. It is desirable to have a generic framework that takes into account different locomo-
tion models and possible mission profiles. This paper presents a methodology to unify the
energy consumption models for various robotic platforms thereby allowing us to estimate
operational range in both offline and online fashions. The existing models consider a given
mission profile and try to estimate its energy requirements whilst our model considers the
energy as a given resource constraint and tries to optimize the mission to be accomplished
within these constraints. The proposed unified energy consumption framework is verified by
field experiments for micro UGV and multi-rotor UAV test-beds operating under myriad of
environmental conditions. The online model estimates operational range with an average
accuracy (measured with respect to true range across multiple field trials) of 93.87% while
the offline model attains 82.97%.

∗At the time of submission, the author was with School of Information Science, Japan Adv. Inst. of Sc. & Tech. (JAIST),
Ishikawa, 923-1292, Japan where the majority of this work was carried out, as a part of his Ph.D.
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1 Introduction

Most of the commercially available robots and other experimental platforms widely used for field experiments
are powered by a portable battery. Thus, the capacity of the battery affects the overall mission duration and
performance. Most of the times, the robots are used in DDD (Dangerous, Dirty, and Dull) environments
(Murphy, 2000). This applies to most kinds of mobile robot platforms, including Unmanned Ground Vehicle
(UGV), Unmanned Aerial Vehicle (UAV), and Unmanned Marine Vehicle (UMV) as shown in Fig. 1. In
such scenarios, if the robot battery is completely depleted, then, the robot will be stranded and must be
retrieved either by a human operator thereby increasing life risk or by another robot which increases the
project cost. To prevent such scenarios, it is necessary to carefully estimate the energy requirements of a
mission and plan the journey such that the exploration is informative1 and the robot always returns to base
station. In order to do so, it is necessary to exhaustively study the energy breakdown of various components
of a mobile robot and to quantify them such that energy consumption can be optimized to allow the robots
to explore larger proportions of the fields.

Currently, the researchers have proposed either human-controlled strategies, whereby, based on the cur-
rent battery levels, the human decides when to terminate the mission (Sadrpour et al., 2012) or a more
autonomous extension (Berenz et al., 2012) where the robot can autonomously return to base station to
recharge. However, when we deal with DDD environments, recharging or replenishing of power sources is
usually deemed infeasible due to time critical nature of the missions. Thus, we need mission planning strate-
gies which can optimize the robot trajectories to simultaneously ensure safe return to base and accrue as
much information about the unknown environment as feasible, whilst operating on a single discharge cycle.

(a) Unmanned Ground Vehicle (UGV)
(UGV, 2011)

(b) Unmanned Aerial Vehicle (UAV)
(UAV, 2016)

(c) Unmanned Marine Vehicle (UMV)
(UMV, 2017)

Figure 1: Scenario. Given the nature of the robot, it should be able to estimate its maximal operational range within which
the exploration must be completed including the return trip to base.

This paper serves as an extension of our preliminary findings (Tiwari et al., 2018). In our prior work, we
focused on autonomous ground robots operating in approximately smooth terrains with constant change
of gradient but now we extend and generalize our previous model to various robotic platforms operating
in natural environmental conditions. Before we do so, we distinguish between the terms “framework” and
“model” aided by Fig. 2. In light of this setting, the generalized framework is no longer restricted by the
assumption of wheeled ground locomotion, but is now able to account for different locomotion principles from
other regimes and is equally applicable to commercially available or custom built robots. As case studies, we
provide detailed explanation as to how our framework can be applied to micro-UGVs and multi-rotor UAVs.
To this end, we propose an offline variant which relies on expertise of the operator to set an appropriate
prior and also an online model which determines the model parameters based on real-time operation data.

1“informativeness” of exploration could be determined based on user-defined criteria like entropy minimization, maximal
area coverage etc.
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Figure 2: Framework versus model. Illustrating the difference between the terms “framework” and “model”. The term
“framework” refers to the overall architecture which houses 2 sub-modules for categorizing energy distribution from battery
and models for transforming energy into attainable operational range. On a high level, this architecture is common to all kinds
of robots with the difference only in locomotion models which appears in low level of the online/offline modules and hence the
notion of unification is captured.

Under this setting, we intend on addressing the following research question: Given the dynamics model,
minimal prior information about operational environment and battery characteristics, how accurately can we
estimate the maximal operational range to avoid complete immobilization amidst the mission?

The rest of the paper is organized as follows: We begin by summarizing some of the state-of-art works related
to our work in Section 2 and highlight their limitations which serve as a motivation for our framework. We
then explain our proposed framework in Section 3 which is backed by empirical validation shown in Section
4. We conclude this work in Section 5 and propose some future extensions to our proposed framework. All
notations have been summarized in Table 1 in Appendix A.

2 Related Works

The body of work regarding a general robotic energy model is relatively small. Most of the works are purely
focused on quantifying / minimizing the energy used only for robot’s locomotion and the range estimation
is mostly based on real-time energy requirements or learning techniques. In (Broderick et al., 2014), the
researchers were concerned about assessing the energy usage of a mobile robot where the robot itself was
considered as a “black box”. This is not always desirable since the robotic components’ energy consumption
is of importance as well. Also, pre-defined trajectories were considered to estimate the velocity profile. This
is useful to test the model for agile motion as the robot maneuvers along straight stretches and executes
turning. But this neither takes into account the impact from variable velocity nor does a robot follow
fixed trajectories in real missions. The authors in (Sadrpour et al., 2013) aimed at predicting the expected
mission energy required while a mission is being executed and proposed machine learning techniques for
online update of these estimates based on real-time data gathered. Learning techniques may be useful in
practice, but the “black box” methodology of neural networks or similar machine learning models provides
limited understanding of energy distribution. Since most robots only use one shared battery for all on-board
energy consuming components, we need to understand the energy distribution in different component so
that we know how much energy is used to move the robot. Energy considerations also motivate research
in multi-robot coordination. Due to energy constraint, it is always desirable to allocate tasks to robots,
which are, if reachable, the closest to the task (Liu and Shell, 2012). However, this also requires an accurate
estimate of the achievable range for each individual agent.

Besides those mentioned above, most researchers assume that a robot keeps moving incessantly at a constant
3



velocity, i.e., the robot does not need to stop and process data, but in reality robot might need to occasionally
stop to process and send the data. Also, given the resource constraints (fixed battery capacity, limited travel
time, limited payload capacity, etc.) of a robot, it is also essential to consider resource constrained path
planning such that the total path length is bounded. In doing so, we not only respect the resource constraints
which are presented inherently while using robots but also ensure that the robot reserves sufficient resources
to avoid strangulation.

For exploration mission, the consumed energy could be logically classified into two categories: locomotion and
ancillary energy. The former is used to propel the robot into unknown areas. This energy is mostly mechanical
and is consumed by physically moving the robot and overcoming the resistance from the environment, such
as change of elevation, friction from contact, wind drag, etc. The latter is the energy used to replace human
presence, such as sensing and communication with peers/base. The current literature focuses more on the
impact from the first category, locomotion energy, and thus, could be categorized easily by the type of
locomotion model.

