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Abstract
Neuroimaging studies of the reading process point to functionally distinct stages in word rec-

ognition. Yet, current understanding of the operations linked to those various stages is mainly

descriptive in nature. Approaches developed in the field of computational linguistics may

offer a more quantitative approach for understanding brain dynamics. Our aim was to evalu-

ate whether a statistical model of morphology, with well-defined computational principles,

can capture the neural dynamics of reading, using the concept of surprisal from information

theory as the common measure. The Morfessor model, created for unsupervised discovery of

morphemes, is based on the minimum description length principle and attempts to find opti-

mal units of representation for complex words. In a word recognition task, we correlated

brain responses to word surprisal values derived from Morfessor and from other psycholin-

guistic variables that have been linked with various levels of linguistic abstraction. The

magnetoencephalography data analysis focused on spatially, temporally and functionally dis-

tinct components of cortical activation observed in reading tasks. The early occipital and

occipito-temporal responses were correlated with parameters relating to visual complexity

and orthographic properties, whereas the later bilateral superior temporal activation was cor-

related with whole-word based and morphological models. The results show that the word

processing costs estimated by the statistical Morfessor model are relevant for brain dynamics

of reading during late processing stages.

K E YWORD S

computational linguistics, computational modeling, language, MEG, Morfessor, morphology,

N400m, orthography, surprisal

1 | INTRODUCTION

The neural processing related to visual word recognition is generally

thought to include functionally distinct processing stages, most notably

analysis of visual features and letters, access to morphological or lexical

units, and activation of their meaning (Coltheart, Rastle, Perry, Langdon,

& Ziegler, 2001; Hillis & Rapp, 2004). However, a more detailed

account of the computational aspects of these processes is still lacking.

An interesting category of computationally explicit models has

been developed within the domain of computational linguistics.

Statistical models that are based on unsupervised learning are espe-

cially relevant as they are based on mechanisms similar to those of

Hebbian learning (Hebb, 1949; Smith, 2011) and therefore have a clear

parallel in neural processing. These models could prove useful also for

the neuroscience of language if one can establish a justifiable relation-

ship between the models and relevant measures of brain activation.

Such a link could arise from the principle of optimization, which has

been the basis of many successful applications in the field of natural

language processing (NLP; Berger, Pietra, & Pietra, 1996; Hirschberg &

Manning, 2015). The principles of optimization and efficiency have also
.......................................................................................................................................................................................
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been suggested to guide the neural learning process and organization

of brain functions (Friston, 2010). Assuming that efficiency serves as a

guiding principle also in the implementation of neural computations

involved in reading, NLP models may be able to predict neuroimaging

data and provide useful descriptions of the underlying processes.

Moreover, describing behavioral and neural data by measures derived

from statistical properties can complement description based solely on

formal linguistic rules.

In the present study, we used magnetoencephalography (MEG) to

quantify the millisecond-scale neural dynamics of visual word recogni-

tion, and relate these results to word measures from a NLP model that

optimizes the representation of words. Recognition of morphologically

complex words is an important aspect of reading that could be

addressed by models emerging from recent efforts in NLP.

A complex word, for example, “builders” consists of multiple mor-

phemes. A morpheme is defined as the smallest meaningful unit of lan-

guage, which can either stand alone in the form of a monomorphemic

word (e.g., “build”) or be bound to the root (e.g., “-er” and “-s”). Along-

side the NLP model we used more traditional psycholinguistic variables

that have been related to visual, orthographic, morphological and lexical

processing, thereby linking the present results to previous psycholin-

guistic literature.

A central question in the recognition of complex words is whether

the brain decomposes the word into morphological constituents and

then recombines the morphemes into a unified semantic meaning

(Fruchter & Marantz, 2015; Taft, 2004; Taft & Forster, 1975), or

whether most or all words are represented as whole forms in the men-

tal lexicon (Butterworth, 1983). It seems that at least some mechanism

to process words as a compilation of separable parts is required

because in highly synthetic languages, such as Finnish, a single root

word can have 150 different paradigmatic forms and the total number

of possible words is counted in millions (Karlsson, 1983). In these types

of languages, storing every possible whole word form in the mental lex-

icon seems like an uneconomical strategy for the neurocognitive sys-

tem. However, the decomposition and recombination of morphological

constituents may also pose additional processing costs, as suggested

by longer reaction times and fixation durations to morphologically com-

plex words than frequency-matched monomorphemic words (Hy€onä,

Laine, & Niemi, 1995; Hy€onä, Bertram, & Pollatsek, 2005; Lehtonen &

Laine, 2003; Soveri, Lehtonen, & Laine, 2007). An optimized model for

human word recognition may therefore call for a combination of

decomposed and full-form representations.

NLP algorithms that employ statistical machine learning have

shown that morpheme-like units of representation may emerge from

requirements of efficiency in information processing. Morfessor is a

data-driven NLP model that has been successful in inducing morphol-

ogy from raw text data without a priori linguistic knowledge (Creutz &

Lagus, 2007). The model utilizes general learning principles instead of

explicit linguistic rules. It is based on the minimum description length

(MDL) principle (Rissanen, 1978), and is essentially a packing algorithm

that seeks to build an optimally compact and descriptive lexicon of

units, called morphs, for describing the training corpus. The Morfessor

model thus represents a compromise between views arguing for word

representation in full word forms and those that suggest mandatory

word decomposition: a particular word can be represented as a full

form or decomposed into morphemes depending on which representa-

tion optimizes the overall storage and processing efficiency. The

morphs discovered by Morfessor can be whole words or sometimes

resemble linguistic morphemes, but they are not determined by explicit

linguistic rules.

