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Abstract  —  Defects in semiconductors, although atomistic in 
scale and often scarce in concentration, frequently represent the 
performance-limiting factor in optoelectronic devices such as solar 
cells. However, due to this scale and scarcity, direct experimental 
characterization of defects is technically challenging, time-
consuming, and expensive. Even so, the fact that defects can limit 
device performance suggests that device-level characterization 
should be able to lend insight into their properties. In this work, 
we use Bayesian inference to demonstrate a way to relate 
experimental device measurements with defect properties (as well 
as other materials properties affected by the presence of defects, 
such as minority-carrier lifetime). We apply this method to solve 
the “inverse problem” to a forward device model – namely, 
determining which input parameters to the model produce the 
measured electrical output. This approach has distinct advantages 
over direct characterization. First, a single set of measurements 
can be used to determine many parameters (the number of which, 
in principle, is limited only by the computing resources available), 
saving time and cost of facilities and equipment. Second, since 
measurements are performed on materials and interfaces in their 
relevant device geometries (vs. separately prepared samples), the 
determined parameters are guaranteed to be physically relevant. 
We demonstrate application of this method to both tin 
monosulfide and silicon solar cells and discuss potential for future 
application in a broader array of systems.  

Index Terms — Bayes methods, charge carrier lifetime, charge 
carrier mobility, parameter estimation, photovoltaic cells, silicon. 

I. DEFECT PARAMETERS IN SEMICONDUCTORS 

 Defects in semiconductor devices frequently play a defining 
role in determining optoelectronic material and device 
properties, often even at trace concentrations (i.e., parts per 
billion or below). This is especially true for devices in which 
minority carriers determine operating mechanisms, such as 
photovoltaic solar cells and light-emitting diodes. Thus, in such 
devices, defect engineering remains an effort critical to 
ensuring high performance. Unfortunately, this effort is 
hampered by the fact that basic defect parameters are often 
unknown and difficult to measure, typically requiring 
specialized techniques (such as deep-level transient 
spectroscopy) and device architectures. 
 For minority-carrier devices in which Shockley-Read-Hall 
(SRH) recombination (also called defect-assisted 
recombination) dominates, the defect parameters of interest are 
defect density (Nt), energy level (Et), and capture cross-sections 

for electrons and holes (σe,h) [1,2]. Through these parameters, the 
effects of both injection level and temperature can greatly alter 
the strength of recombination, resulting in different regimes of 
behavior. Figure 1 illustrates a simple example of these regimes 
in a “generic” hypothetical p-type semiconductor (see caption 
for details). The effect of “shallow” vs. “deep” traps have 
opposite effects on SRH lifetime (τSRH) with respect to injection 
level—i.e., a significant decrease vs. slight increase (Figure 1, 
solid lines). Similarly, at lower temperatures τSRH decreases for a 
shallow defect, whereas it increases for a deep defect (Figure 1, 
dotted lines). These behaviors are the basis for temperature-
dependent and injection-dependent lifetime spectroscopy, 
which as documented by Rein et al. [3] can in theory be used to 
identify defects based on these divergent behaviors. In practice, 
however, the numerous possible combinations of Nt, Et, σe, and 
σh can vastly complicate the process of finding confident fits to 
these parameters. 
 In this work, we aim to extract basic defect parameters in 
photovoltaic semiconductors by feeding experimental solar cell 
measurements (i.e., temperature- and illumination-dependent 

Fig. 1.  Plot of Shockley-Read-Hall lifetime as a function of 
injection level in a “generic” hypothetical p-type semiconductor for 
“shallow” (blue lines) and “deep” (pink lines) defect levels at 300 
and 200 K. The modeled semiconductor has a band gap of 1.4 eV, Nt 
= 1016 cm–3, σe,h = 10–16 cm2, densities of states equal to 1019 cm–3

 for 
both the valence (EV) and conduction band (EC), acceptor density = 
1016 cm– 3, and electron and hole effective masses both equal to 0.50. 