2.1 Unmanned Ground Vehicle (UGV)

Unmanned Ground Vehicle (UGV) is the most widely used robotic platform for unknown terrain exploration.
Different from other types of platforms, UGV’s terramechanics model was well established since the 50’s
(Bekker, 2016). Other works include range estimation for Electrical Vehicles (EV) based on a simplified
power train model (Hayes et al., 2011; Bingham et al., 2012). In the robotics field, UGVs’ energy are
inspected mainly in terms of motion energy (Mei et al., 2005). In (Sadrpour et al., 2013; Broderick et al.,
2014), researchers study the necessary energy and remaining battery life based on real-time performance
data. Energy consumption minimization techniques have been focusing on trajectory and path planning
(Liu and Sun, 2014; Kim and Kim, 2014; Yazici et al., 2009; Mei et al., 2004) and high level scheduling
(Vergnano et al., 2010).

2.2 Unmanned Aerial Vehicle (UAV)

Unlike UGVs, energy related research on Unmanned Aerial Vehicles (UAVs) have started to inspect the flight
dynamics and aerodynamics model. (Traub, 2011) looks into energy consumption and range estimation for
small fixed wing vehicles based on an aerodynamics model. With the rapid development of rotor-craft,
researchers start to inspect the energy related issues in terms of those vertical take-off and landing (VTOL)
platforms. Compared to the well developed terramechanics model, the dynamics for UAVs are still being
actively inspected. (Aleksandrov and Penkov, 2012) investigates the effect of different number of rotors on
energy consumption of mini UAV. Using an alternative energy source, such as solar energy (Kwon et al.,
2011), is another direction of robot design. High level energy consumption strategies are inspected by
(Economou et al., 2007), but as compared to UGV’s, there is a vast scope of research in this domain.

2.3 Unmanned Marine Vehicle (UMV)

Unmanned Marine Vehicle (UMV) includes Unmanned Surface Vehicle (USV) and Autonomous Underwater
Vehicle (AUV). There is some work on energy harvesting with USVs (Manley, 2008; Toh et al., 2011).
However, the purpose of using USV is mainly for energy harvesting, not for exploration. Energy related
researches are still looking at effective alternative energy sources (Adams and Halliop, 2002; Webb et al.,
2001; Raugel et al., 2010), including seawater-breathing based on the reaction of powdered aluminum (Miller
et al., 2002) and solar panel (Bellingham and Rajan, 2007). However, some other researchers like (Phillips
et al., 2015) are developing analytical models for deducing optimal cruising speeds of AUV’s.
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2.4 Limitations of Existing Works

Most of the aforementioned works either consider the mission profile to be known a priori and then try to
estimate/ optimize the energy requirements based on locomotion models only. As opposed to this, it is rather
natural to consider the energy itself to be fixed and known a priori given the battery characteristics which
serves as the resource constraint, when the robots set out to explore the environment. Thus, we should solve
the inverse problem where the energy constraint is known and the path length must be optimized within
these constraints. Furthermore, the existing models are made specific to the robot under consideration and
to the best of our knowledge, there exists almost no framework generic enough to estimate the operational
range of any mobile robot operating on a single discharge cycle. This forms the foundation of our proposed
model which considers the locomotion model along with the ancillary functions. Both these consumers draw
power from the same source and hence must be accounted for. While doing so, the proposed model is made
generic so as to accommodate any robot while retaining the same form.

3 Proposed unified framework

In this section, we explain the novel contributions of this work. So far, standalone researches have looked into
development of analytical models for mission energy consumption and duration of specific robotic platforms.
Their main focus was to estimate the endurance and energy requirements for robots. Some models were
offline whilst others were online built upon real-time operation data. However, one major limitation of these
models was that none of them could estimate the maximal operational range of the robot given some a
priori known information about the execution of the mission. Furthermore, premeditated trajectories were
considered which are not feasible for real-world applications.

Thus, we aim at unifying all such models into one global framework for estimating operational range of
a variety of robots. For this, we require the battery characteristics be known which may be additionally
supported by a priori mission information, if available. While doing so, we account for variable environmental
factors along with the requirements to stop and process the data which in turn affects the maximum attainable
range whilst avoiding any premeditated trajectories making our model more pragmatic.

3.1 Energy distribution model for diverse robots

Figure 3: Energy distribution model for unification framework. Any type of robot, whether a micro UGV, quadrotor UAV,
or AUV, uses portable battery packs which are utilized for essentially two functions: Firstly, maneuvering like propulsion,
hovering, navigation, etc. and secondly, ancillary functions like wireless communication, sensing, on-board processing etc.

The energy distribution model of our proposed unified framework is shown in Fig. 3: Irrespective of the
nature of the robot, the energy available from the battery is always utilized for two kinds of processes viz.,
maneuvering which we refer to as propulsive energy (PE) and ancillary functions which is referred to as
ancillary energy (AE). In an ideal situation, the net energy from battery (E), propulsive energy (PE) and
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ancillary energy (AE) are related as:

E = AE + PE (1)

In reality, owing to several types of losses of capacity, the total energy of the battery is not available as it is.
In our prior work, we identified 4 kinds of losses associated with maneuvering and ancillary function modules
that, in turn, will affect the maximum attainable range of a mobile robot. They are: battery charge storage
loss (η1), drive motor loss (η2), mechanical losses owing to internal friction (η3) and ancillary losses (η4). So,
the overall system efficiency of a robot (r) can be summarized as rΩ := Π4

i=1¬ηi, where ¬ operator represents
the complement of corresponding losses. The maneuvering efficiency is given by rΩMan := Π3

i=2¬ηi and the
ancillary efficiency is given by rΩAnc := ¬η4. Here, we have used the zeroth order polynomial i.e., the first
order approximation of the efficiency of the system to estimate its lower bound. However, if we used a more
complex model (higher order polynomial) that perhaps also accounts for mechanical degradation, changes
in current demands owing to variable motor loads, elevation changes and operational velocity modulations
etc., better estimates can be obtained. An even higher complexity model could also track the changes in
these parameters in real-time which can be used to account for system efficiencies in an online fashion
and maintain tighter bounds. Having said this, the challenge still remains to identify such models and
quantify their parameters. For the scope of this work, we retained only the first order approximation and
will investigate the complex counterparts in future works.

As for the propulsive energy, any robot (r) carrying out a mission (m) in an environment of choice experiences
4 kinds of forces:

1. Constant resistive force F (r,m) as a function of robot (r) and the mission (m): e.g., the force acting
on a robot when it is traversing in a straight line under the influence of a constant magnetic field.

2. Environment dependent force F (x, r,m) which is dependent on the current position x: e.g., changing
gravitational potential along with changing frictional force because of change in coefficient of friction.

