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Abstract
Adaptive behavior relies on the ability of the brain to form predictions and monitor action out-

comes. In the human brain, the same system is thought to monitor action outcomes regardless

of whether the information originates from internal (e.g., proprioceptive) and external

(e.g., visual) sensory channels. Neural signatures of processing motor errors and action outcomes

communicated by external feedback have been studied extensively; however, the existence of

such a general action-monitoring system has not been tested directly. Here, we use concurrent

EEG-MEG measurements and a probabilistic learning task to demonstrate that event-related

responses measured by electroencephalography and magnetoencephalography display spatio-

temporal patterns that allow an effective transfer of a multivariate statistical model discriminat-

ing the outcomes across the following conditions: (a) erroneous versus correct motor output,

(b) negative versus positive feedback, (c) high- versus low-surprise negative feedback, and

(d) erroneous versus correct brain–computer-interface output. We further show that these

patterns originate from highly-overlapping neural sources in the medial frontal and the medial

parietal cortices. We conclude that information about action outcomes arriving from internal or

external sensory channels converges to the same neural system in the human brain, that

matches this information to the internal predictions.
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1 | INTRODUCTION

Neural responses to negative or unexpected action outcomes have

been the main target of research seeking to understand neural

mechanisms of adaptive behavior in humans (Luft, 2014; Walsh &

Anderson, 2012; Weinberg, Dieterich, & Riesel, 2014). Electroen-

cephalographic (EEG) and magnetoencephalographic (MEG) studies

have identified evoked responses elicited by errors in motor tasks

(error-related negativity, ERN, Ne) (Falkenstein, Hohnsbein, &

Hoormann, 1995; Holroyd & Coles, 2002; Keil, Weisz, Paul-

Jordanov, & Wienbruch, 2010) as well as by external feedback

(Feedback-Related Negativity, FRN) (Doñamayor, Marco-Pallarés,

Heldmann, Schoenfeld, & Münte, 2011; Doñamayor, Schoenfeld, &

Münte, 2012b; Gehring & Willoughby, 2002; Miltner, Braun, &

Coles, 1997). These neural signals appear consistently across

different tasks (Meyer, Riesel, & Hajcak Proudfit, 2013; Olvet &

Hajcak, 2009), are indicative of post-error behavioral adjustments

(Holroyd & Coles, 2002; Nieuwenhuis et al., 2002), and are known

to be altered in a number of neuropsychiatric conditions (Gründler,

Cavanagh, Figueroa, Frank, & Allen, 2009; Gu, Huang, & Luo,

2010; Morris, Heerey, Gold, & Holroyd, 2008; Morris, Holroyd,

Mann-Wrobel, & Gold, 2011; Moser, Moran, Schroder, Donnel-

lan, & Yeung, 2013; Proudfit, 2015; Weinberg, Klein, & Hajcak,

2012).
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A prominent theory by Holroyd and Coles (2002) suggests that

the motor-response-locked ERN and feedback-locked FRN represent

phasic changes in dopaminergic signaling to prefrontal cortex. Impor-

tantly, these authors suggest that outcome information from internal

and external sources converges to a general performance-monitoring

system giving rise to both event-related potentials (ERPs). In the case

of ERN, the outcome is communicated either by an efferent copy of

the motor program (Falkenstein et al., 1995; Stahl & Gibbons, 2007)

or by proprioceptive input (Holroyd & Coles, 2002), while FRN is trig-

gered whenever the outcome information arrives via external sensory

(visual, auditory, etc.) inputs (Gehring & Willoughby, 2002; Miltner

et al., 1997). However, this hypothesis has received little experimental

support so far.

Here, to probe the functional similarity of ERN and FRN, we

used the recently introduced across-condition generalization tech-

nique (Kaplan, Man, & Greening, 2015; King & Dehaene, 2014). Spe-

cifically, we tested whether a classifier trained to discriminate

negative versus positive outcomes in one condition (e.g., erroneous

vs. correct motor output) can be successfully transfered to another

classification problem (e.g., discriminating negative vs. positive

feedback).

We collected the feedback-related brain responses from a proba-

bilistic learning task controlled by a brain–computer interface (BCI).

Using a BCI ensured active involvement of the participants

(as compared to the passive viewing tasks used previously) and, at

the same time, minimized the possibility of the spurious generaliza-

tion with motor trials due to the presence of highly-similar

movement-related activity (Figure 1). We separately recorded

motor-related error responses during a speeded motor task in the

same participants. We then applied across-condition generalization

technique (Kaplan et al., 2015; King & Dehaene, 2014) to identify

patterns in EEG–MEG signals that (a) allow discriminating between

outcomes within a condition (e.g., negative vs. positive feedback),

and (b) transfer to a different classification problem (e.g., motor error

vs. negative feedback). Importantly, this “generalization test” is per-

formed at each time instant allowing identification of such patterns

even if they occur at different latencies with respect to their trigger-

ing events. Similarly, we tested whether brain responses to loss of

BCI control involve the same sources as responses to motor errors

and probabilistic feedback.

