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Abstract—The deployment of small cells has been a critical
upgrade in fourth-generation mobile networks as they provide
macrocell traffic offloading gains, improved spectrum reuse and
reduce coverage holes. The need for small cells will be even
more critical in fifth-generation networks due to the introduction
of higher spectrum bands, which necessitate denser network
deployments to support larger traffic volumes per unit area.
A network densification scenario envisioned for evolved fourth
and fifth generation networks is the deployment of ultra-dense
networks with small cell site densities exceeding 90 sites/km2 (or
inter-site distances of less than 112 m). The careful planning and
optimization of ultra-dense networks topologies have been known
to significantly improve the achievable performance compared
to completely random (unplanned) ultra-dense network deploy-
ments by various third-party stakeholders (e.g. homeowners).
However, these well-planned and optimized ultra-dense network
deployments are difficult to realize in practice due to various con-
straints, such as limited or no access to preferred optimum small
cell site locations in a given service area. The hybrid ultra-dense
network topologies provide an interesting trade-off, whereby, an
ultra-dense network may constitute a combination of operator
optimized small cell deployments that are complemented by
random small cell deployments by third-parties. In this study, an
ultra-dense network multiobjective optimization framework and
post-deployment power optimization approach are developed for
realization and performance comparison of random, optimized
and hybrid ultra-dense network topologies in a realistic urban
case study area. The results of the case study demonstrate how
simple transmit power optimization enable hybrid ultra-dense
network topologies to achieve performance almost comparable
to optimized topologies whilst also providing the convenience
benefits of random small cell deployments.

I. INTRODUCTION

In wireless telecommunications market, demand for data
rate has been increasing dramatically. It is projected that
average data consumption will reach 1 GB data usage per
day and therefore 20-50 GB/month average monthly usage by
2020 [1]. Moreover, the number of connected devices will be
28 billion by 2021 [2]. Furthermore, mobile subscriber growth
will be 5%-15% for each year over the next decade and one
million new mobile broadband subscribers will be added to the
wireless networks every day until the end of 2022 [3]. These
data provide insights to observe that number of users and data
consumption have been increasing expeditiously. From this
perspective, it can be understood that wireless networks have
to be continuously upgraded to meet these evolving capacity
requirements.

A. Capacity enhancement methods
Capacity enhancement could be achieved by three different

techniques. These techniques can be given as follows: the
increased spectrum resources, the increased spectral efficiency,
and the increased network densification. These techniques sup-
port network operators with different amount of capacity gains;
however, increased network densification has contributed to
network capacity more than other techniques [4], [5].

5G will be the next standard that is expected to be widely
adopted beyond 2020. Actually, the main target of this standard
is to provide 1000x fold increase in the capacity [6]. In order
to provide the unprecedented increase in capacity, 5G mobile
standard will require the introduction of Ultra-Dense Networks
(UDNs) [7]. The UDNs are considered dense network deploy-
ments whose site densities exceed 90 sites/km2 or inter-site
distance (ISD) is less than 112 m [1].

Ultra-densification of the networks will be enabled by
deployment of small cells to complement existing macrocells.
Small cells offer big advantages with their easy installation
process, compact design and cheap prices. Nowadays, small
cell is a term that refers to the low-power and compact small
cells (e.g. picocells, femtocells) or network extensions (e.g.
relay) that are used to enhance the capacity and coverage in
data traffic hotspots or rural areas [8].

B. Network densification approaches
In order to densify the wireless networks, network oper-

ators could deploy small cells in target service areas. The
typical objective of the operator-deployed small cells would
be to enhance the capacity and coverage in the areas, such as
transport hubs, hospitals, and shopping malls.

In addition to operator-deployed small cells, end users or
other third-parties may deploy small cells in their homes,
offices, and enterprises to boost capacity and enhance indoor
coverage [9]. This end user-led deployments would result in
random topologies with selection small cell deployment loca-
tions being completely decoupled from operator’s networking
planning considerations. From an operator-perspective these
user-deployed small cells have the benefit of saving the opera-
tor the required considerable monetary and time investment
for site acquisition, backhauling and powering that comes
with increased densification [10]. However, the unplanned
nature of random topologies would result in relatively poor
performances compared to operator optimized topologies.