3. Time dependent resistive force F (t, r,m) which is a function of current time t: e.g., unforeseeable
disturbances (strong wind gusts etc.).

4. Instantaneous operational velocity dependent resistive force F (v, r,m) which varies with instanta-
neous velocity v: e.g., aerodynamics and gyro effect.

Thus, the net propulsive energy (PE) is given in terms of mechanical energy (ME) from longitudinal dynamics
model and the net mechanical efficiency (rΩMan) as:

PE =
ME

rΩMan
,

=

∫
Path

FNetdx

rΩMan
,

=

∫
Path

{F (r,m) + F (x, r,m) + F (t, r,m) + F (v, r,m)}dx

rΩMan

(2)

Since a robot may occasionally need to stop and process the data, we define a term duty cycle (D) which
is the proportion of net mission time that the robot was actually mobile. Then, the duration (t) can be
expressed as a function of position (x), velocity (v), mission (m) and duty cycle2 (D) as:

t = g(x, v,D,m) (3)

2Duty cycle (D) refers to the proportion of the mission duration during which the robot was actually moving. For additional
details, please refer to Table 1.

6



An example of the function g(·) represented by Eq. (3) can be the following. Consider a robot moving with
velocity v = 10m/s and a duty cycle of D = 0.5. Let the mission (m) be to traverse 10m in a straight

line. Then, for moving from x1 = 0 to x2 = 10m, the duration, t =
(x2 − x1)

(vD)
. During the mission (m), we

assume that the robot traverses at an instantaneous velocity (v) and a fixed duty cycle (D). Thus,

PE =

∫
Path

{F (r,m) + F (x, r,m) + F (g(x, v,D,m), r,m) + F (v, r,m)}dx

Ω
,

=
{F (r,m) + F (v, r,m)}d

rΩMan
+

d
∫

Path

{F (x, r,m) + F (x, v,D, r,m)}dx

d rΩMan

(4)

Moreover, we know that ancillary energy (AE) is given by:

AE =
PAncd

vAvgD
, (5)

where

PAnc = {s0 + s1fs}︸ ︷︷ ︸
PSense

+ {PComp + PComm}︸ ︷︷ ︸
Pc

= {s0 + s1fs}+ {PComp + k × |Data| × fComm}
= {s0 + s1fs}+ {PComp + k ×R}

(6)

As an enhancement for the ancillary power consumption model over our prior work, here, the communication
power is related with both the size of the data i.e., |Data|, and the frequency (fComm) at which the com-
munication takes place. These two terms could be unified into data rate (R), i.e., the amount of data sent
in unit time. The communication power is then proportional to the data rate with a constant power/data
rate coefficient k (c.f. (Kim and Lee, 2000)). Arguably, the computation power is also a function of the task
allocated to the robot, quantifying which, is beyond the scope of our current work. As for the power con-
sumed by sensors given by PSense, it can be modeled as a function of the sampling frequency fs. The scalars
s0, s1 refer to the static power consumption and operational power consumption coefficient respectively.

So, the operational range for any robot can be given in terms of residual energy supplied by battery (Ẽ) as:

d =
Ẽ

{F (r,m) + F (v, r,m)}
rΩMan

+

∫
Path

{F (x, r,m) + F (
x

vD
, r,m)}dx

d rΩMan
+

PAnc

vAvgD

(7)

Here, rΩMan is the net maneuvering efficiency of the robot, i.e., the percentage of energy used to do actual
mechanical work from the maneuvering branch. From Eq. (7), it is evident that in order to estimate the

operational range, we need to approximate the term

∫
Path

{F (x, r,m) + F (
x

vD
, r,m)}dx

d rΩMan
and the operational

range estimate would be as good as the approximation.
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3.2 Range estimation models for diverse robots

In order to approximate Eq. (7), we propose two different approaches viz., 1.) Offline estimation which is a
one-shot prediction model wherein we conjecture at the beginning of the mission itself and predictions are
not corrected based on the new data acquired, and 2.) Online estimation whereby we recursively update our
estimation using all available operational data. In the conventional setting, offline estimates are generated
once all the data is made available, while the online estimates are limited to the data currently available.
As opposed to this setting, the offline model being referred to here relies on defining the required parameter
values a priori and retaining the estimates. The online model on the other hand recursively updates the
estimates as more data is made available. Furthermore, for each approach we propose particular models for
UGVs and multi-rotor UAVs.

3.2.1 Approach 1: Offline operational range estimation for diverse mobile robot platforms

We first present an Offline model to estimate the operational range applicable to diverse range of unmanned
platforms, with the assumption of a priori knowledge of the mission characteristics required for estimation
over the entire mission: e.g., average terrain elevation and its variance from the mean value in case of UGVs
and average wind compensation angle in case of UAVs.

3.2.1.1 UGV operating in uneven terrain

In our previous work, we considered our operational environment to be a smooth terrain with a constant
elevation. However, in this work, we further enhance our model by extending it to uneven terrains with
variable elevation making it better suited to real world scenarios.

Any natural terrain can be modeled using three features: 1.) flats: smooth surfaces with negligible gradient,
2.) slopes: smooth surfaces with appreciable gradient and 3.) rubble: uneven rough surfaces with no
particular gradient characteristics. The operational terrain may have an average slope (γ) with respect to
which the operational range d should be calculated. In Fig. 4, the dashed line represents the actual terrain
which must be traversed where QP represents the actual d. QR is the horizontal reference with respect to
which the instantaneous road elevation is calculated.

𝜃 𝛾

d

v
h

Q R

P

Figure 4: Schematic of actual terrain profile without rubble. v represents the instantaneous velocity, γ is the average terrain
elevation and θ represents instantaneous road gradient with respect to γ. h represents the elevation gain and d represents the
operational range.

1. Considering flat terrains exclusively, the only resistive force acting on the robot is the (rolling)
friction between the wheels and the ground. This is defined as:

FFlats = Normal Force× C(x)rr (8)
8



where, C(x)rr refers to the coefficient of rolling resistance.

2. Accounting for slopes, the net force acting will be friction along with the weight component along
the motion of the robot. These forces are a function of the robot location x and the instantaneous
terrain elevation at x given by θ(x).