Previous research confirmed that both ERN and FRN, computed

as the difference between the ERPs to negative versus positive out-

comes, display highly similar EEG voltage distributions characterized

by a frontal–central negative focus, sometimes a more anterior distri-

bution for FRN (Martin & Potts, 2011; Miltner et al., 1997; Potts,

Martin, Kamp, & Donchin, 2011). EEG and MEG source modeling also

supported common neural generator in the dorsal anterior cingulate

cortex (dACC, Keil et al., 2010; Miltner et al., 2003; Nieuwenhuis,

Slagter, von Geusau, Heslenfeld, & Holroyd, 2005). Other studies sug-

gest a more posterior medial sources of FRN or ERN (posterior cingu-

late cortex and precuneus) (Agam et al., 2011; Doñamayor,

Heilbronner, & Münte, 2012a). An fMRI study showed overlapping

BOLD-signal increase in dACC both when committing an erroneous

motor response and when receiving negative feedback (Holroyd

et al., 2004).

However, several lines of conflicting evidence exist. Patient stud-

ies demonstrate that ERN and FRN may be affected differently in a

number of neuropsychiatric conditions including obsessive–

compulsive disorder (Gründler et al., 2009), trait anxiety (Gu et al.,

2010), major depression (Proudfit, Bress, Foti, Kujawa, & Klein, 2015;

Weinberg et al., 2012) and schizophrenia (Morris et al., 2011). These

discrepancies led researchers to suggest that, despite the apparent

similarities, distinct neuronal populations may be involved in produc-

ing motor- and feedback-related error responses (Müller, Möller,

Rodriguez-Fornells, & Münte, 2005).

One possibility to reconcile this conflicting evidence follows

from the suggestion that FRN may comprise two distinct compo-

nents (Heydari & Holroyd, 2016; Holroyd, Pakzad-Vaezi, &

Krigolson, 2008); the expectancy component (N200 response) is

thought to track surprising or unexpected task-related information

(Talmi, Atkinson, & El-Deredy, 2013) while the valence compo-

nent (reward positivity) is considered to index processing of

reward information (Holroyd et al., 2008). In line with this model,

one study reported two distinct spatiotemporal principal compo-

nents contributing to the FRN. The authors suggested that one of

them may represent the same neural activity as the ERN while

the other could be specific to external feedback (Potts et al.,

2011). Yet, whether these motor- and feedback-related evoked

responses track expectation violation, processing of reward infor-

mation, or both, remains largely unknown. The across-condition

generalization method allowed us to probe how the processing of

valence and expectancy of the feedback contributes to the

observed similarities.

FIGURE 1 Design of the experiment. Condition names are shown

in italics. BCI task: Participant selects a target by maintaining
visual attention on it. BCI decodes and reports subject’s
selection correctly or incorrectly. Feedback is generated
according to the probability associated with the target selected
by a BCI. Motor task: Participants select targets by button
presses based on the preferences learned during the BCI task.
No feedback is presented [Color figure can be viewed at
wileyonlinelibrary.com]
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2 | MATERIALS AND METHODS

2.1 | Participants

Fourteen healthy volunteers (6 females, 8 males, mean age 25 years,

range 21–33) naïve to BCIs participated in the experiment. Aalto Uni-

versity Committee on Research Ethics approved the study. All sub-

jects read the description of the experiment and signed the informed

consent form before the experiment. The data of one subject were

removed from the analysis involving the motor condition due to the

very low number of errors in a motor task.

2.2 | Experimental procedure

We used a probabilistic learning task (Frank, Seeberger, & O'reilly,

2004), which we adapted for a BCI. The subjects were exposed to

four initially unfamiliar target stimuli, each of which had a specific,

fixed probability of generating positive feedback (80%, 66%, 33%, and

20%, we used two different stimuli–value associations randomly

assigned across subjects). On each trial, the subjects had to choose by

a BCI from two alternative targets presented on the screen; the sub-

jects’ task was to maximize positive feedback across the experiment.

Based on the feedback, the subjects gradually learned to choose the

more “valuable” target of each presented pair.

After the BCI task, the subjects were presented with the same

target stimulus pairs, but they were requested to indicate their choice

of the more valuable one by lifting the left or right index fingers

instead of using the BCI. No feedback was presented in the motor

task. Both the BCI and motor tasks are presented in detail in the

following text.

2.3 | BCI control

We used a steady-state visual-evoked-response (SSVER) -based BCI

paradigm to control the task. On each trial, two target stimuli (letters

from the Tigrinya alphabet, unknown to the subjects) appeared on the

screen. Each stimulus was masked by a white noise pattern modulated

at 12 or 15 Hz. The noise mask was sampled from a pre-generated set

at this frequency and the opacity of the noise image was scaled with a

sinusoid of the same frequency so that it varied from 10% to 90%.