In order to relate predictions of the Morfessor model to brain

imaging data, we assume that the brain of an experienced reader has

adapted to the statistical regularities of written language, and that the

neural activation reflects this adaptation. We can examine this idea by

employing tools from the mathematical theory of communication

(Shannon, 1948). In information theory, surprisal (also known as self-

information) is defined as an aspect of a probabilistic event that meas-

ures the minimum effort needed to communicate the occurrence of

that event, and it is quantified by the negative log probability. When

the communication is optimized, commonly occurring events require

less computational capacity than rare or surprising events that are asso-

ciated with high information content and high processing requirements.

The reading process may be viewed as an optimized communication

channel from text to the brain, and the surprisal of a written word is

thus related to the minimum processing requirements. This assumption

relates to the Bayesian brain hypothesis which proposes that the brain

can minimize the free energy, and thus the effort, by representing sen-

sory inputs in an optimal Bayesian fashion, that is, the neural system is

organized based on an internal model of the world that is constantly

optimized to minimize the long-term average of surprisal (Friston,

2010; Friston, 2012). Surprisal can be related to the minimum neural

activation strength needed to encode the information, as postulated by

the efficient coding hypothesis (Barlow, 1961; Linsker, 1990). Given

that increases in the MEG signal likely reflect increased neuronal proc-

essing, higher surprisal values should be linked with enhanced MEG

amplitudes.

The Morfessor model defines a word’s surprisal as the sum of the

surprisal of its constituent morphs, and can be seen as an estimate of

the minimum processing requirement needed in the brain if words are

represented as independent morpheme-like units. The Morfessor val-

ues have been shown to correlate with reaction times (RTs) in a lexical

decision task better than simple psycholinguistic parameters such as

word length or word frequency (Virpioja, Lehtonen, Hult�en, Salmelin, &

Lagus, 2011; Virpioja et al., 2017). It is, however, still unclear whether

the predictive power of Morfessor in RTs is linked to a particular stage

of the word recognition process.

In line with the information processing framework, we hypothesize

that the salient word-evoked activations that appear at different time

windows and cortical areas correspond to different aspects of informa-

tion representation and optimization, and the strength of the activation

is proportional to the amount of information. For example, the low-

level visual features or orthography can be very similar between two

words (e.g., “current” and “currant”) but their corpus-based word fre-

quencies differ by orders of magnitude (121 vs. 1 per million; Davies,

2010). If these types of qualitatively different information properties

are linked to spatio-temporally distinct brain activations, one can
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compare the predictive power of models that capture different aspects

of stimulus-related information, and thereby approximate what type of

model is most similar to the internal model operating at the neuronal

population level.

Earlier MEG studies have identified three temporally and spatially

distinct components of brain activation with salient functional roles

that are thought to reflect successive stages in the reading process. A

midline occipital response peaking at around 100 ms after stimulus

onset captures processing related to basic visual features (Tarkiainen,

Helenius, Hansen, Cornelissen & Salmelin, 1999; Cornelissen, Tarkiai-

nen, Helenius, & Salmelin, 2003; Wydell, Vuorinen, Helenius, & Salme-

lin, 2003). It is followed by a letter-string sensitive activation peaking at

around 150 ms in the occipito-temporal cortex with left-hemispheric

dominance (Tarkiainen et al., 1999; Gwilliams, Lewis, & Marantz, 2016).

Activity in the inferior temporal cortex and fusiform area between 150

and 200 ms has also been reported to be sensitive to orthographic and

morphological properties of letter strings, supporting the so-called mor-

pho-orthographic segmentation hypothesis in which decomposition is

based on visual word forms and takes place prior to lexical access

(Solomyak & Marantz, 2010; Zweig & Pylkkänen, 2009). After 250 ms,

the left superior temporal cortex shows a sustained response that usu-

ally reaches the maximum at around 400 ms (often referred to as

N400m). This activation has been linked to lexical, semantic, phonologi-

cal and morphosyntactic analysis in word processing (Halgren et al.,

2002; Helenius, Salmelin, & Connolly, 1998; Salmelin, 2007; Service,

Helenius, Maury, & Salmelin, 2007). Several studies have also found

the earliest evidence of morphological processing in this cortical area

(Cavalli et al., 2016; Fruchter & Marantz, 2015; Vartiainen et al., 2009;

Whiting, Shtyrov, & Marslen-Wilson, 2015).

In the present study, we extract these well-established patterns of

brain activation during a lexical decision task and compare them to the

Morfessor estimate as well as to psycholinguistic variables that have

been linked to visual word processing (Hauk, Davis, Ford, Pulverm€uller,

& Marslen-Wilson, 2006; Pylkkänen & Marantz, 2003; Wydell et al.,

2003). These variables seek to estimate aspects of low level visual

(image complexity, word length), orthographic (bigram frequency), mor-

phological (Morfessor, lemma frequency, lemma transition probability)

or lexical (surface frequency) processing. To assess how Morfessor esti-

mates and/or each of the psycholinguistic variables are related to the

brain activity, we employ item-level correlation and multiple regression

analysis. As each item is presented only once to avoid confounding

effects of item repetition in the lexical decision task, the signal-to-noise

ratio of the item-level responses is enhanced by averaging the single

trials per each word across the participants.

The interpretation of the results on words is aided by a comparison

to the results of a similar analysis on the pseudowords that were pre-

sented in the lexical decision task. Non-lexical variables, such as those

related to visual features and orthography should be comparable for

real words and pseudowords. However, neural processing related to

any form of meaning should dissociate between real words and

pseudowords.

We predict that the early stages of neural activity during reading

will correlate best with surprisal values in the visual or orthographic

measures, whereas the later activation is better captured by morpho-

logical and lexical variables, with higher neural activation associated

with higher surprisal values. Of specific interest is whether the letter-

string response will be better explained by orthographic or morphologi-

cal variables and to what degree the sustained left temporal response

will capture both morphological and lexical information measures.