FSlopes = FFlats +mRg sin(γ + θ(x)) ,

= C(x)rrmRg cos(γ + θ(x)) +mRg sin(γ + θ(x))
(9)

3. Finally, considering rubble, in our force model, excess forces (FRubble) acting due to presence of
rubble need to be accounted for. Let k(x)Terr be the terrain coefficient which depends on size,
shape, density and resistance offered by the rubble. Then, the net forces (FNet) acting on the robot
can be given by:

FNet = FSlopes + FRubble ,

:= k(x)Terr(FSlopes)
(10)

Thus, the net maneuvering force (UGV F (x)Man) for any UGV on an uneven natural terrain is given by:

UGV FMan = k(x)TerrmRg[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))] (11)

In order to estimate the achievable range d, we first define the total energy model in a real world setting as
a sum of Ancillary Energy (AE) and Traversal Energy (TE):

Ẽ = AE + TE ,

= {Ancillary Power × time}+

∫
Path

UGV F (x)Mandx

UGV ΩMan
,

= PAnc ×
d

vAvg cos(θAvg)D
+

∫
Path

k(x)TerrmRg[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

UGV ΩMan
,

= PAnc ×
d

vAvg cos(θAvg)D
+

 mRg
UGV ΩMan

×

∫
Path

k(x)Terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx× d

d

 ,

= d×

 PAnc

vAvg cos(θAvg)D
+

mRg
UGV ΩMan

×

∫
Path

k(x)Terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

d

 .

(12)

Here, d refers to distance covered by the robot. The maximum attainable distance, dMax (operational
range) is a function of the optimal velocity vOpt. Cruising at speeds higher/lower than vOpt would result in
operational ranges lesser than dMax. So, Eq. (12) can now be written as:

dMax =
Ẽ

PAnc

vOpt cos(θAvg)D
+

 mRg
UGV ΩMan

×

∫
Path

k(x)Terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

dMax


.

(13)

9



From Eq. (13), we infer that the factor

 mRg
UGV ΩMan

×

∫
Path

k(x)Terr[C(x)rr cos(γ + θ(x)) + sin(γ + θ(x))]dx

dMax


gives us the average resistive force which acts on the robot on the path QP as shown in Fig. 4. Thus,
replacing this factor by the expected average resistive force, we can deduce the dMax and our estimation
will be as good as the estimation of the expected average resistive force. As the operational efficiency of
the actuators varies with operational speed, vOpt is the velocity at which the net losses of ancillary and
maneuvering energy are minimal. Also, as vOpt is a complex function of robot/actuators, exact trajectory
traversed or path taken and the mission characteristics, no further comments or profiling of vOpt is possible
in the scope of current work. In realistic scenarios, the offline model needs the values of k(x)Terr, C(x)rr
to be defined for each x to find average expected resistive force. Or equivalently, we can eliminate the
integral over the path by replacing it with average expected resistive force which can be done by replacing
k(x)Terr, C(x)rr, θ(x) by their averages k̄Terr, C̄rr, θ̄, respectively. These values for the offline model can be
estimated using any of the following methods: 1.) Using the data and experience acquired over the previous
missions; 2.) carrying out a trial mission and then using the acquired information as prior knowledge
for the actual mission; 3.) using the expertise of the operators (system/environment experts) to provide
realistic/good estimates. For this work, we have utilized the approach 2.) mentioned above.

3.2.1.2 Multi-rotor UAV operating in presence of external disturbances
Albeit the energy distribution for a UAV is quite similar to that of a UGV as mentioned previously, slight
differences still exist. One of the differences is that during the mission, a UGV may have phases of negligible
maneuvering energy requirements whilst a UAV continuously needs to hover and maintain flight stability.
As opposed to (Gatti et al., 2015), we not only consider the hovering and aerial drag losses but also account
for flight adjustments required due to unpredictable environmental factors (like strong wind gusts, etc.).

Analogous to the UGVs, the energy for hovering, drag losses and flight adjustments in UAVs are comparable
to energy requirements of motion over flats, slopes and rubble respectively. This is owing to the fact that,
in case of hovering, the UAV experiences a constant environment dependent force required to stay aloft.
Similarly, to maintain motion for a UGV, it must constantly overcome the resistive frictional forces. Identical
analogues can also be drawn for remaining cases.

1. For hovering, we refer to works of (Abdilla et al., 2015b). For a UAV with NR propellers each of
radius rp with a figure of merit Γ and rotor thrust THover in an atmosphere of density ρ, the hovering
power (PHover) can be defined as:

PHover =
(THover)

3
2

Γrp
√

2NRρπ
,

=
(mRg)

3
2

Γrp
√

2NRρπ

(14)

2. Also accounting for flight adjustments3, the instantaneous power (P (t)fa) is given by:

P (t)fa =
[T (t)fa]

3
2

Γrp
√

2NRρπ
(15)

where the instantaneous thrust with flight adjustments (T (t)fa) is defined as:

T (t)fa := THover + T (t)Adjust ,

T (t)Adjust = f(t)TController

(16)

3The term flight adjustments takes into account all adjustments the UAV needs to make in order to maintain its course in
presence of external disturbance or otherwise.
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In Eq. (16), Tfa(t) refers to the net thrust required for hovering with adjustments. This is defined in
terms of hovering thrust (THover) and adjustment thrust (TAdjust(t)). The term TController refers to
the thrust required to follow the acceleration profile generated by the chosen flight controller (e.g.,
PID controller or Neural Networks, etc.) and f(t) is a time dependent constant of proportionality.
In order to generalize our model and remove the dependence on any particular flight controller, we
choose to model TAdjust as a time dependent function of THover as:

T (t)Adjust := k(t)EnvTHover . (17)

Here, k(t)Env is the constant of proportionality. Thus,

T (t)fa = THover + k(t)EnvTHover ,

= mRg + k(t)EnvmRg .
(18)

P (t)fa =
[mRg + k(t)EnvmRg]

3
2

Γrp
√

2NRρπ
(19)

So, the average power for flight adjustments over the entire time of flight (TOF ) is given by:

Pfa :=

∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF Γrp
√

2NRρπ
(20)

3. Finally, we incorporate drag losses acting on rotor blades. The drag force (FD) on NR propellers,
with drag coefficient CD, cross-section area A and velocity v is estimated from fluid mechanics as:

FD =
NRρCDAv

2

2
,

=
NRρCDA(rpω)2

2
.

(21)

where, rp is the propeller radius and ω is its angular velocity. The drag torque (τD) is given by:

τD =

∫ rp

0

FDdr ,

=
NRρCDAr

3
pω

2

6

(22)

Since the power required to overcome the drag losses is given by τDω and we know that drag thrust
T (t)fa(= NRkrω

2) for the propeller constant kr, we can define the instantaneous power for drag
losses (PD(t)) as:

PD(t) =
ρCDAr

3
p[T (t)fa]

3
2

6kr
√
NR

(23)

Substituting Eq. (18) into Eq. (23), we get:

PD =

ρCDAr
3
p[
∫

TOF

{mRg + k(t)envmRg}dt]
3
2

6kr
√
NR TOF

(24)

The net energy required for navigation of a UAV is now given based on Eq. (12) as:
11



Ẽ = AE + TE ,

= Ancillary Power × TOF +
[PD + Pfa]TOF

UAV ΩMan
,

= PAnc × TOF +

[

ρCDAr
3
p[
∫

TOF

{mRg + k(t)EnvmRg}dt]
3
2

6kr TOF
√
NR

+

∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF Γrp
√

2NRρπ
]

UAV ΩMan
,

= PAnc × TOF +



[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan




∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF

TOF

(25)