(Figure 1). The stimuli were designed so that the distance from the fix-

ation point to the middle of the stimulus did not exceed 2 angular

degrees. The data from the MEG acquisition system were continu-

ously transmitted to the on-line analysis computer in consecutive

500-ms segments via a real-time buffer mechanism (Oostenveld, Fries,

Maris, & Schoffelen, 2011; Sudre et al., 2011). The time courses of

four characteristic spatial patterns for the pre-defined frequency com-

ponents were extracted from a subset of 96 occipital and parietal

gradiometers using the spatio–spectral decomposition (SSD) algorithm

(Haufe, Dähne, & Nikulin, 2014). Following the procedure in an earlier

study (Parkkonen, Andersson, Hämäläinen, & Hari, 2008), the

SSD-reduced data were fit with a general linear model comprising

regressors for both target modulation frequencies (12 and 15 Hz),

alpha rhythm (10 Hz), line-frequency interference (50 Hz), DC offset,

and a linear trend to obtain the amplitude estimates of the 12- and

15-Hz signals. For each of the modulation frequencies, the model

comprised separate sine and cosine predictors to accommodate for

the unknown phase of the signal. The final amplitude estimates com-

prised the norms of the estimates, including the respective sine and

cosine components. The resulting amplitude estimates were passed

on to a linear support vector machine (SVM) classifier with the regu-

larization parameter C = 0.5 (Vapnik, 2000). We defined that a deci-

sion was reached when two consecutive time segments were

classified to the same class with p > .75 to control the misclassifica-

tion rate at (1–0.75)2 = 0.0625. The probability model for SVM was

created using cross validation as implemented in the Scikit-Learn

package (Pedregosa et al., 2011).

To choose the target, the subjects were instructed to focus and

maintain visual attention on it until the system indicated the response.

When the system reached a decision about the subject’s choice, a

green arrow pointing to the selected target appeared in the middle of

the screen for 500 ms indicating a choice. If the classifier failed to

arrive to a decision in 5 s, the trial ended with the message “Too late”

appearing on the screen.

On making the selection, the subject received feedback whether

he or she had earned (“+”; the plus sign) or had not earned (“x”; the

cross sign) the score in this trial. The feedback was displayed

1,000 ms after the target selection. At the end of each trial, the sub-

ject was asked to report whether the system had indicated his or her

choice correctly by lifting the left or right index finger. The association

of the left/right finger and the correct “incorrect” indication was ran-

domized across trials to ensure that no systematic preparatory activity

contaminated the data following the correct or incorrect BCI perfor-

mance. The subjects were instructed to indicate whether a system

indicated their choice correctly (BCI-correct) or incorrectly (BCI-error)

as accurately as possible; no time limit was set for reporting on BCI

performance.

We motivated the subjects to earn a high score in the learning

task by telling them that the subject attaining the highest score will be

awarded a prize. We also encouraged them to report the BCI perfor-

mance as accurately as possible by saying that an incorrectly labeled

trial may worsen the BCI performance and by mentioning that every

trial counted as “incorrect” will be discarded and will thus prolong the

experiment. Therefore, dishonest reporting was against the subject’s

interest.

2.4 | BCI calibration

The BCI calibration consisted of two blocks (4 min per block) compris-

ing 16 trials each. The design of the calibration trials was similar to

those in the actual experiment. On each trial, the target stimulus (star

shape) and a blank rectangle appeared on the screen. Participants

were instructed to sustain visual attention on the target stimulus for

5 s. The data from the first calibration block were used to initialize the

spatial filters and the classifier. The performance of the system was

then tested online during the second calibration block.

Similarly to the rest of the experiment, subjects received positive

feedback whenever the target stimulus was chosen and negative

feedback if the non-target, that is, the blank rectangle, was chosen.
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2.5 | BCI task

The BCI task consisted of 360 trials and was split into five blocks consist-

ing of 72 trials each. On each trial, a random pair from the set of four

stimuli appeared on the screen. As the stimuli, we used letters from the

Tigrinya alphabet, which was unfamiliar to all of our subjects. The proba-

bilities of generating positive feedback were 0.8, 0.66, 0.33, and 0.2.

Trials containing evoked responses related to processing positive

versus negative feedback, high- versus low-surprise feedback, and erroneous

versus correct classification of subjects’ intentions by the BCI were taken

from the BCI task.

To ensure a sufficient number of BCI errors for the analysis, we

introduced a randomly-appearing error to the BCI control affecting

15% of the trials. These artificial BCI errors produced a distinct trigger

code such that these trials could be separated from all other trials.

BCI-error trials were then defined as those with this trigger code fol-

lowed by a subjective report of incorrect BCI performance. More

details on the BCI control accuracy and trial counts are presented in

Supporting Information Tables I–II. If the subject’s intention was mis-

classified by the BCI, the feedback was always generated according

the stimulus that was (incorrectly) indicated as chosen by the BCI.

For the analysis of the feedback-related responses (positive

vs. negative feedback, high- vs. low- surprise feedback), we retained only

those trials where the subject’s intention was correctly decoded by

the BCI. For detailed definition of positive versus negative feedback,

high- versus low- surprise feedback, see subsections 2.10 and 2.11.

2.6 | Motor task

The motor task block consisted of 288 speeded-response trials, during

which the subjects responded by lifting the left or right index finger.

In the beginning of the block, the subjects had to respond within

700 ms. After each set of 50 trials, the maximal allowed response time

decreased by 51 ms. The subjects were instructed to avoid exceeding

the time limit even if that might result in incorrect responses

(i.e., incorrect responses were preferred over missed trials). As the

stimuli and their respective values were already familiar to the sub-

jects (see Section 3.1), the subjects received no feedback in this block.

We defined all trials were the subjects chose the least valuable alter-

native as (motor) error trials.