Moreover, any unique predictive power of the Morfessor measure

would suggest that a particular brain response is linked to processing

of morpheme-like representations and that it is possible, at least to

some extent, to find such units by requiring compactness of represen-

tation using the minimum description length principle.

2 | METHODS

2.1 | Participants

A total of 23 Finnish-speaking participants were recruited for the

experiment. Three participants were excluded due to a low number

(less than 290/360) of artifact-free trials with a correct response. Data

from 20 participants were thus included in the analysis: 11 female, age

20–37 (mean 24.4, SD56.4), all right-handed as assessed by the Edin-

burgh Handedness Inventory (Oldfield, 1971), with no reported neuro-

logical problems. The participants gave their informed consent, and

were reimbursed for their time. The study was approved by the ethics

committee of the Hospital District of Helsinki and Uusimaa.

2.2 | Experimental design

The experimental setup was a visual lexical decision task. The stimuli

were 1,440 unique items from four categories: words, pseudowords,

symbol strings as well as words and pseudowords masked with Gaus-

sian noise (for examples, see Figure 1). The pseudowords, symbol

strings and noisy stimuli were used for the functional localization step

of the study. The word set consisted of 360 Finnish nouns taken from

FIGURE 1 Experimental stimuli. Examples of the four functionally
distinct stimulus categories: words, pseudowords, symbols strings,
and (pseudo)words embedded in Gaussian random noise. Each trial
consisted of a fixation cross that appeared for 500 ms, followed by

a single stimulus that was displayed for 1,500 ms
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the Morpho Challenge 2007 corpus consisting of 55 million word

tokens (2.2 million unique), which is part of the Wortschatz collection

(Quasthoff, Richter, & Biemann, 2006). The set included monomorphe-

mic, as well as inflected and derived multimorphemic words. It also had

a high variance across several psycholinguistic variables to allow corre-

lational analyses. The word length varied from 4 to 16 letters (mean

10.3, SD 2.8), frequency of word occurrence was 0.018–127 per million

(mean 1.87, SD 10), and the number of linguistic morphemes was 1–5

(mean 2.8, SD 1.1; note that the root word also counts as a morpheme).

The pseudowords consisted of 360 letter strings generated randomly

using a probabilistic n-gram model trained on a Finnish text corpus.

The pseudowords followed the phonotactic rules of the Finnish lan-

guage, that is, they were pronounceable and resembled real words but

carried no meaning. The length distribution of the pseudoword set

matched that of the word set.

The noise-embedded items consisted of 60 real words and 60

pseudowords that were masked by a rectangular patch of Gaussian

random noise. The level of noise was such that the word was just

barely readable. The symbols were 120 letter strings in the Phoenician

alphabet, with a length distribution matching that of the word set. The

characters had visual qualities akin to letters, but were not easily con-

fused with Finnish alphabets in typical fonts. None of the participants

reported familiarity with ancient Phoenician writing systems. Moreover,

120 random filler words from the corpus were added to counterbal-

ance for the 120 symbol strings in order to equalize the number of

word and non-word items in the experiment.

The stimuli were projected on a screen placed at a distance of

140 cm from the participant’s eyes. The items were presented in black

font (lower case Courier New monospaced) on a gray background. The

visual angle per letter was 0.418. Each trial consisted of a centered fixa-

tion cross, displayed for 500 ms, followed by a stimulus item displayed

for 1,500 ms. The participant’s task was to identify whether the item

was a real Finnish word or not, as fast and accurately as possible.

Responses were given via an optical response device that reacted to

index finger lift. The “yes”/“no” responses were randomly assigned to

the left/right index finger, balanced across the participants. The

responses did not affect the course of the experiment, nor was feed-

back provided during the task. If the correct response was not given

within the 1,500 ms period when the word was displayed, or if the

response was given accidentally before 350 ms (median RT minus three

times the median absolute deviation), the trial was rejected. Each item

was shown only once to each participant. The RTs from the correct

responses were collected and used for a behavioral assessment.

The stimulus order was randomized and the presentation divided

into six blocks, lasting around 7 min each, with short resting breaks

between the blocks. The order of the blocks was balanced across the

participants using the Latin square design.

2.3 | Measurements

Cortical activity during task performance was recorded with a Vector-

view whole-head MEG system (Elekta Ltd., Helsinki, Finland) at the

MEG Core, Aalto NeuroImaging. The system employs a total of 306

sensors at 102 locations, with each location equipped with two planar

gradiometers in an orthogonal configuration and one magnetometer.

The MEG data was band-pass filtered at 0.03–200 Hz and sampled at

1,000 Hz.

Four electrodes were attached next to the eyes to record vertical

and horizontal electro-oculograms (EOG) for detection of blinks and

eye movements. Head position was measured with the help of indica-

tor coils placed on the scalp and their locations determined with

respect to predefined fiducial points to allow MEG co-registration with

participant’s anatomical magnetic resonance images (MRIs).

The anatomical MRIs, with 1 3 1 3 1 mm3 resolution, were

obtained on a separate occasion using the T1 MPRAGE sequence on

the Siemens Skyra 3T MRI scanner of the Advanced Magnetic Imaging

Centre, Aalto NeuroImaging.

2.4 | MEG data analysis

As each stimulus word was shown only once during the experiment to

avoid priming effects, and the signal-to-noise ratio thus could not be

enhanced by averaging within each participant, the responses were

averaged across different participants, instead. For this reason, we first

located functionally, temporally and spatially corresponding responses

of written word processing (at about 100, 150, 400 ms) in individual

participants. Each of these responses were then averaged over partici-

pants, separately for each word.

The continuous raw data was cleaned from external interference

with the spatiotemporal Signal Space Separation method (Taulu &

Simola, 2006) and low-pass filtered to 40 Hz. Epochs were extracted

using a time window from 2200 to 800 ms with respect to the stimu-

lus onset. Trials contaminated by blink or muscle artifacts were

excluded. Rejection criteria were >150 lV for the EOG electrodes and

>3,000 fT/cm for the MEG gradiometers. Only trials where the partici-

pant responded correctly were included in the further analysis.