Rearranging the terms in Eq. (25), we get:

TOF =
Ẽ

PAnc +



[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan




∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF


(26)

Replacing TOF =
dMax

vOpt
in Eq. (26), we obtain:

dMax =
Ẽ

PAnc

vOptD
+



[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩManvOpt




∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF


,

∵ D=100% for UAV ,

dMax =
Ẽ

PAnc

vOpt
+



[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩMan




∫
TOF

[{mRg + k(t)EnvmRg}dt]
3
2

TOF vOpt


,

(27)

From Eq. (27), the factor



[
ρCDAr

3
p

6kr
√
NR

]
+

[
1

Γrp
√

2NRρπ

]
UAV ΩMan


{∫

TOF
[{mRg + k(t)EnvmRg}dt]

3
2

TOF vOpt

}
represents

the average resistive force experienced by the UAV over the entire time of flight. This is akin to Eq. (13)
which serves to justify our claim of a Unified framework. An apt replacement of this parameter by using
the expected average resistive force can help to estimate the maximum operational range for the UAV. The
error in estimation of this factor directly translates to the error in expected operational range and can be
estimated using the same methods as mentioned in the case of UGV.
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3.2.2 Approach 2: Online operational range estimation for diverse mobile robot platforms

Previously, we introduced an offline range estimation model, whereby, based on a priori known mission
characteristics, we can estimate the maximum attainable range for mobile robots. However, in reality, it
might be rather challenging to strictly follow the mission characteristics or to even obtain a priori mission
information. In order to adapt to such situations, we now propose an online variant of our operational
range estimation framework. In this method, based on all available real-time data, the operational range is
recursively updated.

3.2.2.1 UGV operating in uneven terrain
In Eq. (13), the terms k(x)Terr and θ(x) can either be set by a human operator (offline model) or can be
deduced from prior missions carried out in that terrain. However, the former introduces human error and
the latter is usually not available. Thus, as an alternative, we now replace k(x)Terr, θ(x) by their respective

estimates, k̂(x)Terr, θ̂(x). Additionally, the offline model used instantaneous rolling resistance Crr(x) while
here it is being approximated by a constant Crr. So, the estimated maximum range for the remaining mission
is now given by:

d̂
[t:end]
Max :=

ẼRem

PAnc

vOptD
+
k̂(x)Terr[Crr cos θ̂(x) + sin θ̂(x)]mRg

UGV ΩMan

, (28)

where

ẼRem = Ẽ[0:end] − Ẽ[0:t] (29)

Here, ẼRem is the useful energy remaining in the battery and Ẽ[0:end] is the usable energy present in the
battery at the start of the mission, i.e, at t = 0. Similarly, Ẽ[0:t] is the energy spent from t = 0 to time
instance t. Now, the total estimated maximum operational range over the entire mission is given by:

d̂
[0:end]
Max = d[0:t] + d̂

[t:end]
Max (30)

In Eq. (30), to estimate the net operational range for the entire mission (d̂
[0:end
Max ]), we need to utilize the

distance that has already been covered (d[0:t]) and estimate the maximum distance that may be covered

(d̂
[t:end]
Max ) based on available residual energy. The value of k̂(x)Terr that is required for estimating d̂

[t:end]
Max can

be estimated using Eq. (28). During the mission, after every time-step (t), the robot will have the knowledge
of the distance that it has covered in that time-step, energy it has spent to cover that distance and terrain
elevation θ for that time step. Substituting the value of d[t−1:t] for dMax and E[t−1:t] for ẼRem in Eq. (28),

we can calculate the value of k(x)
[t]
Terr for the given time-step t. Now, these set of values of k(x)

[t]
Terr can

be used to estimate k̂(x)Terr which in turn can be used to make predictions about the distance the robot
can still cover using the remaining energy. Since the estimate for the remaining distance depends upon the
value on the estimation of k̂(x)Terr and θ̂(x), which needs to be recursively updated as new data is being

collected, we utilize a recursive average filter. For ease of notation, we define X̂[t] = [k̂(x)
[t]
Terr, θ̂(x)[t]] and

Z[t−1] = [k(x)
[t−1]
Terr , θ(x)[t−1]] which represents the set of actual (noisy) measurements up till the last time

step (t− 1).

Then, given a noisy set of measurements, Z[0:t−1], and no additional information about the impact of environ-
mental factors on the system dynamics, a reasonable estimate for the system state at the current time-step,
t can be obtained as:

X̂[t] = P [t−1]

t−1∑
i=0

Z[i] (31)
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where P [t−1] =
1

t− 1
represents the responsiveness of the filter, i.e., the filter is very responsive (making a

lot of corrections) in the beginning since limited data is available. As time passes and more data becomes
available, the filter becomes more certain about its estimates, and thus, reduces the relative importance of
the measurements. However, being a fixed response model (true values of kTerr and θTerr are fixed) with
response rate decreasing with time, it cannot always adapt to sudden changes in the values of k(x)Terr and
θ(x)Terr as 1

t−1 can be very small. These sudden changes can occur when there is a change in terrain type
or weather conditions, however their impact is diminished with the passage of time. We can now manipulate
Eq. (31) to obtain the recursive update rule as follows:

X̂[t] = P [t−1]

t−1∑
i=0

Z[i]

= P [t−1]

t−2∑
i=0

Z[i] + P [t−1]Z[t−1]

=
t− 2

t− 1
× 1

t− 2

t−2∑
i=0

Z[i]

︸ ︷︷ ︸
X̂[t−1]

+P [t−1]Z[t−1]

= X̂[t−1] + P [t−1]
(
Z[t−1] − X̂[t−1]

)

(32)

Eq. (32) represents the recursive state update rule wherein the term P [t−1]
(
Z[t−1] − X̂[t−1]

)
represents the

measurement innovation i.e., the new information acquired via the new observation. Similarly, the recursive
update rule for the filter response can also be derived as:

P [t] = P [t−1] − P [t−1](P [t−1] + 1)−1P [t−1] (33)

From Eqs. (32)-(33), it is clear that our filter is a modified moving average filter (Sato, 2001) with increasing

window size, that accommodates all the data available. The predictions begin at t = 2, and X̂[1] = Z[1].
Here, we can see that X[t] is a function of Z[0:t−1] which is a series of points indexed in time order i.e.,
a time-series. So we can use common time-series forecasting method to estimate the value of X[t] such as
various variants of Autoregressive moving average (ARMA) model (Graupe et al., 1980). In our case, we
have used a modified moving average model (ARMA(0,0,1)), that computes the average of all the data points
available to estimate the value of X[t].