2.7 | EEG–MEG Acquisition

MEG data were acquired using a 306-channel Elekta Neuromag System

(Elekta Oy, Helsinki, Finland) comprising 102 magnetometers and

204 planar gradiometers. Data were sampled at 1,000 Hz after filtering

to 0.1–330 Hz. EEG was recorded concurrently using a 64-electrode

Waveguard™ (Advanced NeuroTechnology, Enschede, The Netherlands)

MEG-compatible cap with the reference electrode at the AFz position.

Prior to analysis, the EEG signals were re-referenced to their average

value.

To control for eye-movement-related artifacts, a pair of electroo-

culographic (EOG) electrodes placed below the left eye and on the

frontal processes of the left zygomatic bone were applied. Head

movements were monitored continuously during the recordings using

5 head-position-indicator (HPI) coils.

Prior to the MEG recording, anatomical landmarks (nasion and left

and right preauricular points), HPI coils and EEG electrode positions,

and 100 (+/−5) additional scalp-surface points were digitized using

the Isotrak 3D digitizer (Polhemus Navigational Sciences, Colchester,

VT). To ensure roughly equal distances between the scalp and the

frontal and occipital sensors, a special cushion was used whenever

necessary.

The stimuli were shown on a semi-transparent back-projection

screen by a projector located outside the shielded room. The distance

between a participant’s eyes and the screen was 1.25 m.

2.8 | Preprocessing

For the MEG signal, external magnetic interference was suppressed

and head movements compensated for using the signal-space separa-

tion (SSS) method implemented in the MaxFilter software (version

2.2; Elekta Oy, Helsinki, Finland) (Taulu & Simola, 2006). Thereafter,

cardiac and ocular artifacts were projected out from the EEG and

MEG data using the FastICA algorithm as implemented in the

MNE-Python software (Gramfort et al., 2013). Components corre-

sponding to cardiac and ocular artifacts were excluded based on the

visual inspection of their topographies and time courses. Epochs con-

taining signal amplitudes greater than 12,000 fT. for magnetometers,

4,000 fT/cm for gradiometers and 150 μV for EEG electrodes were

removed from the analysis automatically. The data were filtered to

0.5–20 Hz using a Hamming-windowed finite impulse response filter

whose length corresponded to 6.6 times the reciprocal of the shortest

transition band and resampled at 125 Hz to minimize the number of

features. To account for possible classification bias, the number of

positive and negative outcome trials was equalized within each condi-

tion by excluding epochs of the class with higher trial count so that

the time intervals between remaining trials were minimal. Trial counts

for the within- and across-condition classification analysis are pre-

sented in Supporting Information Table I.

2.9 | Extracting epochs and reference events

The data were split into epochs of −200–600 ms for the evoked-

response analysis and 0–500 ms for time-resolved classification and

across-condition generalization analysis. For each condition, the

epochs were extracted relative to the corresponding reference event:

in the motor condition at the onset of the button press; in the bci con-

dition at the onset of the arrow indicating the BCI selection; and in

the feedback:expectancy and feedback:valence conditions at the onset

of the feedback cue.

In the analysis of the feedback:valence and feedback:expectancy

conditions, only trials following correct decoding of the subject’s

intention by the BCI were used. Feedback trials that followed

erroneous BCI performance were excluded from the analysis.

2.10 | Probing the expectancy component of FRN

To assess the contribution of the expectancy-specific component of

FRN to the across-condition generalization, we split the negative

feedback trials into two categories based on the expectancy of the
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outcome. We defined negative feedback as high surprise whenever it

resulted from picking the better alternative; conversely, negative

feedback to choosing the lower-value alternative was considered low

surprise. It was much harder for the subjects to learn the preferences

in trials containing two moderately valuable stimuli (66% vs. 33%) and

two least valuable stimuli (33% vs. 20%) until very late in the experi-

ment. Thus, in such trials the expectation to get positive feedback was

relatively low as compared to high-surprise negative feedback trials

(e.g., when the most valuable stimulus [80%] resulted in negative

feedback).

The behavioral results suggested that by the fourth experimental

block (see Section 3.1) most of the subjects already have developed

reasonable expectations about the value of the stimuli. Based on that

we hypothesized that by experimental blocks 4 and 5 subjects had

strong expectations to receive positive feedback after choosing the

higher-value stimuli. Thus, the rare negative feedback resulting from

the probabilistic nature of these stimuli should be less expected (more

surprising) compared to negative feedback resulting from the selection

of less-valuable stimuli for which such expectations were weaker.

Thus, a classifier trained to discriminate such high versus low surprise

negative feedback should capture the activity specific to the expec-

tancy of an outcome, but not its valence. This analysis was performed

only on negative feedback trials due to the low number of trials where

positive feedback resulted from picking the low-value stimuli. Trial

counts for this analysis are summarized in Supporting Information

Table I.

2.11 | Probing the valence component of the FRN

To probe the valence-specific component of FRN, we trained a classi-

fier on a subset of positive and negative feedback trials grouped in

such a way that the number of high- and low-surprise events was equal

within each group. Thus, we ensured that the expectancy-specific

effect is diffused across positive and negative outcomes and the clas-

sifier only captures valence-specific information. The time-resolved

within-condition classification and across-condition generalization

procedures for this analysis were identical to the ones described

above. Trial counts for this analysis are summarized in Supporting

Information Table I.