The sensor-level summation of electromagnetic fields was disen-

tangled into its underlying source-level components using the equiva-

lent current dipole model (ECD; Hämäläinen, Hari, Ilmoniemi, Knuutila,

& Lounasmaa, 1993; Salmelin, 2010). The aim was to isolate at least

the four well-established components consistently identified in visual

word recognition: the occipital response at around 100 ms, the left

occipito-temporal response at 150 ms, as well as the sustained left

temporal response reaching the maximum at around 400 ms after stim-

ulus onset, together with its right-hemisphere counterpart.

The ECD models were first constructed separately for each partici-

pant based on the averaged field pattern of all word items, following

the standard procedure (Salmelin, 2010). The field patterns were calcu-

lated using the data from planar gradiometers that are more sensitive

to the cortical currents near the sensors and less sensitive to distant

noise sources than the magnetometers.

Each source-level model consisted of 4–9 ECDs that adequately

reproduced the observed whole-head field patterns with goodness-of-

fit >80%. The four ECDs of interest were identified based on their

location in the individual anatomical MRI, peak time, and functional

behavior with respect to the different stimulus categories using the cri-

teria presented in (Tarkiainen et al., 1999). The occipital activity peaked
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at around 100 ms (for individual peak latencies, range 90–131 ms,

mean 104 ms, SD 11 ms). This ECD was found in 17/20 participants,

and was stronger for noisy than noiseless stimuli. An ECD in the left-

hemispheric occipitotemporal area reached the maximum at around

150 ms (range 140–189 ms, mean 154 ms, SD 12 ms) and exhibited a

stronger response to letter than symbols strings (identified in 15/20

participants). A left temporal component with sustained activation

peaking around 400 ms (range 314–478 ms, mean 389 ms, SD 52 ms)

was found in 19/20 participants. A functionally similar component was

also found in the right hemisphere at around 400 ms (range 331–519

ms, mean 411 ms, SD 63 ms) in the same participants. These temporal

cortex sources differentiated words from pseudowords and their acti-

vation was diminished for non-word symbol strings.

Subsequently, in order to maximize the comparability of the source

model across the participants, an averaged multi-ECD model was con-

structed: The coordinates of all identified occipital, occipito-temporal,

and bi-lateral temporal components in each participant were projected

from individual MRIs to the Freesurfer “fsaverage” average brain tem-

plate (Dale, Fischl, & Sereno, 1999; Dale et al., 2000; Fischl, Liu, &

Dale, 2001). The ECD locations of each component in the resulting 4-

ECD model were averaged across the participants in the common coor-

dinate system and then morphed back into individual coordinates of

each participant (Figure 2a). Finally, the ECD orientations were opti-

mized individually for a best match to the field pattern at preselected

time points: for the occipital response at 100 ms, for the occipito-

temporal response at 150 ms, and for both temporal cortex responses

at 400 ms. The cortical dynamics of each participant was thus

described by a 4-ECD model even if all the corresponding ECD compo-

nents were not included in the original individual ECD model of a given

participant.

To verify that this process retained the response functionality of

the original individual ECD models that included the corresponding

components, the source activation strengths for each stimulus category

were averaged over participants (Figure 2b). In agreement with the rep-

resentative individual models, the averaged occipital amplitude peaked

at 100 ms and was strongly increased for noisy stimuli. The occipito-

temporal peak at 150 ms was strongest for text items and attenuated

for symbols. This attenuation, depicted in the Figure 2b inset, is slight

but significant (t test p< .001). The effect is somewhat smaller than

previously reported (Tarkiainen et al., 1999), which may be due to our

choice of using Phoenician alphabets as symbols. They are more similar

to letters than the geometric shapes used in previous studies.

For the bilateral temporal sources, the activation diminished rapidly

for symbols after 350 ms and was stronger and longer-lasting for pseu-

dowords than words.

For single-item correlation analysis, the source amplitudes for the

individual words were estimated, per participant, by averaging activa-

tion in pre-defined time windows based on earlier literature: for occipi-

tal response at 80–120 ms, occipito-temporal letter-string sensitive

response at 140–200 ms (Salmelin, 2007; Tarkiainen et al, 1999), and

for the sustained temporal responses at 300–700 ms (Embick, Hackl,

Schaeffer, Kelepir, & Marantz, 2001; Lau, Almeida, Hines, & Poeppel,

2009; Pylkkänen & Marantz, 2003; Vartiainen et al., 2009).

The amplitude values for each response type in the corresponding

time-window were normalized within each participant by taking the z-

score. For each word, the z-scores were then averaged across the par-

ticipants. The z-scores were used instead of absolute values of source

amplitudes in order to attenuate inter-individual variation of a more

general nature. These single-word level measures of brain activation

were brought into the linear regression model and evaluated against

the values from language models.

2.5 | Psycholinguistic and NLP variables

In correlating language models with brain activation and RTs, we

employ the Shannon’s surprisal measure (Shannon, 1948) that defines

FIGURE 2 Source modeling. (a) The final source model for each participant consisted of four temporally, spatially and functionally
identified ECDs. The locations of ECDs were identical across subjects, but the orientation was determined individually. (b) The ECD
amplitude time courses averaged for each stimulus category and across participants highlight the distinct functional roles of the different
ECDs. The dashed vertical line represents the time at which the ECD was localized
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the surprisal (I), associated with an event x as a I xð Þ52log P xð Þð Þ;
where P xð Þ is the probability of the event. It is expressed as units of

information, e.g., bits. The surprisal measure can be obtained from any

language model that quantifies the probability of a word in some way.

