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The outcome of first-episode psychosis (FEP) is highly variable, ranging from

early sustained recovery to antipsychotic treatment resistance from the onset of

illness. For clinicians, a possibility to predict patient outcomes would be highly

valuable for the selection of antipsychotic treatment and in tailoring psychosocial

treatments and psychoeducation. This selective review summarizes current knowledge

of prognostic markers in FEP. We sought potential outcome predictors from clinical

and sociodemographic factors, cognition, brain imaging, genetics, and blood-based

biomarkers, and we considered different outcomes, like remission, recovery, physical

comorbidities, and suicide risk. Based on the review, it is currently possible to predict the

future for FEP patients to some extent. Some clinical features—like the longer duration

of untreated psychosis (DUP), poor premorbid adjustment, the insidious mode of onset,

the greater severity of negative symptoms, comorbid substance use disorders (SUDs), a

history of suicide attempts and suicidal ideation and having non-affective psychosis—are

associated with a worse outcome. Of the social and demographic factors, male gender,

social disadvantage, neighborhood deprivation, dysfunctional family environment, and

ethnicity may be relevant. Treatment non-adherence is a substantial risk factor for

relapse, but a small minority of patients with acute onset of FEP and early remission

may benefit from antipsychotic discontinuation. Cognitive functioning is associated with

functional outcomes. Brain imaging currently has limited utility as an outcome predictor,

but this may change with methodological advancements. Polygenic risk scores (PRSs)

might be useful as one component of a predictive tool, and pharmacogenetic testing is

already available and valuable for patients who have problems in treatment response

or with side effects. Most blood-based biomarkers need further validation. None of

the currently available predictive markers has adequate sensitivity or specificity used

alone. However, personalized treatment of FEP will need predictive tools. We discuss

some methodologies, such as machine learning (ML), and tools that could lead to the

improved prediction and clinical utility of different prognostic markers in FEP. Combination

of different markers in MLmodels with a user friendly interface, or novel findings from e.g.,

molecular genetics or neuroimaging, may result in computer-assisted clinical applications

in the near future.
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INTRODUCTION

Naturalistic follow-up studies have found highly
divergent outcomes in first-episode psychosis (FEP) (1, 2).
While an episodic course is the most common (1) and the
majority of patients with FEP initially achieve remission (2),
a minority experience early sustained recovery (3), or have an
antipsychotic treatment-resistant illness from the onset of the
illness (4). The challenge for the clinician treating patients with
FEP is how to predict these different disease trajectories and
make the best treatment choices for individual patients.

A growing concern in recent years has been the multiple
physical comorbidities in people with schizophrenia and other
psychotic disorders (5) and the premature mortality caused by
these comorbidities (6, 7). Antipsychotic medication contributes
to these problems by causing weight gain, impaired glucose
tolerance and dyslipidemias. However, antipsychotics differ in
their propensity to cause these side effects (8), and there is also
considerable individual variation in the sensitivity to these side-
effects. Moreover, other factors, possibly even shared etiological
mechanisms, contribute to the development of comorbidities like
diabetes (9). The personalized treatment of FEP would benefit
from biomarkers identifying the patients at greatest risk for
medication side effects and comorbidities.

While cardiovascular and pulmonary diseases are overall the
most important causes of premature mortality (6), in the first
years of illness increased mortality is mainly caused by suicide
(10). Suicide prevention is one of the key goals in the treatment
of FEP (11), and yet another important outcome for which the
clinician needs to identify relevant risk factors.

In addition to these main areas where outcome prediction is
needed—remission, recovery, physical comorbidities, and suicide
risk—some domains in the psychosis phenotype, for example
cognitive functioning, can be considered both as predictors of the
long-term course and as relevant long-term outcomes.

This selective review aims to provide a synthesis of the
current literature on outcome prediction for FEP.We also discuss
some methodologies and tools that could enhance possibilities to
predict the future in FEP.

OUTCOME PREDICTION: CURRENT

EVIDENCE

Clinical and Sociodemographic Factors
Remission in FEP refers to symptomatic remission; the
Remission in Schizophrenia Working Group defined it as
maintaining a symptom level of mild or less regarding positive,
negative, and disorganized symptoms over a 6-month period
(12). Recovery is a broad concept that should take both clinical
symptoms and psychosocial functioning into account, with
subjective recovery being an important component (13). While
the Remission in Schizophrenia Working Group criteria for
remission have achieved gold standard status in research, no
uniform criteria exist for recovery. In a recent meta-analysis
of longitudinal FEP studies, the pooled proportion of patients
achieving remission after an average of 5.5 years follow-up was
58%, and studies conducted in more recent years found higher

remission rates (2). However, the proportion achieving recovery
after an average of 7.2 years follow-up was only 38%, and this
was lower in both more recent studies and in studies with longer
follow-up times (2). After 2 years of follow-up, the proportion
achieving recovery was stable, suggesting that the poor outcome
trajectory is already apparent during the early stages of illness
(2). Recovery rates were also lower in studies requiring a longer
duration of good functioning and the absence of symptoms (2).
Schizophrenia was associated with lower remission and recovery
rates than other psychotic disorders (2).