2.12 | Analysis of the evoked responses

Evoked response analysis was performed to verify the presence of the

evoked activity both in the EEG and MEG data. Evoked responses

were baseline-corrected by subtracting the mean amplitude value of

the pre-stimulus interval from the signal. In the EEG data, group-level

effects for all four conditions (bci performance, feedback:valence,

feedback:expectancy, and motor selection) were probed using two-

tailed two-sample permutation tests at the FCz electrode followed by

maximum FWER correction for multiple comparisons. As no a priori

hypothesis was available regarding the MEG sensor most sensitive to

the magnetic counterpart of the ERN/FRN, no statistical analysis was

performed on the evoked MEG data. For visualization purposes in

Figure 2, we picked MEG sensors displaying the most prominent

differences within each condition separately in the time windows cor-

responding to latencies observed in EEG.

2.13 | Time-resolved within-condition classification

To identify time windows contributing to the discrimination within

each condition (e.g., erroneous vs. correct bci performance; positive

vs. negative feedback valence; high- vs. low-surprise negative feedback

expectancy; erroneous vs. correct motor selection), we trained a sepa-

rate logistic regression classifier at each time point (0–500 ms with

respect to the triggering event, sampled at 125 Hz) to discriminate

between the respective outcomes and tested each of these classifiers

on all other time points within this condition. This analysis was per-

formed on the combined EEG–MEG sensor data for each subject sep-

arately. The resulting matrix contained within-condition classification

scores at each time-point pair. These scores were obtained by com-

puting the mean area under receiver-operating characteristic curve

(ROC AUC) via threefold cross validation. On each fold, a classifier

was trained on 66% of the trials and tested on the held-out 33%. Fea-

tures from both the training and test sets were normalized by sub-

tracting the mean and dividing by the standard deviation of the

training set prior to the classification. The regularization parameter

C for l2-penalized logistic regression classifiers was set to 0.1 and no

feature selection was performed.

2.14 | Time-resolved cross-condition generalization
analysis

To test for similarity between outcome-specific evoked responses

across bci, feedback:valence, feedback:expectancy, and motor condi-

tions, time-resolved cross-condition generalization analysis was

applied (Kaplan et al., 2015; King & Dehaene, 2014). At each time

point (0–500 ms with respect to the triggering event, sampled at

125 Hz), a separate logistic-regression classifier was trained to differ-

entiate between negative and positive outcomes in one experimental

condition (e.g., erroneous vs. correct bci performance) based on the

single-trial combined EEG–MEG sensor data for each subject sepa-

rately. Then, the performance of each of these classifiers was tested

at each time instance of the data measured at another condition to

predict a different pair of class labels (e.g., erroneous vs. correct motor

selection). The resulting matrix contained cross-condition generaliza-

tion scores at each time-point pair for each subject separately. These

scores were computed as the mean predictive ROC AUC across the

six folds. On each fold, 66% of the trials from condition A were used

to train the classifier. This classifier was then tested on all trials of

condition B. The data from each condition were used as the training

and test set alternatively (3 folds from A to B, and 3 folds from B to

A). Similarly, to traditional cross-validation, this sub-sampling approach

introduced a conservative bias onto the grand-average ROC AUC esti-

mates, reducing the variance of the classification score estimates and

constraining the null-distribution of ROC AUC estimates around the

theoretical 50% chance level. Given the possible variability in evoked

responses due to learning, this approach also allowed us to focus our

analysis on the activity that was present in all trials.
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Features from both the training and test sets were normalized by

subtracting the mean and dividing by the standard deviation of the

training set prior to the classification. The regularization parameter

C for l2-penalized logistic regression classifiers was set to 0.1 and no

feature selection was performed.

2.15 | Statistical analysis

The group-level statistical significance of the within- and cross-

condition classification scores was assessed using one-sample permu-

tation test, followed by cluster correction for multiple comparisons

(Maris & Oostenveld, 2007; Ojala & Garriga, 2009). The individual

generalization score maps were transformed to deviations from the

chance level by subtracting the theoretical chance level of 0.50 fol-

lowed by a one-sample one-tailed permutation t-test where we per-

muted the signs of de-meaned AUC scores.

We clustered time-point pairs where grand-averaged within- or

across-condition classification scores were greater than the chance

level with p < .01. Cluster mass was defined as the sum of the signed

t-values of all time points within the cluster. The Cluster p-values

were computed as a probability to observe a cluster of larger positive

mass over 10,000 random permutations.