The hybrid UDN topologies provide an interesting trade-off
between optimized and random topologies, whereby, the UDN
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may constitute a combination of operator optimized small
cell deployments that is complemented by random small cell
deployments by end-users and other third-parties. The adoption
of such hybrid deployment approaches enables the operator to
leverage the benefits of random deployment whilst enhancing
system performance through optimizing the topology of a
subset of the small cell sites. Actually, these hybrid topologies
create a network planning and optimization problem that is
of interest from both research and practical perspective. Thus,
the corresponding research problem addressed in this paper can
be stated as follow: investigating a planning and optimization
framework for hybrid topologies that could provide results to
analyze the performance of hybrid topologies with pre-defined
network performance metrics (e.g., cell-edge performance).

C. Contribution and organization of study

In this study, a multiobjective optimization framework is
given to address a case where network operators leverage
the benefits of both optimized UDNs and randomly deployed
topologies in the same service area. Therefore, the main focus
of this study is to investigate the performance of hybrid UDN
topologies with different predefined performance metrics.

To investigate the performance benefits of hybrid topolo-
gies, fully optimized and random topologies are also produced
in the same service area for the bench-marking purpose. A
realistic case scenario is considered for the system performance
comparisons between hybrid, optimized and random topolo-
gies. Furthermore, an approach for post-deployment transmit
power optimization is introduced to further enhance the per-
formance of sub-optimum hybrid and random topologies.

The paper is organized as follows: Section II introduces
the system model and performance metrics. An optimiza-
tion framework for small cell locations and transmit power
optimization is presented in Section III. The case study is
introduced in Chapter IV. In Chapter V, simulation results and
discussion are given. Finally, conclusions are drawn in Section
VI.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. System model

The goal of the study is to plan a UDN that is composed
of small cells in a service area A. The service area is divided
into the A small area elements which are also known as pixels.
The average received power is assumed to be constant within
the whole pixel area, hence the pixel resolution provides a
trade-off between computation complexity and accuracy of the
simulations.

In this study, the wireless system is considered as OFDMA
(Orthogonal Frequency Division Multiple Access) downlink
with system bandwidth B. The considered service area has a
maximum of L predefined candidate small cell locations. Each
candidate location represents a possible location for placement
of a small cell with maximum transmit power Pmax.

The RF propagation path loss matrix can be represented by
matrix L ∈ RA×L, whereby, L(a, l) represents the path loss
between the ath pixel and the small cell deployed in the lth

candidate location. The selection of serving small cell in each
pixel is based on maximum received signal power in that pixel.

To that end, the received signal power at the ath pixel of signal
from the small cell deployed at the lth candidate location is
given by:

Prx(a, l) = (Pmax − L(a, l)) · x(l) (1)

where the vector x ∈ {0, 1}L indicates whether a small cell
is deployed at the lth candidate location. If the small cell is
deployed at the candidate location, then x(l) = 1, otherwise,
x(l) = 0. Actually, x could be considered to refer to the
network topology since it represents the actual cellular layout
and therefore the main network planning variable.

The average SINR at ath pixel each pixel is given by

γ(a) =
Prx(a, l)−F(a, l)
L∑

i=1,l �=l∗
Prx(a, l) + σ2

(2)

where σ2 is the noise power, l* is the serving cell for that pixel
and F(a, l) is the fast fading between the ath pixel and the
small cell deployed in the lth candidate location. Subsequently,
the of throughput τ(a) achievable in the ath pixel is obtained
through mapping the SINR results using a modified Shannon
formula [11]

τ(a) =

{
B(a) ·Beff · log2(1 + γ(a)

SINReff
), if γ ≥ γmin.

0, otherwise.
(3)

where B(a) is bandwidth allocated at ath pixel, γmin is
the minimum required SINR, and the constants SINReff and
Beff are effective SINR and effective bandwidth values used
to adjust the model to account for realistic implementation
inefficiencies [11].

B. Performance metrics for network planning

In order to achieve the best solutions in wireless system de-
sign, different metrics are taken into consideration. Generally,
the goal of network operators is to maximize capacity and
coverage in a service area. Moreover, network operators are
also willing to minimize their costs. In order to reduce costs,
they could use less number of small cells in their service areas.
On the other hand, with more small cells, more capacity and
coverage could be provided with careful wireless planning.
This situation creates a trade-off for network operators.

In order to characterize this the trade-off in simulations,
three different metrics are considered in this study. In addition
to these three metrics, another metric used for power optimiza-
tion is created. These metrics and their explanations are given
as follows:

• Number of small cells (f1): This metrics represents
the number of small cells in the wireless system
design. More small cells can provide more capacity
and coverage; however, more small cells increase the
costs of the network operators.