 
 

current–voltage data, or JVTi)  into a numerical solar cell model 
developed in PC1D and applying a Bayesian inference 
algorithm. We first demonstrate the Bayesian inference 
approach by calculating probability distributions of materials 
and device parameters in SnS solar cells [4], some of which had 
not been previously measurable. We then outline our approach 
to applying this method to extract Et, σe, and σh for interstitial 
iron (Fei) in silicon solar cells. These results serve as validation 
for using this new method of defect characterization on newer, 
less understood semiconductor materials for which defect 
parameters are likely less well known. 

II. BAYESIAN INFERENCE ALGORITHM 

 Bayes’ Theorem is a statement about the relationship 
between conditional probabilities. With H as a hypothesis and 
E the evidence: 

𝑃(𝐻|𝐸) = 	
𝑃(𝐻)𝑃(𝐸|𝐻)

𝑃(𝐸)  

 P(H) is referred to as the prior distribution, representing our 
initial beliefs about how a system will behave. Bayes’ theorem 
gives us a prescription for how to update this prior when 
presented with some evidence E (for example, the outcome of 
an experimental measurement) to create the posterior 
distribution P(H|E). In particular, we use the likelihood P(E|H), 
or the probability that we would observe the evidence if our 
hypothesis is true. We can perform this procedure iteratively to 
further update our posterior in the face of further measurements. 
 The power of this approach comes from the ability to fit many 
parameters, for which the parameter space and shape of the 
underlying probability distribution may be complicated. In such 
a case, a fitting approach such as a least-squares regression may 
fall into a “local minimum” and miss the true values of the 
materials properties to be measured. The Bayes approach 
instead produces a probability distribution over the entire 
parameter space, which yields not only the most likely values 
of parameters, but also insight into how parameters may depend 
upon one another. 

III. JVTI MEASUREMENTS ON SNS SOLAR CELLS 
 As a first proof of concept, we applied this approach to tin 
monosulfide (SnS) solar cells [5]. SnS is a relatively new 
candidate photovoltaic material, but one that our group had 
extensively characterized in the past, making it a fruitful 
platform to verify the Bayesian method. Using a collection of 
current–voltage curves taken at three different temperatures and 
two illumination levels, we generated a probability distribution 
over four “unknown” input parameters to a SCAPS-1D [6] 
model of the devices: minority carrier (electron) mobility µ and 
lifetime τ in the SnS absorber layer, and the conduction band 
offset ΔEC and surface recombination velocity Seff at the 
interface between the absorber and the Zn(O,S) buffer layer. A 
schematic of the device is shown in Figure 2. The results of this 
analysis are shown in Figure 3. The conduction band offset was 
fit to be −0.21 ± 0.03 eV, consistent with the previous 
measurement of −0.38 ± 0.2 eV [7] and fit with a higher 
precision than direct measurement allows.  
 While the lifetime and mobility did not individually converge 
in this analysis, the two-variable marginalization shows a line 
of higher probability corresponding to a constant product µτ, 
indicating that the diffusion length is well-constrained by the 
measurement. Surface recombination velocity Seff had never 
previously been measured for this interface, and was fit to 
between 1,000–1,800 cm/s. Seff is an example of a property that 
is extremely difficult to measure but can be limiting to device 
performance, thus emphasizing the value of this Bayesian 
fitting technique in this scenario. 
 The inset in Figure 3 shows the Shannon entropy (ΣP log P) 
of each parameter individually as well as the overall 

Fig. 2.  Schematic (not to scale) of the SnS device that was 
characterized. 

Fig. 3.  Results of SnS device Bayesian analysis. On the diagonal 
are single-variable distributions over each of the four parameters, 
and below the diagonal the corresponding two-variable 
marginalizations. Inset shows normalized Shannon entropy as a 
function of number of observations fed into the inference routine. 
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distribution, normalized to start at unity for the uniform 
distribution in each case. This is a further indication that the fit 
is converging as more data is fed into the Bayesian inference 
algorithm. 