Clinical features related to the first psychotic episode were
surprisingly poor predictors of remission and recovery in the
meta-analysis by Lally et al. (2). Remission status was not
predicted by the severity of psychotic symptoms at baseline, the
duration of untreated psychosis (DUP), treatment adherence,
employment status, or marital status (2). In another meta-
analysis focusing on relapse risk following the first psychotic
episode, significant risk factors were medication non-adherence,
persistent substance use disorder (SUD), the carer’s critical
comments and poor premorbid adjustment (14). In the
Etiology and Ethnicity in Schizophrenia and Other Psychoses
(AESOP) study, patients with an initial diagnosis of non-
affective psychosis, patients living in a deprived area, and male
patients had a poorer 10-year outcome than other patients
(1). Some ethnic minorities had a worse outcome, which
was partly explained by social disadvantage (15). In another
large longitudinal FEP study, deterioration in premorbid social
functioning, DUP of ≥26 weeks, a core schizophrenia spectrum
disorder and no remission within the first 3 months all
predicted a longer time in psychosis during a 10-year follow-
up (16). Regarding shorter-term outcomes, unemployment,
poor education, functional deficits, unmet psychosocial needs,
previous depressive episodes, male sex, and suicidality predicted
poor 1-year outcomes in a machine learning (ML) study that
utilized data from the European First Episode Schizophrenia
Trial (17).

Recent studies have reported inconsistent findings regarding
the effects of the discontinuation of antipsychotic treatment
after achieving remission of FEP. A meta-analysis of treatment
discontinuation vs. maintenance treatment strategies in
FEP clearly showed that the relapse risk is higher in the
discontinuation group (18). In a recent register-based follow-up
study, the discontinuation of antipsychotic medication was
a strong predictor of both rehospitalization and premature
mortality even after several years of continuous outpatient
antipsychotic treatment (19). While one study found that early
dose reduction or the discontinuation of antipsychotic treatment
following a 6-month remission were both associated with a better
long-term outcome (20), another recent randomized clinical trial
(RCT) found that discontinuation after 1 year of antipsychotic
maintenance treatment was associated with a poorer 10-year
clinical outcome (21). However, in the AESOP study, 12.5%
of FEP patients had early sustained recovery with no relapses
over a 10-year follow-up period, and their median duration of
antipsychotic treatment was only 53 days (3). Predictors of early
sustained remission were female gender, being employed, being
in a relationship, having have a short DUP, and having mania
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or a brief psychotic disorder diagnosis (3). Unfortunately, all
these predictors are relatively common and not specific enough
to evaluate who would possibly benefit from antipsychotic
discontinuation after FEP.

About a quarter of FEP patients are treatment-resistant, that
is, they show little or no improvement in psychotic symptoms
after two consecutive treatments with different antipsychotics of
adequate dose and duration (4, 22). The majority of treatment-
resistant patients are treatment resistant from the onset of illness
(4, 22). In two large FEP studies, treatment resistance was
predicted by a younger age at onset, a schizophrenia diagnosis,
negative symptoms, and a longer DUP (4, 22).

Insight and Resilience
Insight has been of special interest as a predictor of the outcome
of FEP, as defects in insight may possibly arise from the same
functional and structural brain pathology as psychosis itself (23,
24). Cognitive insight at baseline, including measures of both
self-reflectiveness and self-certainty, has been shown to predict
overall psychopathology at 1-year follow-up (25). However,
after a 4–year follow-up, only the self-reflectiveness subscale
was associated with symptom remission (26). In FEP, cognitive
insight has been associated with cortical thickness (27), and the
self-certainty subscale has been associated with changes in a
frontal network (28). However, greater insight has also predicted
suicidality after FEP (29).