• Network capacity (f2): This metric represents total
aggregate throughput in a wireless system.
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• Cell-edge performance (f3): This metric represents
performance in cell-edge areas which are the weakest
places of the wireless networks.

• Pixel SINR 5th percentile (f4): This metric represents
the 5th percentile of all pixel SINR values. It is used
in order to investigate the power optimization.

(f1), (f2) and (f3) are used in the simulations in order to
investigate the performances of different topologies. (f4) is
used in simulations in order to investigate the performance
of proposed power optimization method.

In addition to those metrics, fairness in achievable through-
put is also considered in this study using the Jain’s fairness
index given.

J(t1, t2, ...., tN ) =

(
N∑
i=1

ti)
2

n · (
N∑
i=1

t2i )

(4)

where ti represents throughput of the i
th user out N users.

Jain’s fairness index result in ranges of 1
N to 1. Fairness of

system is maximized when each user has the same data rate.

III. OPTIMIZATION FRAMEWORK

Network operators deploy small cells in order to achieve
maximized capacity and coverage in target service areas.
To find locations of small cells that maximize capacity and
coverage in a target service area, network operators investigate
target service area to find possible small cells locations.
However, the large number of small cell locations in the UDNs
would complicate investigation for network operators. Thus,
optimization algorithms could be used to find optimal locations
of small cells.

In this study, targets of the network operators are consid-
ered as aggregate capacity (f2) and cell edge performance (f3).
If the goal of the network operator is to maximize aggregate
capacity (f2) of target service area, network operators could
use (f2) to design wireless networks. On the other hand, cell
edge performance (f3) may have priority in wireless system
design. Therefore, cell-edge performance metric (f3) could
be selected to design wireless systems. Thus, two different
wireless network design optimization problems are considered
in this study.

Generally speaking, denser wireless networks can provide
more capacity because of high-frequency reuse. On the other
hand, the large number of small cells increases costs of
wireless systems. In this regard, network operators should
maximize capacity in their wireless system while minimizing
the number of small cells. Therefore, network capacity metric
(f2) or cell-edge performance metric (f3) could be optimized
with the number of small cells (f1). As it can be seen, there can
be a trade-off between (f1) and (f2) or (f1) and (f3) metrics.
This trade-off creates multidimensional optimization and it is
called multiobjective optimization [12].

In order to find the trade-off between number of small
cells (f1) and aggregate capacity (f2), following multiobjective
optimization problem is proposed as follows:

minimizef = [f1,−f2] (5)

For number of small cells (f1) and cell-edge performance
(f3), the topologies featuring the best trade-off between (f1)
and (f3) could be found by proposed formulation as follows:

minimizef = [f1,−f3], (6)

In addition to multiobjective optimization, single objective
optimization is also used in order to optimize transmit power
levels of the small cells. The purpose of power optimization is
to maximize SINR values of pixels. Thus, it can be formulated
as follows:

minimizef = [−f4], (7)

(5), (6) and (7) are combinatorial problems belonging to
NP-Complete class. In this study, search space of optimization
is a set of 2C − 1, where C is the number of candidate
locations in target service area. Even for the small number of
the set, search space can be extremely huge. For example, if the
number of the set is 15, the number of network topologies is
more than 32 ∗ 104. Therefore, it complicates the simulations.
Furthermore, because of mathematical structure of (f2) and
(f3), search space is highly non-linear and full of disconti-
nuities. Therefore, to solve the (5) and (6), a Multiobjective
evolutionary algorithm (MOEA) [13], Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [14] is used.

In order to solve (7), Genetic Algorithm (GA) is used in
this study. To conceptualize how transmit power optimization
is investigated, the flow diagram of transmit power optimiza-
tion is given in Fig. 1. Power optimization is investigated by
considering the 5th percentile of all pixel values. It means that
5th percentile of all pixel values (13974 Pixel SINR values)
is optimized in order to maximize the pixel SINR values. In
order to maximize 5th percentile of all pixel values, (f4) metric
is used in the single objective optimization.

As shown in Fig. 1, to investigate the optimum transmit
power levels, small cell locations are predefined. Thus, small
cell locations do not change with the single objective opti-
mization but transmit power levels of small cells change. After
calculating the SINR values of each pixel, 5th percentile of all
SINR values is found. Then, this value is used for the input
of single objective optimization. According to this value, the
simulation may end or continue.