A model that resembles the brain’s internal model should correlate bet-

ter with neural activity than a model that does not. We consider sev-

eral ways to quantify the word information content with variables that

should be sensitive to different levels of abstraction: low level visual

features (word length, image complexity), orthographic features (bigram

frequency), morphology (the NLP model Morfessor, lemma frequency,

lemma transition probability [TPL]), and lexical processing (surface

frequency).

Word length corresponds to a simple model that assumes individual

letters as basic units of representation and considers all letters equally

probable: if the probability of an individual letter is P(letter), the surprisal

related to a word is I wordð Þ52log P letterð ÞN
� �

/ N, that is, propor-

tional to the length (N) of the word. As the word length is roughly pro-

portional to the surface-level visual complexity, the word length model

could describe the very early visual processing stages better than mod-

els optimized for more abstract features of language. To examine this

hypothesis a bit further, we sought to find an alternative way to mea-

sure low-level image complexity. We adopted a practical approach in

line with information theoretic framework that makes use of compres-

sion algorithms: the gif-index is defined as the ratio of image file size in

compressed (gif format) to size in uncompressed (bitmap) image format.

This measure has been found to correlate well with other complexity

measures and also with subjective assessments of complexity (Donderi,

2006; Palumbo, Ogden, Makin, & Bertamini, 2014).

We quantify orthographical properties using the mean open

bigram frequency which has been proposed to describe part of the

processing along the ventral occipito-temporal cortex (Dehaene,

Cohen, Sigman, & Vinckier, 2005; Grainger & Whitney, 2004). The

open bigrams capture the relative position of letters in a string by

describing a word via ordered letter pairs. For example, the word “take”

is represented by TA, TK, TE, AK, AE, and KE. Again, we take negative

logarithm to obtain a measure of information.

Our main morphological variable is the Morfessor baseline model

(Creutz & Lagus, 2007) that has proven successful in inducing simple

morphology from raw text data, independent of the language. The

model has, for example, been shown to work well with highly inflected

languages such as Finnish and Turkish (Creutz, Lagus, Lind�en, & Vir-

pioja, 2005; Mermer & Saraclar, 2011). The model learns the optimal

units of representation (“morphs”) from a text corpus. An encoded rep-

resentation consists of two parts: a model M consists of a lexicon of

letter strings, and a message X consists of pointers that refer to the lex-

icon. In this representation, a word like “build1 er” can be expressed

by pointers to morphs “build” and “-er”. These units have their individ-

ual surprisal values that are related to their frequency of occurrence in

the training corpus. The surprisal of the whole word is the sum of sur-

prisal values of its constituent morphs. As the morph dictionary is quite

extensive, it is also possible to express pseudowords using the same

model. The pseudowords in our study are generated using n-gram

models that reflect statistical properties of real Finnish words and,

consequently, they contain letter snippets that coincide with Morfessor

morphs. The pseudowords thus have surprisal values that reflect the

degree to which they have common elements with real words.

In order to relate the Morfessor model to other measures of mor-

phology, we also examine lemma frequency which is the total fre-

quency of words sharing a given root. The word lemma should be

activated following successful morphological parsing. In addition, we

examine TPL, which is defined as surface frequency divided by lemma

frequency, that is, it expresses the conditional probability of encounter-

ing the whole word form, given the stem (Solomyak & Marantz, 2010).

Finally, surface frequency corresponds to the idea of a mental lexi-

con that stores whole word forms. This measure can be used as an

index of full-form lexical access. The whole word’s surprisal is given by

the negative logarithm of surface frequency. The inter-correlations

between these variables are shown in Table 1.

The correlation of the different models to brain activity and RTs

(the mean value to each word across individuals) was performed using

linear regression. For an initial overview, correlation coefficients of indi-

vidual predictors to each cortical component were computed with sim-

ple linear regression. Next, multiple linear regressions were employed

to assess the contribution of the different predictors in conjunction,

that is, the source amplitudes and RTs were predicted using a linear

combination of variables. Significance of a given variable in the multiple

regression model indicates that the variable has unique predictive

power that is not explained by its correlation with the other variables.

In order to visualize the brain-level results, grand-average wave-

forms were computed with respect to the predictor variable with high-

est correlation for a given cortical source. The stimulus words were

divided into three bins corresponding to the highest third, lowest third

and average values of the predictor, and the grand average responses

were plotted over subjects and word bins for each source component.

3 | RESULTS

All 20 participants included in the analysis performed the task at an

acceptable level (at least 80% correct). Mean accuracy was 92% (SD

4%), indicating that the participants complied well with the task instruc-

tions. The average RT for words was 852 ms (SD595 ms) and for

pseudowords 950 ms (SD594 ms). Reaction times were significantly

correlated with each of the tested variables (F(1,358), p< .001), with

the exception of the TPL, in a simple correlation analysis (Table 2).

Morfessor reached the highest correlation (r5 .61) with RTs. For pseu-

dowords, the RTs were correlated with image complexity, word length

and Morfessor values (F(1,358), p< .001), with word length attaining

the highest correlation (r5 .64).

The multiple regression model (Table 3) was constructed by step-

wise regression, that is, adding predictors to the model one by one and

estimating the significance of the improvement. This procedure showed

that all measures except image complexity and TPL had unique predic-

tive power for word RTs; the complete model (F(6,354)577, p< .001)

explained R25 .52 of total variance. The correlation coefficients for

predictors, as well as b-coefficients in multiple regression, attained pos-

itive values for word length, Morfessor, -log surface and -log lemma
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frequencies, indicating that higher values of information as measured

by these variables resulted in longer reaction times. In contrast, the

orthographical -log bigram frequency showed a negative correlation.

For pseudoword RTs, the multiple regression yielded significant results

for word length and Morfessor values.