Impaired clinical insight, which is somewhat separable
from cognitive insight, has been associated with poorer
social functioning, more re-hospitalizations and treatment non-
adherence (30). In one study, the best predictors of relapse
within 2 years after FEP were cannabis use before relapse and
poor insight (insight being measured at a 2-month follow-
up) (31). Poor insight may prolong the DUP (32) and predict
non-adherence to medication treatment in FEP patients (33),
although the results in prospective studies with FEP samples
are somewhat mixed with regards to treatment adherence (34).
Interestingly, baseline self-rated insight and objective insight at
6 weeks predicted hospital readmission in a sample consisting
mostly of first-episode non-affective psychosis patients, whereas
baseline objective insight and self-rated insight at 6 weeks were
not significant predictors (35). Clinical insight changes over
time in FEP, and likewise its correlation with symptoms and
psychosocial functioning is not consistent in the early course of
illness and the later course of illness (36). In a 3-year follow-up of
a large FEP cohort, improvement in insight in the early course
of illness was associated with increasing depressive symptoms,
but this association disappeared later (36). Improving insight
was associated with improving psychosocial functioning in the
early course of the illness, but later the relationship became more
complex (36). This reflects a complex social identity process that
occurs after a first psychotic episode, in which insight is more
than just a simple trait or state feature (36).

Resilience, a personality trait manifesting in a response to
adversity, also plays a role in recovery, as it implies successful
adaptation despite difficult experiences. Resilience is linked to
psychological well-being or positive mental health, which is
increasingly seen as an important treatment target on its own

and which tends to be at a low level, particularly for patients
with active delusions (37). Fully recovered patients with first
episode schizophrenia—defined as patients living independently,
working or studying, having absent or stably mild symptoms for
2 years, and having social contacts and participation—showed
a significant increase in resilience at 4-year follow-up (20, 38).
These results indicate that individual differences in resilience
will differently affect the recovery process (20), stressing the
importance of taking resilience into account in outcome studies
and using resilience-building strategies. Measures of resilience
and psychological well-being might be important as outcome
predictors, but currently they have rarely been studied in large
FEP cohorts.

Cognition
Cognitive deficits are common in FEP throughout all phases of
the illness, including impairment in workingmemory, processing
speed, verbal and visual learning, reasoning, and social cognition.
Cognitive deficits are already present during the prodromal
phases of the illness (39) and are not correlated with the DUP
(40). Although it is widely believed that symptom fluctuation
usually does not affect cognitive performance (41), an association
between the level of negative symptoms and cognitive deficits
has been reported several times, with cognitive performance
improving when negative symptoms ease off (42).

There does not seem to be a cognitive decline in the first
years of illness (39), a possible exception being progressive
verbal memory deterioration (42). However, with longer follow-
up times, cognitive functioning may continue to decline
following the first episode. Over a lifespan, periods of cognitive
deterioration in schizophrenia appear to be a period before the
first episode and another at approximately 65 years of age (43).
In the long term, people with schizophrenia are also at increased
risk of dementia (11). Dementia is a very long-term outcome
and not very relevant for the treatment of FEP. Recent research
suggests that the increased risk of dementia may be mediated
through comorbidities like cardiovascular disease (CHD) (44),
whereas there is no genetic correlation between schizophrenia
and Alzheimer’s disease (45).

Cognitive functioning at the beginning of the psychotic illness
may predict the illness course and functional outcome such
as self-care, work performance and social functioning (46).
Remission and relapses of FEP within the first 2 years of illness
may be predicted by verbal fluency, memory and social cognition,
and persistent negative symptoms and functional outcomes may
be predicted by verbal memory (47). Social cognition has been
found to specifically predict everyday community functioning,
such as independent living skills, and social and work functioning
(48). Of the social cognitive domains, the theory of mind
might be an especially important treatment target due to its
associations with functional outcome (48). In one study, FEP
patients with preserved intelligence quotient (IQ) at psychosis
onset had better outcomes at 3 years than other patients in terms
of disorganization and negative symptoms, index admissions,
and occupational outcome (49). Severe cognitive impairment
by the time of the first psychotic episode may thus predict a
more severe illness. Deficits in cognitive functions may affect
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adherence, insight, social skills, and one’s overall capacity to
take care of oneself thus, leading to a worse symptomatic and
functional outcome. On the other hand, premorbid adjustment,
motivation, negative symptoms, and insight may moderate the
impact of cognition on these functional outcomes (46).

The functional outcome of FEP has also been predicted with
premorbid cognitive reserve (50, 51). Higher premorbid IQ and
educational attainment may help a person to cope with the effects
of the disease, thus affecting the neuropsychological, functional
and clinical outcome of FEP. High cognitive reserve may help
the individual use compensatory abilities and is associated with
better insight (49).