Fig. 1. Flow chart of transmit power optimization
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IV. CASE STUDY

A. Deployment area

Network densification in the future will have several chal-
lenges for network operators since network densification will
be hard in highly populated areas. 90% of population growth
is expected in Asia and Africa by 2050 [15]. In addition to
that, these areas already have high population density in the
range of 40000 – 200000 people/km2. Therefore, these areas
would be the main target of the UDNs. On the other hand, these
areas will also suffer from limited infrastructure in terms of
the energy, backhauling and site acquisition [16].

As stated earlier, small cells in the UDNs can be deployed
by network operators or by users. Deployment by network
operators will be done with information about locations of
small cells. It means that network operator will have infor-
mation about locations and other features of small cells. On
the other hand, deployment by users cannot be known by
network operators since users can deploy their small cells
anywhere. Actually, it is possible to detect locations of user-
deployed small cells from network operator side; however,
network operators still do not know the decisions of the
users. Therefore, this type of deployment will lead to random
network topologies where network operators will not have
certain decisions about locations of small cells.

In order to study different UDN settlements, static service
level simulator is developed. The main purpose of the simulator
is to find optimum topologies depending on performance
metrics given in section III. The simulator also investigates
performance differences of random, optimized and hybrid
topologies.

In order to contextualize UDN planning and optimization
framework, a real case UDN scenario in a highly populated
area is considered. In this study, Hanna Nassif ward in Dar
es Salaam, Tanzania is assumed as a place where the UDN
is deployed. The population density in Hanna Nassif is ap-
proximately 40000 people/km2. In 1km2 areas of Hanna
Nassif includes almost 3000 buildings which their heights
are in the range of 3-6 m. Their topographical difference is
approximately 19 m. Three-dimensional (3D) representation
of UDN deployment scenario is given Fig. 2.

In case area, there are totally 368 candidate locations for
small cells. These candidate locations are represented with
white-dots in the Fig. 2. Small cells are all located at rooftop
level.

Fig. 2. Planning case deployment scenario [9]

The reason to choose the rooftop small cells is to improve
outdoor coverage. Small cells located at rooftop level provides
LOS conditions for high-capacity wireless backhauling [17].
Furthermore, the rooftop is a good place for different tech-
nologies such as energy harvesting from alternative energy
resources such as wind and solar [18].

B. Simulation approaches

In order to investigate different network topologies, a static
simulator is developed by considering real wireless networks.
In real wireless networks, there are different parameters to
consider in details. The parameters used in this study are given
in Table II. Simulations could be run in any environment such
as local computers and computer clusters. However, to shorten
the simulation time, Triton [19] which is Aalto University high
performance computing cluster was used. The approaches for
three different topologies are given in flow diagrams in Fig.
3. Moreover, the flow diagram of the system level simulator
is given in Fig. 4.

In order to obtain optimized topologies, NSGA-II algorithm
is used. Actually, NSGA-II algorithm in this study optimizes
the locations of the small cells. It means that NSGA-II searches
for the optimal candidate locations for the certain number of
small cells depending on the user distribution. In this sense,
NSGA-II provides the optimal solutions that enhance particular
performance metrics.

To investigate the performance of random topologies, 1000
random and different topologies are created. For example,
if the purpose is to deploy 140 cells in target service area,
1000 different topologies, which each consists of 140 cells,
are created.

Fig. 3. (a) Flow diagram of optimization of small cell locations, (b) Flow
diagram for random topologies investigation, (c) Flow diagram of hybrid
topologies investigation
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Fig. 4. System level simulator block diagram

Hybrid topologies are combinations of random and
opti-mized topologies. In order to investigate the
performance of hybrid topologies, 1000 different
topologies that consist of both optimized and random
topologies are created. Actually, there is a proportionality
for hybrid topologies. For example, if the target is to
deploy 140 cells, 60 optimized cell locations and 80
random cell locations can be created. In addition, 100
optimized cell locations and 40 random cell locations can
also be chosen. In Table I, hybrid topologies
investigated in this study are given.

C. Key Parameters and Assumptions

Two different spatial traffic distribution (STD) cases are
considered in this study and these are uniform STD and
non-uniform STD cases. As mentioned in Section 2, service
demand by users is uniformly distributed over the service
area in uniform STD case. Non-uniform STD implies that
service demand is more likely to be found in certain areas.
Actually, non-uniform STD case could be found in real
wireless net-works and uniform STD case could be a
reference for non-uniform STD case in terms of
performance comparisons.