3.2.2.2 Multi-rotor UAV operating in presence of external disturbances
Similar to the case of UGVs, we now replace the term k(t)Env in Eq. (27) by its estimated value k̂(t)Env.
Thus, the estimated maximum range for UAV for remainder of the mission is now given by:

d̂
[t:]
Max :=

ẼRem

PAnc

vOpt
+



[
UAV ΩManρCDAr

3
p

6kr
√
NR

]
+

[
1

rp
√

2NRρπ

]
UAV ΩManvOpt

 [mRg + k̂(t)EnvmRg]
3
2

(34)
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Now, the maximum operational range estimation can be done similar to Eq. (30) and Eq. (32). However, in

case of UAV, we define X̂ [t] = k̂(t)Env and Z [t−1] = k(t− 1)Env as the estimated and observed values of the
environmental variable which are required for operational range estimation.

4 Experiments

In this section, we present the details of the robotic platforms used for empirical validations of the unified
framework proposed, followed by empirical analysis of results thus obtained.

4.1 Robot Platforms

First, we explain the robotic platforms that were used for our model verification along with their correspond-
ing parameters that are used by our frameworks.

4.1.1 Unmanned Ground Vehicle (UGV)

For the ground robot, we assembled a custom robot from readily available off-the-shelf components which was
named as Rusti V2.0. As an enhancement over its predecessor showcased in our prior work, this now has a
stronger alloy frame and powerful 12V DC geared motors. We mounted a Raspberry Pi 3 kit on-board which
can receive control commands from the human operator using wired Double Pole Double Throw (DPDT)
switches. In order to gather the accelerometer data, we used the Empatica E4 wristband which measured
the GSR and HR (Empatica, ) using its independent power source. This wearable sensor records multiple
physiological signals but since the scope of this study is limited to the accelerometer, the readings from
other sensors were not processed. Thus, our accelerometer data was logged separately and was later fused
with other information for analysis. As for the ancillary functions, we connected the HC −SR04 Ultrasonic
ranging module with a non-contact detection range of (2 − 400) ± 0.3 cm4. Our UGV weighing around
3.10 Kgs is shown in Fig. 5.

(a) Outdoor experiments on asphalt (b) Outdoor experiments on grass (c) Outdoor experiments on tiles

Figure 5: Rusti V2.0 with all-terrain wheels and external 3-axis accelerometer sensor for outdoor field experiments carried out
on different terrains.

4.1.2 Unmanned Aerial Vehicle (UAV)

The Parrot ARDrone 2.0 quadrotor platform was used for our UAV related experiments as shown in Fig. 6.
It has NR = 4 rotors, each with a radius of rp = 0.1016m. The average propeller efficiency UAV ΩMan = 0.27
was taken based on multiple experimental evaluations as showcased in (Abdilla et al., 2015a). The nominal

4taken from http://www.micropik.com/PDF/HCSR04.pdf
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operational voltage of the high density 1500 mAH battery for ARDrone is 11.1V . We mounted a GPS sensor
which operates at 500 mA @ 5 V . The maximum rpm of the motor is 41400 while for hovering is 28500 rpm
with a gear ratio of 2 : 17 with the propellers. The mass of ARDrone was found to be 0.46 Kgs.

Figure 6: ArDrone 2.0 with GPS used for outdoor experiments.

4.2 System Identification

Before we proceed to present our results of the field experiments, we need to obtain the system parameters
i.e., efficiency of ancillary and maneuvering branches.

For the Rusti V2.0, the battery charge storage losses (η1) were found to be negligible (0.5%) (based on our
prior work) while the motor losses (η2) and mechanical losses (η3) were deduced based on wheels-up test.
For this test, we simply connect the motors to the battery and Raspberry pi to a stepped down 5V supply
via a voltage regulator. We then let the motors run until the battery is completely drained and based on
the logged data we can calculate the motor losses. These losses thus combine the losses incurred owing to
motor itself and the heat losses from the motor driver. Since there were no significant heat loss from any
electronics component used on-board, we assume the ancillary losses η4 ≈ 0.

For the ARDrone, like the UGV case, the battery charge storage losses (η1) were taken to be negligible
(0.5%). Motor efficiency (η2) can be deduced from Fig. 4 of (Harrington and Kroninger, 2013). However,
monitoring real time RPM of the motors for empirically estimating motor losses is rather challenging. Thus,
we use the data for another similar motor which matches the specifications of the ARDrone motor as closely
as possible. The average propulsion system efficiency (i.e., combined motor efficiency (η2) and propeller
efficiency (η3)) was derived based on several experiments and was reported to be equal to 0.27 in (Abdilla
et al., 2015a). The ancillary losses were taken to be negligible (η4 ≈ 0) in this case.

4.3 Outdoor experiment setup

Now we explain the navigation conditions in which the two robots were evaluated. For the UGV, we
performed 36 experiments on various terrains comprising of either grass, tiles, or asphalt with varying
elevations and wheel rpm of 80 and 1405. Due to space limit, only 12 experiments are plotted and shown
in this paper. The reason for considering these terrain types individually was the lack of capable hardware
to determine change in terrain types on-the-fly and accordingly adjust the coefficient of rolling friction for

5Given the wheel radius of 65mm, these translate to v = 0.544, 0.952 m/s respectively. the velocities were pre-set at the
beginning of the field trial and were not monitored during the field trial. For offline and online models, the heading velocity
remained constant and for turning, while one side of motors were slowed by δ, the other side was sped up by the same factor.
This ensured that the average velocity of the center of mass of the robot remained constant.
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making online prediction. We performed 6 wheels-up tests at 100 and 200 rpm for system identification. The
average rolling coefficients for terrain resistance offered by grass, tiles, and asphalt were set as 0.099, 0.066,
and 0.062, respectively and the prior information of γ to be used in the offline estimation was set based
on Table 1 of (Sadrpour et al., 2013). In order to deduce the average values of the parameters, we used

k
[0:t]

Terr ← Ẽ[0:t]−AE[0:t]

FSlopes
. Similarly, the equations for γ[0:t], θ

[0:t]
can be deduced.

As for the UAV, we performed 30 experiments split into two different sets, viz., hovering and motion. Only
5 of those experiments are plotted and shown in Fig. 12. For hovering, only the altitude of the UAV was
varied and the human operator occasionally had to send control commands to maintain the position of the
drone within a set perimeter. As opposed to this, in motion case, the human operator constantly fed linear
motion commands to the drone whilst occasionally commanding the drone to hover (in cases when wind
gusts lead to dangerously high velocity gains). This not only helped ensure the safety of the drone and its
operator but also helped emulate the real life scenarios in which the drone may loose connection to the base
station or corruption of mission critical information. The control commands were sent at operator-defined
data transmission rate such that the PComm in Eq. (6) remained constant. We performed 10 experiments for
hovering at different altitudes varying between [1, 10] meters. Furthermore, we conducted 20 experiments
at 5 different operational velocities6 for motion to account for a mix of wind gusts, altitude adjustments,
variable mission speeds, and trajectories. Experiments were performed at intervals of 2 hrs so as to account
for changing environmental factors like wind and weather conditions.