IV. JVTI MEASUREMENTS ON IRON-CONTAMINATED SILICON 
SOLAR CELLS 

 Defect parameters such as energy level and capture cross-
section are also, like Seff, physical parameters that are extremely 
difficult to probe directly. To further validate our methods, we 
choose to apply our framework to silicon solar cells 
contaminated with known levels of iron, an impurity whose 
defect parameters in silicon have been thoroughly characterized 
[8]. We utilize samples from a previous work by Vähänissi et 
al. [9] where the interstitial iron concentrations (after cell 
processing) have been measured at Nt = 2×1012 cm–3. This 
constrains an additional parameter, improving the quality of our 
fits to Et, σe, and σh.  
 JVTi measurements were performed on an intentionally 
contaminated sample (initial [Fe] = 2×1014 cm−3) and an 
uncontaminated reference—the “60A” samples from Ref. [9]. 
Semi-automated current–voltage measurements were 
performed using a Keithley 2400 sourcemeter connected to 
LabView. Temperature was varied from 300 to 175 K (in 
increments of 25 K) using an ARS cryostat (DE-204SI), liquid 
helium compressor (ARS-4HW), and polyimide heater (Minco 
HAP6943) under vacuum controlled by a LakeShore 331 
temperature controller. Eight illumination levels were 
measured—at 1.01, 0.92, 0.69, 0.31, 0.093, 0.048, 0.0093, and 
0.0045 Suns—using a Newport Oriel LCS-100 Solar Simulator 
and neutral density filters.  
 As a preliminary analysis, we used the Bayesian inference 
routine to fit a simple ideal diode model: 
 

𝐽(𝑉, 𝑇, 𝑖) = 𝐽.(𝑇, 𝑖) /𝑒
1 23
456 − 19 + 𝐽;< 

 

where J0 is given by[10]: 
 

𝐽.(𝑇, 𝑖) =
𝑞𝑛?@(𝑇)
𝑁B

C
𝐷4
𝜏4(𝑖)

 
 
With only two free parameters (ideality factor n and electron 
lifetime τn) we were able to model the current–voltage curves 
relatively accurately and estimate fitted lifetimes corresponding 
to the orders of magnitude expected, as shown in Figure 4. 
 To obtain estimates for specific defect parameters Et, σe, 
and σh, we extend this analysis using a numerical model in 
cmd-PC1D 6.2 [9,10], which incorporates full Shockley-Read-
Hall recombination analysis with built-in dependencies on 
temperature and injection level. Results from these fits are 
shown in Figure 5, and JV curves corresponding to the 
highest-probability parameter values in Figure 6. 𝜏n0 and 𝜏n0 
(along with Et) were the direct inputs, but they can be easily 
related to σe  

Fig. 4.  Results of ideal diode equation fit to data on silicon 
devices both contaminated and uncontaminated with iron.  

(2) 

(3) 

Fig. 5.  Results of PC1D model Bayesian fits to uncontaminated 
(top) and contaminated (bottom) samples. Literature-reported 
values are overlaid in red for contaminated sample. 



 
 