The brain-level results for each of the four evoked response com-

ponents of interest (occipital, occipito-temporal and left and right tem-

poral) are illustrated in Table 2, Table 3 and Figure 3. The amplitude of

the occipital response at 80–120 ms after word onset was best corre-

lated with word length (r5 .31, p< .001). Similar results were obtained

for pseudowords (Table 2). The source amplitude increased nearly line-

arly with string length, by approximately 0.5 nAm/letter; single-item

correlations are presented in Figure 3a. Image complexity and Morfes-

sor values also correlated with the occipital response, but became

redundant in the multiple regression model.

The amplitude of the occipito-temporal response at 140–200 ms

for words was significantly (p< .05) correlated with image complexity

(r5–.11), word length (r5–.13), -log bigram (r5–.13) and Morfessor

(r5–.11) by simple correlation analysis (Table 2, Figure 3b). In the mul-

tiple regression model, word length and -log bigram frequency

remained significant (Table 3). For pseudowords, the correlations were

significant with respect to image complexity (r5–.14), word length

(r520.16) and Morfessor (r5 .14). The bigram frequency did not reach

significance. In multiple regression only length remained significant.

The left-hemispheric temporal response strength at 300–700 ms

was best correlated with the whole-word frequency (r5 .35; Table 2),

with the cortical activation strength increasing with an increasing value

of surprisal (Figure 3c). There was also a significant correlation with

lemma frequency (r5 .21), Morfessor measure (r5 .32; Figure 3d) and

bigram frequency (r5–.11). Multiple regression analysis indicated that

Morfessor, word frequency and image complexity had unique predic-

tive power; the regression model (F(4,354)520, p< .001), explained

R25 .15 of the source variance (Table 3). For pseudowords, the

response was significantly correlated with image complexity (r5 .12),

word length (r5 .15) and Morfessor (r5 .17). In multiple regression,

only Morfessor remained significant.

The right-hemispheric temporal response strength at 300–700 ms

was significantly correlated with Morfessor (r5 .29; Figure 3e), word

length (r5 .25), word -log frequency (r5 .21) and image complexity

(r5 .12; Table 2). In multiple regression, image complexity, word length,

and Morfessor all remained significant, but word frequency became

redundant (Table 3). For pseudowords, image complexity (r5 .28) string

length (r5 .33) and Morfessor (r5 .30) were significant, but only word

length remained significant in multiple regression.

TABLE 1 Correlations between predictor variables

Image
complexity

Word
length

-log bigram
frequency TPL Morfessor

-log Lemma
frequency

-log Surface
frequency

Image complexity 1 0.81** 20.07 20.06 0.42** 0.05 0.27**

Length 1 0.09 20.05 0.54** 0.06 0.34**

-log bigram frequency 1 0.06 0.06 20.08 0.09

TPL 1 0.01 0.61** 20.10*

Morfessor 1 0.38** 0.74**

-log lemma frequency 1 0.40**

-log surface frequency 1

*p< .05, **p< .001.

TABLE 2 Correlation coefficients r of word measures to source component amplitudes and reaction times

Predictor variables

Source component

Reaction timesOccipital Occipito-temporal Left temporal Right temporal

Words

Image complexity 0.21** 20.11* 0.01 0.12* 0.42**
Length 0.31** 20.13* 0.07 0.25** 0.57**
-log bigram frequency 0.003 20.11* 20.11* 20.09 20.20**
TPL 0.02 20.01 0.02 0.04 0.06
Morfessor 0.21** 20.10* 0.32** 0.29** 0.61**
-log lemma frequency 0.01 20.03 0.21** 0.17** 0.32**
-log surface frequency 0.11* 20.08 0.35** 0.21** 0.55**

Pseudowords

Image complexity 0.28** 20.14* 0.12* 0.28** 0.50**
Length 0.39** 20.16* 0.15* 0.33** 0.64**
-log bigram frequency 20.1 20.04 0.05 20.004 0.04
Morfessor 0.28** 20.14* 0.17* 0.30** 0.34**

*p< .05, **p< .001.
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The visualization based on bins of the lowest, middle and highest

values for each predictor showed that the amplitude of the occipital

response increased with increasing string length (Figure 3a). For the

occipito-temporal source, the effect was visible in the descending slope

after the peak (Figure 3b), with increasing letter-string length associ-

ated with a steeper descent, resulting in a negative correlation coeffi-

cient in the overall time window.

4 | DISCUSSION

We investigated the utility of an NLP model for morphological segmenta-

tion in predicting cortical activation patterns and RTs during visual word

recognition. Models derived from an NLP framework based on optimiza-

tion principles were hypothesized to mirror efficiency in neural process-

ing. The Morfessor model induces morphology from raw text data

instead of relying on predetermined linguistically defined morphs. The

surprisal values derived from Morfessor reflect an optimized morph-

based representation of a word and may, as such, correlate with the brain

responses related to morphological processing. In comparison, the varia-

bles related to image complexity, word length, and bigram frequency

should be related to processing of lower-level visual and orthographic

processing. Surface frequency, when the lower-level effects are factored

out, should index activation related to lexical or semantic processing.

We hypothesized that the early occipital activation could be best

predicted by word length and image complexity that approximates the

surprisal relating to overall visual processing, whereas the later occipi-

totemporal and superior temporal activations would likely be better

accounted for by models using higher levels of abstraction, reflecting

processes related to language processing per se.

The behavioral RT results showed that word length, bigram fre-

quency, Morfessor, lemma frequency and surface frequency each pro-

vided unique predictive power to reaction time in a multiple regression

model. This indicates that each of these variables captured an aspect of

the overall reading and decision-making process that was not fully

accounted for by the other variables. When only one predictor was

used at a time, Morfessor outperformed the other measures, replicating

the results of Virpioja et al. (2011). The good performance of the Mor-

fessor model is especially noteworthy as surface frequency and word

length have consistently proven to be some of the best overall predic-

tors of RTs (Keuleers, Lacey, Rastle, & Brysbaert, 2012). We also per-

formed a similar analysis for pseudowords and found RT to be sensitive

to length and Morfessor measures in the multiple regression model.