TABLE I: Topology types

Random completely random small cell locations for
uniform STD/ non-uniform STD

Optimized optimized small cell locations for uniform
STD/ non-uniform STD

Hybrid1 consists of 40 optimized small cell loca-
tions and 100 random small cell locations
for uniform STD/ non-uniform STD

Hybrid2 consists of 70 optimized small cell loca-
tions and 70 random small cell locations
for uniform STD/ non-uniform STD

Hybrid3 consists of 100 optimized small cell loca-
tions and 40 random small cell locations
for uniform STD/ non-uniform STD

In order to investigate performances of different topologies,
randomly created 400 users are dropped on the network layout
in one snapshot. Actually, each user is associated with pixels,
which each has 5x5 m2 in network layout. To increase the
statistical quality of the study, 400 users are dropped on the
network layout 3000 times. It means that 3000 snapshots are
used in static system level simulator.

On the other hand, in terms of transmit power optimization,
only one snapshot is used. It means that there is only one
topology and transmit power levels of small cells in this
is optimized. Only one optimized topology is obtained by
results of optimized topologies. Random topologies are created
randomly for only one snapshot. In order to create a hybrid
topology, different combinations of random and optimized
topologies are used.

TABLE II. SIMULATION PARAMETERS

Parameter Values/Assumptions
Deployment Scenario Outdoor small cells deploy-ment

Carrier Freq./ Bandwidths Carrier Freq : 2600 MHz, BW : 
10 MHz

Simulations Radio propagation

modeling (WinProp)

[20], Static system level 
simulations (Matlab), 5 m 
resolution

SINR-throughput mapping

SINRmin (dB) -10

BWeff 0.42

SINReff 1.1

Smax (b/s/Hz) 7.67

Transmit Power 30 dBm
Transmiter Gain 0 dBi
Receiver Gain 0 dBi
Antenna Height 7 m
Antenna Patterns Isotropic

Number of small cells 368 candidate locations, 
number of SC changes for 
topologies

Location Deployed on the rooftop
UE height/location UEs dropped in whole area (both 

indoor and outdoor), height is not 
considered

Number of UEs 400

Number of Monte Carlo Iterations 3000

Fast fading Rayleigh Fading, number of paths 
is 10

Buildings Heights 3 to 6 m Penetration loss: 
20 dB

Cell association Cell association: maximum 
received signal strength wins. 
Fast Fading is not considered 
in the cell association

Scheduling Round Robin
Population for optimizations 100 for topology optimiza-tion, 

1000 for power opti-mization
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It should be noted that each topology is same during the
simulation time of transmit power optimization. One snapshot
is used to reduce the time complexity of the simulations.
Moreover, there is no UE dropped on the network layout in
the transmit power optimization phase. Thus, just working on
the pixel SINR values is possible with only one snapshot.

V. SIMULATION RESULTS AND DISCUSSION

A. Optimized topologies

In Fig. 5, optimized topologies are compared in terms of
cell edge performance. It can be seen that non-uniform STD
case has better performance than uniform STD case. Actually,
it can be really expected from the results. After optimizing
the network layout, NSGA-II selects candidate locations which
are close to UEs. In this regard, non-uniform STD case has
more concentrated users in small areas as compared to uniform
STD case. Therefore, with the same number of small cells, it
is quite possible that non-uniform STD has much better cell
edge performance.

In Fig. 6, aggregate capacity comparison of non-uniform
and uniform STD cases are given. In this figure, it can be seen
that non-uniform STD case has better performance with the
low number of small cells while uniform STD case has better
performance with high number of small cells. From this point,
it can said that uniform STD case has almost same characte-

Fig. 5. Cell edge performance of optimized topologies

Fig. 6. Aggregate capacity performance of optimized topologies

Fig. 7. Cell edge performance comparison of random topologies and
optimizedtopologies

ristic of non-uniform STD case after the certain amount of
small cells. It means that uniform STD case with the high
number of small cells reaches almost same small density/m2

density of non-uniform STD case and after some points, it
becomes better than non-uniform STD case.