and σh (which are not directly accessible in PC1D) using the 
SRH equations. [1,2]  
 Bayesian inference results for the uncontaminated cell show 
values for 𝜏n0 broadly distributed between approximately 10−7–
10−5 s (100 ns – 10 µs), along with values for 𝐸t that peak at 
−0.45 eV and +0.30 eV compared to the intrinsic level 𝐸i 
(which is 0.56 eV above the valence band 𝐸V). When looking 
at the covariance of these two parameters (lower-left plot), it 
becomes clear that “constant recombination space” involves a 
tradeoff—higher values of 𝜏n0 correlate with “deeper” traps (𝐸t 
closer to zero). This behavior is expected from SRH 
recombination statistics. The high values of 𝜏p0 are also 
expected for a p-type absorber—in other words, majority-
carrier recombination parameters do not limit recombination. It 
is also instructive to note that the values for 𝜏n0 here are slightly 
lower than those extracted from Bayesian analysis with the 
ideal-diode framework in Figure 4. 
 Bayesian inference results for the contaminated cell  show 
uniformly lower values for 𝜏n0, peaking below 10−8 s. Assuming 
a trap density 𝑁t = 2×1012 cm−3 as previously measured directly 
[9] along with a thermal velocity 𝑣th,e = 2.6×107 cm/s, a range 
of 𝜏n0 between 10−8–10−7 s corresponds 
to a range of 𝜎e between 2×10−12 – 2×10−13 cm2. The upper 
value in this range is slightly larger than the actual value of 
4×10−14 cm2 [6, 11] which might be explained by an 
underestimate of 𝑁t or the unaccounted-for presence of a 
different defect. Despite this slight discrepancy, it remains clear 
that the Bayesian inference clearly identified differences in 
values for 𝜏n0 between the uncontaminated and contaminated 
samples. 
 Similarly, a value for 𝜏p0 of 2×10−3 s, using the same value 
for 𝑁t and a thermal velocity 𝑣th,h = 1.7×107 cm/s, corresponds 
to a value of 𝜎h = 1.5×10−17 cm2, which falls well within the 
range of values reported in literature [8]. 
 For 𝐸t, the values are less well converged without further 
subdivision within the Bayesian inference algorithm, which is 

planned as a continuation of this work. Still, they are relatively 
well centered around the actual value of 𝐸i − 0.185 eV (or 𝐸V + 
0.375 eV) [6,12]. 
 Overall, comparing the results between the uncontaminated 
and contaminated cells, this Bayesian inference framework 
clearly can distinguish high and low lifetimes, and helps show 
how defect parameters covary. Estimated values for	𝐸t, 𝜎e, and 
𝜎h all fall close to or within ranges documented in literature, 
which demonstrates general promise for applying Bayesian 
inference approaches to extract defect parameters in solar cells. 
We are optimistic that with further refinement to the models 
(e.g. including temperature dependence of capture cross-
sections as described in [8]) and updates to the computational 
tools (e.g. to allow more free parameters), we can improve the 
accuracy and precision of these fits and make the approach 
more suitable for application in less thoroughly characterized 
systems. 

V. CONCLUSIONS AND ACKNOWLEDGEMENTS 
 Bayesian inference as a technique to invert numerical device 
models is a powerful approach enabling extraction of values for 
multiple arbitrary physical parameters from a set of simple, 
automatable, electrical measurements. This approach is 
preferable in many cases to directly measuring these 
parameters. It is significantly faster, requiring approximately a 
day each of measurement and compute time, assuming a modest 
(~60-core) high-performance cluster. It is also less expensive 
due to fewer equipment requirements. In addition, and perhaps 
most importantly, it can offer more physically relevant 
measurements of the parameters than conventional “direct” 
measurement techniques. For example, Hall mobility 
measurements probe lateral majority-carrier mobility, while 
through-film minority carrier mobility is the relevant limiting 
factor in PV devices. Especially in new materials being 
explored for PV, many of which exhibit anisotropic charge 
transport properties, this difference can be critical. The 
Bayesian approach, by using actual device data, by definition 
gives the device-relevant version of all such parameters. In our 
latest study of iron-contaminated silicon devices, we 
demonstrate that the approach can also be fruitful in measuring 
defect parameters, which we hope to apply to novel PV 
materials to accelerate identification of performance-limiting 
properties. 
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Fig 6.  1-Sun, 300K JV curves corresponding to the highest-
probability parameter values for the uncontaminated (top) and 
contaminated (bottom) samples. 
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