The increasing pseudoword length resulted in longer RT; however,

increasing Morfessor value, when used in conjunction with string

length, was associated with shorter RT. The Morfessor model repre-

sents pseudowords using the same optimized units that are used to

represent real words. This means that pseudowords that attain lower

Morfessor values contain morphemes or text strings that are common

in real words. It is likely that the longer reaction times for these pseudo-

words reflect greater difficulties to reject a pseudoword that has more

in common with real words. This conclusion is consistent with the result

that pseudowords with a higher number of lexical neighbors elicit lon-

ger RTs (Carreiras, Perea, & Grainger, 1997; Holcomb, Grainger, &

O’Rourke, 2002). The Morfessor measure could, therefore, be consid-

ered a measure of “word-likeness” when applied to pseudowords.

At the level of the brain, the response amplitude of the 80–120

ms occipital activation increased with increasing number of letters, in

line with earlier studies (Assadollahi & Pulverm€uller, 2003; Wydell

et al., 2003). This amplitude was also correlated with image complexity

measured by the gif-index, as well as surface frequency and the Mor-

fessor measure. All of these four measures give high surprisal values

for long words. However, only one of these predictors was significant

in the multiple regression model, suggesting that a single underlying

factor is responsible for the correlation. The lowest-level common

denominator here is the overall image complexity. This interpretation is

further supported by the fact that the response is highly sensitive to

addition of noise in the stimuli. Higher visual complexity is related to

longer word length, which in turn is correlated with the other variables.

TABLE 3 Multiple regression b coefficients of predictors to source component amplitudes and reaction times. R2 is the total variance
explained by the complete model

Predictor variables

Source component

Reaction timesOccipital Occipito-temporal Left temporal Right temporal

Words

Image complexity 20.15* 20.24*

Length 0.30** 20.15* 0.33** 0.36**
-log bigram frequency 20.14* 20.11**
TPL
Morfessor 0.22* 0.21** 0.20*

-log lemma frequency 0.14**
-log surface frequency 0.22* 0.21**
Total R2 0.09** 0.04* 0.15** 0.12** 0.52**

Pseudowords

Image complexity
Length 0.39** 20.16* 0.34** 0.89**
-log bigram frequency
Morfessor 0.17* 20.34**
Total R2 0.16** 0.03* 0.03** 0.11** 0.46**

*p< .05, **p< .001.
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The subsequent 140–200 ms activation in the left inferior

occipito-temporal cortex was identified by its differentiation of alpha-

betic strings from graphical symbol strings. The letter-string effect

points to a neural population trained by repeated exposure to written

text and acting as a bridge or filter between visual and more abstract

language processing (Tarkiainen et al., 1999). Part of the present

FIGURE 3 Visualization of how item-level cortical activations are related to linguistic models, with the highest correlations displayed for
each studied response type. The time course of activation is averaged in bins of 60 words (lowest, average, highest values of the model).

The scatter plots depict the relative source amplitudes (averaged over the time window marked with gray in the time course) for individual
words with respect to the linguistic model
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research question was therefore to test to what degree this response is

sensitive to orthographic and morphological properties. We found that

the response strength was best predicted by word length which was

interchangeable with effects of image complexity and Morfessor meas-

ures, similarly to the earlier occipital activation. However, these correla-

tions were rather weak. In addition, the letter bigram frequencies

provided unique predictive power in the multiple regression model,

suggesting that the response is indeed related to abstract orthographic

properties rather than low-level visual features alone. The effect

seemed to stem from the descending slope following the peak of the

evoked response. A similar result has previously been observed when

contrasting consonant strings and (pseudo)words (Whiting et al., 2015).

In that study, significant effects emerged between 155 and 230 ms, fol-

lowing the peak response centered at 150 ms.

In the present study, the amplitude of the occipito-temporal

response was negatively correlated with both word length and bigram

frequency (the longer the word or lower the mean bigram frequency,

the lower the amplitude), which seems to contradict our hypothesis

that higher information content leads to more neural activation. These

results might be related to activation of specialized “bigram cells”,

postulated by Dehaene et al. (2005), located in the left occipito-

temporal sulcus. The bigram cells are thought to be active when the

stimulus contains common letter bigrams for which these neurons are

tuned. Hence, low bigram frequency results in low activation. Indeed,

the response was also found to be reduced when adjacent letters were

vertically shifted with respect to each other, which breaks the bigram

form (Cornelissen et al., 2003).

We found no independent effects related to word frequency

measures, TPL, or Morfessor model in the occipito-temporal response.

Previous studies, on English words, have found support for automatic

form-based decomposition (Fruchter, Stockall, & Marantz, 2013), mor-

phological decomposition indexed by TPL (Solomyak & Marantz, 2010),

as well as effect of morphological complexity in a corresponding right

hemispheric response (Zweig & Pylkkänen, 2009). However, several

other studies have not been able to detect effects of morphology in

the letter-string response. Neither Vartiainen et al., (2009) using Finnish

words or Whiting et al., (2015) using a similar contrast with English

words found differences in the occipito-temporal region between sim-

ple and complex words. Likewise, a study of morphological priming

effects using French words by Cavalli et al. (2016) did not reveal any

significant effects of morphology in the posterior temporal cortex.