FIGURE 2 Grand-averaged evoked responses to negative (red) versus positive (black) outcomes in bci (left, N = 14), feedback (middle, N = 14)

and motor (right, N = 13) conditions. (a) EEG event-related potentials at the FCz electrode with significant differences shaded in gray and the
topographic maps representing the difference (negative vs. positive outcome) averaged across the time windows indicated by the gray shading.
(b) MEG event-related fields at sensors which display visible differences at latencies roughly corresponding to those of the EEG signal. MEG
topographies represent the differences in the magnetic field gradients (norms of the planar gradiometer pairs) averaged across the time-points
indicated by the gray shading. (c) dSPM source estimates for grand-average difference waves averaged over the 100-ms time windows indicated
below. Visualization threshold is 90% of the peak source activity [Color figure can be viewed at wileyonlinelibrary.com]
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2.16 | Source analysis

Source analysis was performed using only MEG data. Neural sources

contributing to the observed differences in the evoked responses

were estimated by computing dynamic statistical parametric mapping

(dSPM) maps (Dale et al., 2000) for sources constrained onto the indi-

vidual cortical surfaces and with orientations perpendicular to the

local cortical surface (loose orientation constraint value of 0.2) as

implemented in the MNE-Python software (Gramfort et al., 2013). To

this end, structural MRIs of each subject (not available for one) were

segmented for the cortical mantle and cranial volume using the Free-

Surfer software (http://surfer.nmr.mgh.harvard.edu). The resulting

cortical meshes were down-sampled to 8,196 vertices to form the

source spaces. A single-compartment boundary element model

describing the shape of the cranium was used as the volume-

conductor model. Noise-covariance matrices were estimated from the

200-ms pre-stimulus intervals. Signal-to-noise ratio was defined as

the ratio between traces of the respective covariance matrices.

Sources contributing to the observed differences within each

condition were estimated by averaging the evoked activity over a

100-ms time window centered around the peak of the respective

evoked response, for each condition separately (motor: 20–120 ms,

feedback:expectancy: 300–400 ms, feedback:valence: 330–430 ms, bci:

330–430 ms, see Figure 2c).

Similar dSPM source estimation procedure was performed for

activation patterns, corresponding to the weights of the logistic

regression classifiers, trained within 16 ms (three adjacent timepoints

sampled at 125 Hz) around the maxima of the individual generaliza-

tion maps. This source estimation was done to identify sources

contributing specifically to the observed generalization effects.

To derive the activation patterns that contributed to the success-

ful transfer of the classifiers across the conditions, we identified for

each condition and for each subject the time point where this transfer

resulted in the highest generalization score. We then extracted the

classifier weight vectors of that and the two adjacent time points

(in total 16 ms of the downsampled data) and multiplied them by the

signal covariance matrix computed for this condition (Haufe et al.,

2014) from the original (non-downsampled) data within the same

16-ms window for each subject and each condition individually to

maximize the number of samples. We then applied the dSPM inverse

solution identical to one described above to the obtained activation

patterns and averaged the source estimates for each pair of condi-

tions. Visualization threshold for active sources was set to correspond

to 90% of the global maximum value.

3 | RESULTS

3.1 | Behavioral results

Subjects were able to learn the stimulus values during the BCI task.

During the last two blocks (4 and 5) of the BCI task, 11 out of 14 sub-

jects chose the more valuable stimulus in more than 75% of the trials,

indicating learning and therefore likely development of expectations

with regard to their choices.

In the motor task, the subjects chose the higher-valued alterna-

tive in 76.6 � 7.6% (mean � SD) of trials. After the measurements,

they were asked to rank the stimuli according to their value on a visual

analog scale. The mean correlation of the reported and true order

was 0.80.

3.2 | BCI control

All subjects were able to effectively perform the BCI selection task;

they reported incorrect decoding in 18.6 � 3.3% of the trials (360 tri-

als per subject in total). Supporting Information Table II summarizes

the overall BCI control accuracy.

3.3 | Evoked responses

In the EEG data, the average evoked responses at the FCz electrode

differed significantly between the outcomes in all conditions (Figure 2,

Supporting Information Table III), replicating the results of numerous

previous EEG studies. As the primary goal of this analysis was to pro-

vide a timing reference for the cross-condition generalization analysis,

we do not discuss these results further for the sake of conciseness.

3.4 | Time-resolved within-condition classification

To probe within condition classification (e.g., erroneous vs. correct

motor selection), a separate classifier was trained on single trial EEG–

MEG data at each time point (0–500 ms with respect to the triggering

event) and tested on all other time points within the same condition.

Group-level permutation tests performed on individual within-

condition classification maps identified clusters of time points where

the ROC AUC scores were significantly higher than the theoretical

50% chance level within all studied conditions (Figure 3; diagonal).

Table 1 summarizes the results of within-condition classification.

3.5 | Time-resolved across-condition generalization

To test for similarity of evoked responses across the motor, feedback:

valence, feedback:expectancy, and bci conditions, we trained a separate

classifier to discriminate between outcomes on single trial EEG–MEG

data at each time point (0–500 ms with respect to the triggering

event) in one condition (e.g., erroneous vs. correct motor selection)

and applied it to each time point of another condition (e.g., negative

vs. positive feedback). Group-level permutation tests performed on

the individual cross-condition generalization maps indicated multiple

statistically significant clusters of ROC AUC scores when comparing

motor versus feedback:expectancy and motor versus bci conditions

(Figure 3; top row; Table 2). We also observed a significant generaliza-

tion cluster when comparing bci versus feedback:expectancy. Table 2

summarizes the results of cross-condition generalization analysis and

individual maximum ROC AUC scores.