In our experiments, we constantly monitored the wind compensation angle of the UAV. Through simple
geometry, this was then used to calculated real-time values of k(t)Env as explained in Fig. 7. From this
figure, we know that the net stabilization required on the part of the rotorcraft will be CB = OB(1−cos(θ)).
When the rotorcraft was maintaining a constant altitude, the value of OB = mRg. So here CB represents
k(t)EnvmRg as explained in Eq. (17). Therefore, we get k(t)Env = 1− cos(θ).

Θ

O

A

B

x y

x’

y’

C

xy

x’y’

CB

OB

OA

Θ

Initial orientation

Adjusted orientation

Net Adjustments

Rotor thrust (T)

Adjusted thrust

Wind compensation angle

Figure 7: Geometric analysis of wind compensation angle to deduce the value of parameter k(t)Env . Suppose the UAV is stable,
then the orientation is represented by xy and OB represents the thrust (T ) exerted by the UAV for maintaining flight. Now
let us assume that because of sudden wind action, the rotorcraft is displaced by an angle θ (which can also be interpreted as
wind compensation angle) and the new orientation is x′y′. So, OA will represent the same thrust under the sudden influence
of the wind at an angle θ to the previous direction. Thus, the net altitude destabilization effect of the wind is given by BC.

From Eq. (13) and Eq. (27), we can see that to make predictions of dMax, we need to have an estimate of
average resistive forces, for which value of factor k(x)Terr or k(t)Env is required. So, to make predictions in
real-time, we need to recursively update our estimates of these factors. Thus, the proposed filter is fed with
real time mission data to update these parameters recursively.

6The translation velocities were chosen from [0.1, 0.2, 0.4, 0.6, 0.8] m/s which are subject to brief change upon change in
heading direction. E.g., consider operational velocity of 0.1 m/s along +X direction. Upon request to change direction to
−X, the velocity during this brief transition period will vary from 0.1 m/s in +X to 0 m/s in +X followed by 0.1 m/s in −X
direction. This velocity profile cannot be feasibly estimated for offline model, so we directly used the operational velocity (0.1
m/s for this e.g.), while for the online model, velocity was continuously observed, so the average velocity till current time step
was used.
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4.4 Batteries used for field experiments

Since the ARDrone comes factory fitted with a mini-tamiya connector we used the 11.1V @1500mAh high
density LiPo battery for it. However, having custom built the Rusti V2.0, we had the freedom to use the
following 2 LiPo batteries for our experiments:

• 11.1V@2200mAh

• 11.1V@1500mAh (also used for ARDrone)

4.5 Empirical Results

The following section provides factual performance of our framework in real world operations. Besides these,
we also provide other interesting conclusions that can be drawn from these experiments (Fig. 8-10).

4.5.1 Rusti V2.0

In Fig. 8-10, we analyse the performance of our offline and online models during real field trials on grass,
asphalt, and tiles, respectively. For offline estimation, we know from Eq. (13) that for estimating the
operational range our model needs prior information about θ, γ, and kTerr. Also, the mechanical efficiency7

is unascertained. For γ, we fixed the value based on Table 1 of (Sadrpour et al., 2013), and empirically set
the values of θAvg to 5◦. Estimating the values of kTerr and RustiΩMan = Π3

i=2¬ηi are rather challenging and
require some prior field experience. So, for estimating these, we modified Eq. (13) to bring efficiency within
the integral and treated kTerr

RustiΩMan
as a single terrain dependent variable. The average value of this terrain

dependent factor was then determined through a series of field trials as kTerr
RustiΩMan

= [3.09, 2.81, 2.69] for
grass, asphalt, and tiles, respectively. For online estimation, the belief of the model over the net operational
range achievable is updated in real-time based on cumulative performance characteristics. Effectively, on an
average, the net true distance covered by the robot at 0.544m/s and 0.952m/s are almost the same on all
types of terrain. This can be attributed to the fact that because of the use of high torque dc motors in our
robot Rusti, the net ancillary energy requirements are negligible compared to maneuvering energy (which is
independent of operational speed). From Eq. (13) we see that this in fact will be the case if PAnc � PMan.
Also, the true distance covered using the 2200mAh battery is greater than that covered using the 1500mAh
battery but they are not in proportion of the battery capacities i.e. the ratio of battery capacities is 22

15 = 1.47
but the ratio of achieved true range is 6.67

5.17 = 1.29. This difference can be attributed to the fact that the
mass of the robot is slightly higher when using the 2200mAh battery which dilutes the effect of extra charge
capacity.

Then in Fig. 11, we evaluate the accuracy of both our offline and online models. As was expected, the
offline model tends to over-shoot or under-shoot the true operational range incurring extreme errors with
high variance8 whilst the online models tends to attain the true operational data with a very high accuracy
and low variance. It must be pointed out here that while traversing on grass using the following settings:
1500mAh@0.952m/s, both the models show comparable average performance while for 2200mAh@0.952m/s
the offline model performs slightly better. Despite this, the variance of the offline model remains higher
which can also be confirmed from Fig. 8. Overall, the online model shows ≈ 60% enhanced accuracy as
compared to its adversary for operational range estimation of Rusti V2.0.

7RustiΩMan is a factor of only motors and will account for both frictional losses as well as heat losses in motor
8N.B.: The readers are hereby cautioned that the said variance is the variance in the performance of the online filter over

multiple trials. This must not be confused with the variance in the forecasting capabilities of the filter during an experiment.
As for the offline filter, there is a large bias.
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Figure 8: Rusti’s operational range estimation for grass. Top row represents experiments performed using 11.1V@1500mAh
battery @80rpm followed by @140rpm. Bottom row represents the similar pattern for 11.1V@2200mAh battery respectively.

19



0 5000 10000
4600

4800

5000

5200

5400

5600

0 5000 10000
4500

5000

5500

0 5000 10000
4500

5000

5500

6000

6500

7000

0 5000 10000
5500

6000

6500

7000

7500

Figure 9: Rusti’s operational range estimation for asphalt. Top row represents experiments performed using 11.1V@1500mAh
battery @80rpm followed by @140rpm. Bottom row represents the similar pattern for 11.1V@2200mAh battery respectively.
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Figure 10: Rusti’s operational range estimation for tiles. Top row represent experiments performed using 11.1V@1500mAh
battery @80rpm followed by @140rpm. Bottom row represents the similar pattern for 11.1V@2200mAh battery respectively.
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(c) Range estimation error on tiles

Figure 11: Range estimation error for Rusti while traversing on grass, asphalt and tiles. Here b1, b2 refer to the 1500mAh and
2200mAh batteries and v1, v2 refers to 0.544,0.952 m/sec velocities respectively.