Instead, all three aforementioned studies reported morphological

effects after 250 ms in the middle temporal cortex. Thus, the functional

role of the occipito-temporal activity in morphological processing

seems to remain somewhat unclear. Interestingly, a recent study, using

English words as stimuli and applying a special variant of distributed

source modeling, suggests that the occipito-temporal response may in

fact consist of two functionally and temporally distinct components:

the first would be associated with orthographic processing and the sec-

ond with more abstract lexical processing (Gwilliams et al., 2016). In

the present study, to ensure robust across-participants matching, the

letter-string response was modeled as a single source in the more tradi-

tional fashion (Tarkiainen et al., 1999), and it may thus not capture a

possible second component in a more anterior region that might be

linked to lexicality or morphology.

In the bilateral superior temporal cortices, the activation reached

its maximum at around 400 ms after stimulus onset. Both hemispheres

differentiated between all stimulus types at 300–700 ms, and the

response was characterized as a N400m type response (Salmelin,

2007). In the left temporal cortex, all frequency measures and the Mor-

fessor model were positively correlated with the activation strength:

activation increased with increasing surprisal values. The type of mor-

phological processing that is described in the Morfessor model thus

seems to be reflected in this cortical response. Temporal activation in

this time-window has previously been linked to a wide variety of lin-

guistic and nonlinguistic manipulations (Kutas & Federmeier, 2011;

Salmelin, Kujala, & Liljestr€om, in press), later-stage word recognition

processes (Halgren et al., 2002), and access to semantic-syntactic rep-

resentations of morphemes or their recombination to a meaningful

whole (Fruchter & Marantz, 2015; Vartiainen et al., 2009). In addition,

surprisal, when derived from a sentence context, has been shown to be

a good predictor of the N400 amplitude (Frank, Otten, Galli, &

Vigliocco, 2015). The present study shows that surprisal is a relevant

measure also for predicting the response to isolated words without a

surrounding sentence context.

We observed that the overall prediction accuracy for the left tempo-

ral responses was improved when using both surface frequency and the

Morfessor measure together. This may imply that access to full word

forms occurs in parallel with processing of the word’s morphological con-

stituents, or that some subset of words is better described by one model.

Indeed, many of our low-frequency words occur only once in the entire

corpus and are, therefore, poorly differentiated based on surface fre-

quency but have a smooth distribution on the Morfessor value scale.

In addition, we found that word length and image complexity were

good predictors of the left temporal response in the case of pseudo-

words but performed worse for real words. This suggests that the proc-

essing of pseudowords may be primarily linked to letter-by-letter or

phonological representations which are roughly indexed by word

length in the orthographically transparent Finnish language, whereas

the representation of real words is related to more abstract linguistic or

semantic properties. The Morfessor model also proved to be a good

predictor of the temporal responses in case of pseudowords, but the

multiple regression model did not determine whether this result was

truly independent of the word length effect.

In the right hemispheric N400m type response, reaching its maxi-

mum at around 400 ms, the Morfessor model, together with word

length, image complexity and the frequency measures were positively

correlated with the response amplitude. However, in the multiple

regression analysis whole-word frequency became redundant. This

result suggests that the right hemisphere is also actively involved in the

morphological processing. Although the right hemisphere has received

somewhat less attention in language studies, there have been docu-

mented cases where lesions to right hemisphere have resulted in spe-

cific inability to produce derivational morphology (Marangolo et al.,

2003). Effect of inflectional morphology has also been observed on

right-sided EEG responses (Leinonen et al., 2009). More generally, the
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right hemisphere has been proposed to become involved when proc-

essing requires additional effort (Kircher, Brammer, Tous Andreu, Wil-

liams, & McGuire, 2001; Monetta, Ouellet-Plamondon, & Joanette,

2006; Van Ettinger-Veenstra, Ragnehed, McAllister, Lundberg, &

Engstr€om, 2012) or when semantic complexity increases (Tremblay,

Monetta, and Joanette, 2009). In line with this view, the right-

hemisphere activation in the present study could be related to the mor-

phological complexity of words which pose particular demands on

semantic integration of the constituents.

Multiple regression analysis of single-item MEG responses enabled

assessment of several predicting variables simultaneously, without prior

assumptions that are needed in a univariate approach. Related analysis

approaches have been successfully employed before (e.g., Hauk et al.,

2006; Solomyak & Marantz, 2009). In the present study, our solution

for improving the signal-to-noise ratio to the single items was to aver-

age single-item responses across the participants. In order to achieve

reliable responses by this approach, the variation between individuals

both in terms of amplitude strength and spatial locations need to be

accounted for. Here we normalized the amplitude strength for each

individual before averaging and sought to equivocate the spatial loca-

tion by means of functional localizers. It is also worth noting that the

amount of explained variance in the MEG responses (R2 � .1) was sub-

stantially lower than in RTs (R2 � .5), despite the fact that MEG pre-

sumably captures the subprocesses involved in reading more directly.

While MEG provides a more detailed description of when and where

different aspects of text are processed in the brain, its signal-to-noise

ratio is lower than that of the RTs. The reading process in the brain

may also entail aspects that are not captured by the evoked responses

(i.e., signals phase-locked to the stimulus timing) but which are included

in the all-encompassing RT measure.

To conclude, the present study offers a methodological example of

how a modern NLP model may be used to address questions of lan-

guage processing in the human brain. The Morfessor model seems to

account for brain activation during reading: the observed good predic-

tive power of Morfessor in lexical decision RT (Virpioja et al., 2017; Vir-

pioja et al., 2011) seems to be related to late-stage morphological

processing that is reflected in bilateral temporal cortices from about

300 ms onwards. This suggests that the type of computational proper-

ties that are expressed in Morfessor, that is, morpheme-like units

derived via optimization, are also reflected in neural processing. Neural

processing thus likely follows some form of optimization, in line with

the information-theory based principle of minimization of effort. Our

findings support the view that the brain of an experienced reader has

adapted to the statistical regularities of written language, and that the

neural activation reflects this adaptation. In the future, Morfessor or

similar models could be used, for example, to model how the statistics

of native-language vocabulary can influence the learning and represen-

tation of word forms in a new language.
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