This analysis was also performed using EEG and MEG data sepa-

rately (Supporting Information Tables IV–V, Supporting Information

Figure 7); the results were in line with those from combined

EEG–MEG.
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3.6 | Source analysis

Having identified the time points of maximum across-condition gener-

alization for each subject, we used the weights of the classifiers,

trained at those time points, to extract patterns contributing to suc-

cessful classification and estimated the neural sources producing

these patterns (see Section 2 for details). Source analysis performed

on the MEG data revealed that neural activity informing the success-

ful classification originated from largely overlapping sources. In motor

(20–120 ms) versus feedback:expectancy (300–400 ms) and motor

(20–120 ms) versus bci (330–430 ms) conditions, we observed major

contributions from bilateral dACC (BA 32), posterior cingulate cortex

(PCC, BA 23,31) and right inferior temporal cortex including anterior

FIGURE 3 Time-resolved within- and across-condition generalization (combined EEG–MEG data). Colored areas represent significant clusters of

within- (diagonal panes) and across- (off-diagonal panes) condition ROC AUC scores. Cluster positions represent the time points in conditions
indicated on the horizontal and vertical axes where the bi-directional transfer of the classifier was significantly above chance. Generalization
across feedback: expectancy and feedback: valence conditions could not be estimated reliably because these conditions could share data points.
Non-thresholded ROC AUC scores are presented in Supporting Information Figure 8 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Time-resolved within-condition classification (combined EEG–MEG)

Condition N Cluster size Cluster mass, t Cluster p value Time-window (ms)
Max grand-average
AUC score

Bci 14 18 67 .0496 176–216 65.1

522 2,730 <.0001 192–496

Feedback:valence 14 35 125 .0131 264–320 60.9

247 1,024 .0002 336–496

Feedback:expectancy 14 23 75 .0172 320–392 59.6

42 140 .0042 264–352

Motor 13 28 93 .0405 8–80 58.6

244 843 .0055 96–360
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insula (Figure 4). Results for clusters observed in different time win-

dows in motor versus bci as well as in bci versus feedback:expectancy

condition are presented in the Supporting Information (Supporting

Information Figure 9–10).

4 | DISCUSSION

The goal of this study was to probe whether the same neural process

underlies the evaluation of action outcomes when operating a BCI,

receiving feedback to a choice, or performing a motor task without

feedback. To this end, we designed an experiment comprising a

BCI-controlled task (bci) involving learning from probabilistic feedback,

followed by a separate motor task. We then tested the similarity of

single-trial event-related responses to negative outcomes in EEG–

MEG data.

We have observed that the classifiers trained to discriminate erro-

neous versus correct motor responses performed significantly above

chance when predicting erroneous versus correct BCI performance and

unexpected versus expected negative feedback from the EEG–MEG

signal (Figure 3). The same was true when swapping the training and

testing conditions.

The successful transfer of the classifiers between these condi-

tions presents stronger quantitative evidence in favor of the similarity

of the sources of the evoked responses to endogenous and exoge-

nous errors, compared to the correlations between their spatial distri-

butions alone. For such a transfer to work, two criteria need to be

fulfilled simultaneously: spatial distributions of the underlying neural

sources must be similar, and these sources must be functionally similar

(discriminating action outcomes). Moreover, the fact that the latencies

(typically 0–100 ms for ERN and 200–400 ms for FRN, see Figure 3)

and the source locations (Figure 4) of these patterns, estimated from

the data without any prior constraints, were in line with previous

studies (for reviews see Walsh & Anderson, 2012; Weinberg et al.,

2014) provides further support to the hypothesis of a general

performance-monitoring system in the brain.

Our results demonstrate that EEG–MEG signals following an erro-

neous motor response and the reception of highly surprising negative

feedback are similar enough for a successful discrimination of analo-

gous outcomes across these conditions. We trained separate classi-

fiers to discriminate feedback trials according to the expectancy and

the valence of the feedback and tested whether these classifiers could

predict outcomes in motor or bсi conditions (see Section 2 for details).

While both the valence- and expectancy-based classifiers were able to

discriminate outcomes within the respective conditions significantly

above chance, only those classifiers that captured differences in brain

responses to feedback expectancy generalized significantly to the

motor condition. Our findings thus suggest that ERN and one compo-

nent of FRN are generated by a common neural process that is sensi-

tive to expectation violation but not to reward processing.

Extracting patterns of source activations associated with success-

ful cross-condition generalization revealed sources in the dACC

(BA 32) and the PCC (BA 23,31), known to be involved in outcome

processing (Agam et al., 2011; Becker, Nitsch, Miltner, & Straube,

2014; Keil et al., 2010; Miltner et al., 2003). In contrast to these stud-

ies, however, we specifically estimated sources that contributed to

the transfer across the conditions (Figure 4).

Introducing a BCI in our study ensured that the cross-condition

generalization between feedback and motor trials is not confounded

by the highly similar movement-related activity that might otherwise

result in spurious generalization. It also allowed us to study errors

when operating a BCI, where the subject had only partial control over

TABLE 2 Time-resolved across-condition generalization (combined EEG–MEG)

Condition N
Cluster
size

Cluster
mass, t

Cluster
p value

Time-window
(ms)

Time-window
(ms)

Max
grand-average
AUC score

Motor vs. feedback:
expectancy

13 Motor Feedback 55.8

68 219 .0003 8–112 304–376

15 46 .0489 312–352 352–392

Motor vs. feedback: valence 13 Motor Feedback 54.0

n.s. n.s. n.s. n.s. n.s.