4.5.2 ArDrone 2.0

In Fig. 12, we demonstrate the real world performance of our offline and online estimator models:

For offline estimation, prior information regarding the operational environment of the robot is required to
make meaningful predictions of its operational range. Since there is no prior research explaining how the
values of the parameter k(t)Env vary, we performed an additional set of 5 experiments (each in varying
conditions) and averaged their data for estimating the value of the parameter k(t)Env which was found to be
≈ 0.01. Using this prior information, we estimated the operational range using the offline model in the 20
experiments presented here. As the mean estimation error for the offline model is about 30 meters in each
experiments, with even lower errors at slower speeds, the value of k(t)Env = 0.01 is claimed to be optimal.

For online estimation, the estimate of the net operational range is updated recursively using mission data
acquired in real time. We do not explicitly provide a priori known mission information to deduce the value
of the parameters k(t)Env and v. Instead, they are deduced based on real-time mission information. When
deploying this model in real life, we can set the prior mission information based on the information gathered
in that terrain/field from previous experiments. If no previous experiment data is available, then, the first
few values can be used to generate a prior knowledge. For this work, we utilized the initial set of samples
as the prior information for the online model. We refer to the initial instability in the ArDrone and the
sensor’s data, just after takeoff, as the burn-in phase. The data of the burn-in phase is discarded and the
online estimation frameworks is activated only upon ArDrone’s stabilization. For the purpose of continuous
representation in graphs, the data was interpolated during this phase resulting in the initial straight line
trends observed during the burn-in phase of the plots. Also, as is evident from the plots, the online estimator
converges to the true distance as the mission progresses. As more and more mission data becomes available,
the estimation performance of the online model becomes significantly better than its offline counterpart.

It must also be pointed out here that the variations in the online estimator are quite profound during the
early stages of the mission which can be attributed to the fact that the estimator is trying to update its
belief with sparse and limited amount of data, but it quickly stabilizes as the amount of data grows. Also, it
might seem that increasing the operational velocity (v) always leads to an increase in the operational range
(d). However, when the ArDrone attains an operational velocity vOpt which is high enough, so much so,
that the aerodynamic drag forces acting on the body of the drone is higher than that on the propeller, the
theoretical maximum operational range (dMax) will be attained and any further increase in the velocity will
result in decrease in the operational range. Besides, such high velocities (vOpt) are not attainable by current
multi-rotor UAVs.

We would also like to highlight that the variance in the input data (wind compensation angle) being very
low, results in low variance in k(t)Env. This low variance in k(t)Env, coupled with its low absolute value (1%
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on average), results in very low variance in predicted distance, often less than a meter. So for the sake of
clear understanding of the experimental graphs, we have omitted the variance in predicted distance. From
the data acquired from the field experiments, we see that the variance in wind compensation angle (θ) is
very small. So using the information from Fig. 7, we see that the variance in k(t)Env will also be small. The
variance in predicted operation range (Eq. (34)) will come from the factor 1 + k(t)Env. However, very small
absolute value of k(t)Env (almost equal to 0.01) along with small variance leads to very small variance in
1+k(t)Env, leading to small variance in predicted distance. This makes sense considering the fact that UAV
experiments lasted for about 10 − 12 mins. and were carried out in calmer conditions for the safety of the
drone. The variance in wind, and thus wind compensation angle would be small.

In Fig. 13, we showcase how the energy stored in the battery is consumed as the mission progresses. An
interesting fact to note here is that the trends for both the hovering case and motion case are quite similar.
The reason for this can be attributed to the fact that the value of k(t)Env which represents the average
excess percentage of thrust that needs to be exerted to maintain stability and velocity, owing to changing
environmental conditions, remains below 2%9. So, the major component of energy is utilized to maintain
flight (attitude) instead of stabilizing the rotorcraft and maintaining its velocity.

Fig. 14 shows the operational range estimation performance for both our proposed online and offline frame-
works. For this, we report average estimation error of both frameworks for each operational velocity. It can
be clearly seen from the graph that the online model is ≈ 58% more efficient than its counterpart. Also,
to clarify the high offline estimation error at v = 0.1 m/s, we would like to point out that even for small
amounts of hovering time, the percentage difference in the average velocity and operational velocity is con-
siderably higher than in cases of higher velocities which translates to higher percentage error in prediction
using the offline model.

5 Conclusion

In this work, we have presented a methodology for identifying and quantifying the energy consumers for
mobile robots. This work is an extension of our prior findings with the purpose of making our operational
range estimation framework well suited to multiple robot platforms operating in real-world scenarios. The
aim of this study was to unify the battery dissemination models into one framework that can now estimate
operational range for various robotic platforms operating under realistic environmental conditions. Existing
works focus on a pre-meditated mission profile and thereby try to estimate the energy requirements for the
mission. However, the missions are usually limited by the available resources (energy stored in battery).
Thus, we intend to solve the inverse problem of optimizing the mission profile given a fixed energy budget
(governed by the battery type) and known robot dynamics model. The advantage of our framework is that it
can be used for commercial and custom-built robots alike and is easily extendable to a plethora of platforms.
Our framework is assisted by two operational range estimation models: Firstly, an offline model which
relies on the expertise of the operator for setting the prior information, and, secondly, a self-reliant online
variant that iteratively updates the operational range based on the available mission data. The advantage of
proposing both variants in a unified framework could be realized from the fact that while the offline model
allows the supervisor to set a rough upper bound on the path length of the robot at the beginning of the
mission, the online model can recursively update the bound based on real-time performance data. High
accuracy of our proposed framework ensures that the robots would return to base station thereby preventing
them from getting stranded in the field during the mission.

Upon empirical evaluation, we verified that the framework incurs significantly lower error as compared to our
prior work, and furthermore, the online model outperforms the offline variant. The online model estimates
operational range with an average accuracy of 93.87%, while the offline model attains 82.97%. In light of
this claim, our framework is well suited to be considered as a state-of-the-art for operational range estimation
of a variety of robots operating under natural outdoor environmental conditions. In our further works, we

9Analyzed from the data obtained from motion experiments at varying velocities as shown in Fig. 12.
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Figure 12: ArDrone’s operational range estimation at various velocities. The notation convention used in the figure labels are
as follows: vel∗ refers to the operational velocity used for the trial and exp∗ refers to the experiment ID. In this figure, we have
only shown the results obtained during experiment 2 for operational velocities in {0.1, 0.2, 0.4, 0.6} and {0.8}m/sec respectively.
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would like to enhance our ancillary functions ’ energy consumption model by implementing SLAM (Thrun
and Leonard, 2008) and mounting an array of additional sensors endowing our robot a full autonomy suit
to make self-reliant decisions. In doing so, the energy consumed by the ancillary branch would significantly
increase and thus, the importance of accurately estimating operational range from the residual maneuvering
energy would become even more pronounced.

Appendix

A Nomenclature

All the variables and constants that were used in the paper have been summarized below for the ease of the
reader.
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Table 1: Nomenclature

Symbol Description
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TM − TA
TM
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⊙
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Value of the quantity

⊙
from t = t until end of mission⊙[0:t]

Value of the quantity
⊙

from t = 0 to t = t

[̂∗] Estimated quantity ∗
[∗] Average quantity ∗
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