B. Optimized vs random topologies

In Fig. 7, cell edge performance comparison of random
and optimized topologies is given. In this figure, it can be
seen that optimized topologies have much better performance
as compared to random topologies. In addition, optimization
in non-uniform STD case increases cell edge performance by
106% while optimization in uniform STD case increases cell
edge performance by 54.8%. Note that comparison between
random and optimized topologies is done by considering the
median value of random topologies CDF and cell edge value
of optimized topology which has 140 small cells. From these
results, it can be seen that non-uniform STD case has more
advantages in terms of optimization. Actually, this situation
is the result of traffic distribution. In random topologies,
locations of small cells are selected without information of
user distribution. As stated earlier, UEs in non-uniform STD
case are mostly in the certain areas while UEs in uniform
STD case are distributed uniformly over the network layout.
Therefore, it

could be expected that performance of random topology non-
uniform STD case should be worse than random topology
uniform STD case. On the other hand, after optimization,
performance increase in non-uniform STD case is more than
another uniform STD case.

In Fig. 8, the aggregate capacity performance of random
and optimized topologies is shown. In this figure, optimized
topologies have more performance as compared to random
topologies. Note that comparison between random and opti-
mized topologies is done by considering the median value
of random topologies CDF and aggregate capacity value of
optimized topology which has 140 small cells. Moreover,
similar to figure 17, increase in non-uniform STD case is more
than the increase in uniform STD case. It should be noted that
optimized topologies in Fig. 8 are optimized by NSGA-II in
terms of aggregate capacity. It means that performance metric
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is used for optimization. Therefore, optimized topologies of
and optimized topologies of could be different from each other.

Fairness is another criterion that has been taken into
consideration. In Fig. 9, it can be concluded that network
optimization increases the fairness of the network layout.

Fig. 8. Aggregate capacity performance comparison of random topologiesand
optimized topologies

Fig. 9. Fairness comparison of random topologies and optimized topologies

C. Hybrid topologies

In Fig. 10, 11 and 12, performances of all topologies
are shown. In terms of metric performances, it can be easily
seen that random topologies are the worst topologies while
optimized topologies are the best topologies. It can be an
expected result because optimized topologies are the ones
which are optimized by taking user traffic distribution into
account. Moreover, random topologies are random in nature;
therefore, random topologies are the worst topologies in terms
of performances and fairness. Furthermore, performances of
hybrid topologies are between random and optimized topolo-
gies. However, each hybrid topology has different perfor-
mance. This situation is the result of the proportionality of
random and optimized topologies. It can be said that if the
number of optimized small cell locations in hybrid topologies
is larger than the number of random small cell locations in
hybrid topologies, then performance increases.

In Fig. 10, cell edge performances of all topologies are
given. In terms of hybrid topologies, uniform STD case is
better in hybrid1 and hybrid2. On the other hand, hybrid3 has

better results for non-uniform STD case. As explained before,
non-uniform STD cases consist of UEs that are populated
in certain areas. Hence, if there are more random small cell
locations in hybrid topology, uniform-STD case creates better
performance. Another important thing to observe from this
figure is that the changes in non-uniform STD cases are more
than uniform STD cases in terms of the hybrid topologies. For
example, increase from hybrid1 to hybrid2 is much larger for
non-uniform STD case.

In Fig. 11, aggregate capacity performances of all topolo-
gies are given. Actually, in all topologies, uniform STD cases
have more performance than non-uniform STD cases. Further-
more, more optimized small cell locations increase aggregate
capacity performances.

In terms of fairness, it can seen that non-uniform cases
are more favorable with the optimized small cell locations.
It means that fairness of non-uniform STD cases increases
faster than uniform STD cases when the number of optimized
small cell locations increases in the hybrid proportionality. This
situation can be seen in Fig. 12.

Fig. 10. Cell edge performance comparison of all topologies

Fig. 11. Aggregate capacity performance comparison of all topologies 

D. Transmit power optimization

1) Random Topologies: In order to evaluate the transmit
power optimization for random topologies, random 140 cells
are taken into consideration. For the evaluations, the same
topology is used with both full transmit power levels (30 dBm)
and optimized transmit power levels. In order to understand if
power optimization works well, Fig. 13 should be checked.
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Fig. 12. Fairness comparison of all topologies

In Fig. 13, cumulative distribution function of all pixel
SINR values is given. After power optimization, SINR values
of pixels are increased. Therefore, this shows that power
optimization works well for random topologies.