Motor vs. bci 13 Motor BCI 56.5

39 129 .0068 8–96 8–128

31 108 .0099 8–96 96–128

18 69 .0283 112–176 104–128

25 90 .0151 136–192 184–216

19 60 .0375 152–184 232–296

19 58 .0407 8–64 272–312

109 377 .0003 8–112 304–424

31 114 .0092 136–184 304–352

Bci vs. feedback: expectancy 14 BCI Feedback 55.4

12 41 .0468 112–128 208–248

Bci vs. feedback: valence 14 BCI Feedback 54.0

n.s. n.s. n.s. n.s. n.s.
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the task. Compared to passive viewing tasks used in previous studies

(Martin & Potts, 2011), the BCI preserves the sense of agency

(or control) that cannot be assured in a passive viewing paradigm.

Thus, BCI errors reflect the loss of control rather than reward-

prediction error associated with classical FRN. This distinction was

supported by the fact that no generalization between feedback

valence and BCI trials was observed. However, the across-condition

generalization largely depends on the structure of noise covariance as

well as that of signal. Thus, by the absence of across-condition classifi-

cation performance alone, we cannot exclude the possibility that the

same neural sources are active and class-discriminative.

We observed that a failure to control the BCI triggers essentially

the same neural processes as committing errors in the motor task.

Neural signals following the incorrect operation of a BCI system have

been reported earlier, mainly in the context of using such responses

as an additional control or learning signal for optimizing BCI perfor-

mance (Buttfield, Ferrez, & Millán, 2006). A recent study demon-

strated that neural sources contributing to brain responses to

erroneous BCI performance indeed largely overlap with the putative

sources of the FRN (Dyson, Thomas, Casini, & Burle, 2015). In addi-

tion, our cross-condition generalization results indicate that these

BCI-related error responses and ERN share at least some of the

underlying neural generators.

Previous studies have shown that the amplitudes of error- and

feedback-related evoked responses vary as learning progresses. FRN

is most prominent early in learning as feedback is the most important

source of task-related information. Later, the response-locked ERN

becomes more prominent, indicating the development of subjects’

internal predictions regarding the trial outcome. Thus, it is not clear if

ERN and FRN can occur within the same trials. To accommodate for

this possibility, in our experimental design we ensured that (a) ERN

and FRN were estimated in separate tasks; (b) the subjects had

learned to prefer the more valuable stimuli in the BCI task before

proceeding to the motor task (see Section 3.1); and (c) no feedback

was presented during the motor task, ensuring that no further learning

occurred. Thus, we argue that the observed ERN triggered by choos-

ing the less valuable stimulus in the motor task was based solely on

subjects’ preferences learned during the BCI task.

ERN-like activity could occur also later in the BCI task on selec-

tion of the less valuable stimulus. But even in that case, the trial out-

come could not be completely determined at the moment of target

selection, because the feedback was delivered probabilistically.

Moreover, in the analysis of the feedback-related activity, we only

used trials where BCI decoded the subjects’ intentions correctly. By

contrast, when comparing BCI-correct versus BCI-error responses we

split the trials according to whether the system decoded subject’s

intentions accurately, and not based on whether or not the system

chose the more valuable target.

Finally, training the classifiers on three random folds of each con-

dition ensured that the classifiers captured activity that was present in

all trials. Further studies should focus on the components of error-

and feedback-related activity that vary with learning. These design

choices ensured that the successful transfer of the classifier between

the domains was not confounded by the structure of the task.

Taken together, our findings indicate that motor errors,

unexpected negative feedback and failures to control a BCI trigger the

same neural process. This process is likely to detect a mismatch

between an expectation and the actual outcome, and not the reward

or punishment associated with these outcomes. Our results may thus

provide an explanation to the observed discrepancies between ERN

FIGURE 4 Estimation of neural sources informing the classifiers that generalize across motor versus feedback:expectancy (top) and motor versus

bci (bottom) conditions. Red areas represent binary masks indicating significant clusters of ROC AUC scores. Black markers indicate time points
where maximum generalization scores (searched within the shaded regions) were observed in each subject. Activation patterns were extracted
using weights of logistic regression classifiers trained at these time points for each subject and condition separately. Source maps indicate grand-
averaged (normalized) source estimates of thus obtained activation patterns across subjects and conditions. Visualization threshold for source
estimates is set to 90% of the peak activation value [Color figure can be viewed at wileyonlinelibrary.com]
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and FRN alterations in a number of neuropsychiatric populations.

While expectancy-specific processing is attenuated in schizophrenic

patients, the reward-specific component may still be intact, resulting

in a different ERP shape (Morris et al., 2011).

Moreover, our results provide evidence that the same neural pro-

cess is involved also when controlling a BCI, indicating that processing

errors may be independent of the involvement of the motor system.

Our findings thus provide grounds for using error-related neural

responses in optimizing BCI and neurofeedback protocols.

5 | CONCLUSIONS

Our findings provide direct evidence of a shared neural system under-

lying the ERN and FRN responses. Moreover, our analysis indicates

that the error-related responses observed in a task void of motor out-

put, that is, when using a BCI, still reflect activity in the same

performance-monitoring neural circuitry that is engaged for monitor-

ing motor output. This shared activity is likely to be specific to expec-

tation violation and not to reward processing.
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