Fig. 13. CDF of pixel SINR values for random 140 cells

So far, it has been seen that SINR values could be increased
by power optimization. As stated, if pixel SINR values are
increased, SINR values of UEs can also be increased. In Fig.
14, UE SINR values are given. From this figure, it can be
seen that optimized transmit power increases the SINR values
of UEs. Thus, it can be assumed that throughput values of UEs
are also increased because of increase in SINR values. On the
other hand, some of the small cells are switched off after power
optimization. Therefore, total bandwidth in the service area is
reduced.

Throughput values of UEs are given in Fig. 15. According
to Fig. 15, throughput values of UEs are not increased. It
means that throughput values of UEs are decreased with power
optimization. In wireless telecommunications, bandwidth has a
crucial role in terms of data rate. Each cell serves some number
of UEs and therefore bandwidth of each cell is shared between
its served UEs. Even though SINR values could be increased,
the number of resources or bandwidth cannot be shared in the
same way after power optimization.

In Fig. 16, number of UEs for each cell is given by
bar plots. (a) represents full power case and (b) represents

optimized power case. It can be seen that UEs are distributed
more equally in (a) as compared to (b). Since some cells
are switched off by power optimization, their own loads are
transferred to one of the other active cells. Therefore, with
new transmit power levels, the bandwidth of active cells is
shared among more UEs. Because of that, UEs obtain fewer
resources as compared to full power case and this reduces the
throughput of UEs. From this perspective, traditional serving
cell selection procedure cannot be the effective solution for
this study. Thus, load balancing could be considered in a way
where estimated available throughput per link is used instead
of link quality estimation [21]. In this regard, it can be said
that load balancing could be studied after power optimization;
however, it is not in the content of this study.

Fig. 14. SINR values of UEs for non-uniform STD case-only for one snapshot

Fig. 15. Throughput values of UEs for non-uniform STD case-only for one
snapshot

2) Hybrid Topologies: In Fig. 17, it can be seen that power
optimization increases median of pixel SINR values. However,
increases for different hybrid topologies are different from each
other. For example, hybrid1 has more increase as compared to
hybrid2 since there are more random small cell locations in
hybrid1. It means that when there are less optimized small cell
locations, the impact of power optimization is higher. From this
figure, it can be understood that if there are more optimized
small cell locations in hybrid topologies, there may not be
any changes after power optimization. Indeed, after power
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optimization, transmit power levels of hybrid3 is still same
as in the full transmit power case.

In Fig. 18, it can be seen that throughput of UEs is reduced
as expected since some of the small cells are switched off after
power optimization. Therefore, although SINR values of pixels
are increased with power optimization, throughput values of
UEs is dropped because of resource sharing.

Fig. 16. UE association through small cells

Fig. 17. Median SINR values of pixels after hybrid power optimization

Fig. 18. Median throughput values of UEs after hybrid power optimization-
only one snapshot

VI. CONCLUSIONS

In this study, a planning and optimization framework for
hybrid UDN topologies is presented. In order to optimize
different metrics, NSGA-II algorithm is used in a system level
static simulator. The results confirmed that optimized network
topologies provided much better performance results compared
to both hybrid and random topologies, whereas, the hybrid
topologies outperformed the random topologies. Moreover,
the performance gap between hybrid and random topologies
increased as the fraction of optimized site locations increased
in hybrid topologies.

The performance increasingly dense deployments are in-
terference limited. Therefore, the use of small cell transmit
power optimization provides significant performance gains
due to SINR improvements. In this study, pixel SINR val-
ues are used as an input for transmit power optimization
algorithm. According to the results, post-deployment power
optimization increases SINR performance for both random and
hybrid topologies, with the performance of hybrid topologies
approaching that of optimized topologies.

However, power optimization does not increase the
throughput values of UEs in the simulations since some of the
small cells are switched off in order to have better SINR values
in the network layout. Therefore, since the best received signal
power case is used in user association, most of UEs connect
to same small cells. This situation reduces bandwidth per user
although SINR of UEs is increased. Hence, load balancing can
be a good topic for further study in this context.

Also of interest would be comparative performance studies
of deployments at different spectrum band, in particular, the
5 GHz unlicensed band and the 28 GHz candidate 5G band.
The difference in RF propagation characteristics between the
28 GHz and the 2.6 GHz band considered in this study may
provide some interesting outcomes in terms of hybrid and
optimized topologies. Moreover, the trade-off between the
improved propagation at 2.6 GHz versus the larger spectrum
resources available at 28 GHz also creates further interesting
problems for topology optimization and load balancing with
multi-band small cell deployments.
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