Brain Imaging
Brain imaging methods have been used to differentiate patients
from healthy controls and to predict the long-term outcome of
FEP. In recent years, several studies have used either structural
or functional brain imaging, sometimes together with clinical
information and other biomarker information, to classify FEP
patients or patients with clinical high-risk symptoms from
healthy control subjects (52–58). Accuracies in these ML studies
that use one imaging modality have ranged from 66% (52,
55) to 87% (53), and the combination of structural magnetic
resonance imaging (MRI) and diffusion tensor imaging data has
been reported to result in enhanced accuracy: 93% (54). These
classification studies have built the grounds upon which to study
whether FEP patients can be further classified into subgroups
with different outcomes.

Early multivariate ML studies suggested that continuous and
remitting courses of illness were predictable based on structural
MRIs alone, with accuracies of 58% (59) and 70% (60). However,
these findings were not replicated in other research centers nor in
the data pooled across centers (60). In a follow-up study by Pina-
Camacho and co-workers, brain volumetric measures did not
enhance the classification accuracy of schizophrenia spectrum vs.
other psychoses beyond the 81% classification accuracy achieved
using clinical symptoms alone (61).

Most earlier brain imaging studies on outcome prediction
have used univariate methods. Univariate findings which may
predict outcomes include alterations in rhythmic activity
in electroencephalogram (EEG) (62); a prefrontal MRI
spectroscopic marker of neuronal integrity (63); striatal
dopamine-2 receptor binding potential (64); the integrity of the
frontotemporal white matter tracts (65); abnormal gyrification of
the cerebral cortex (66, 67); white matter network organization
(68); and the volumes of the ventricles (69) and the temporal
lobe in general (70), and the volumes of the hippocampus
(71, 72) and the superior temporal gyrus (73) in particular. For
a review on structural MRI measures as predictors of outcome,
see Dazzan et al. (74). Outcome prediction based on any of
the univariate findings is too inaccurate to be clinically useful
(75). An exception might turn out to be using a lack of elevated
dopamine synthesis capacity, which has been associated with
antipsychotic treatment resistance in two studies (76, 77). These
findings, however, provide important information for more
complex ML models with potential for clinically sufficient
prediction accuracy.

Genetics
The etiological significance of genetic factors in psychotic
disorders is substantial: the heritability of schizophrenia
spectrum and bipolar disorders is around 65–85% (78–80).
Numerous studies have correlated variants in schizophrenia
candidate genes with phenotypic features, sometimes also
with outcome measures. However, recent genetic studies have
questioned the validity of previously suggested schizophrenia
candidate genes (81, 82). Therefore, we focus here on
the potential value of genome-wise significant findings
from genome-wide association (GWA) studies and rare
damaging variants identified from GWA or exome/whole
genome sequencing studies in predicting the outcomes of
psychosis.

The number of identified, genome-wide significant genetic
loci associated with schizophrenia in GWA studies currently
increases in proportion to sample size, being already over
100 in 2014 (83) and 145 in the most recently reported
GWA study (84). Consequently, polygenic risk score (PRS)
estimates derived from GWA studies have become increasingly
accurate. They have been used to predict both treatment
response and long-term outcome. A higher schizophrenia PRS
has been associated with worse treatment response (85), a
higher likelihood of being in clozapine treatment (86), more
frequent hospital admissions (87), and more severe negative
symptoms (88) in patients with schizophrenia. One fairly large
study, however, failed to find an association between PRS and
poor treatment response in schizophrenia (89). In patients
with bipolar disorder, a high schizophrenia PRS is associated
with an increased risk of having psychotic symptoms (88),
particularly mood-incongruent psychotic symptoms (90). In a
FEP study sample, the schizophrenia PRS was predictive of a
future schizophrenia diagnosis (as opposed to the diagnosis of
other psychotic disorders), although its discriminatory accuracy
was relatively modest (91). The bipolar disorder PRS, in turn,
is associated with having more severe manic symptoms in
patients with schizophrenia, but also with psychotic symptoms
in patients with bipolar disorder, and a PRS calculated from
the variants shared between bipolar disorder and schizophrenia
is associated with psychotic symptoms in bipolar disorder and
more severe negative symptoms in schizophrenia (88). The
schizophrenia PRS has been associated with lower hippocampal
volume in FEP patients (92), but overall the associations
between the schizophrenia PRS and psychosis endophenotypes
are modest (93). The benefit of a PRS is that it is a
stable trait feature. It could be a useful component of larger
predictive algorithms in the future, but this still needs more
research.

Besides the polygenic background of common variants
which individually have a very small effect, rare variants
have been identified which are present in a very small
proportion of the population but have a substantially larger
effect on schizophrenia/psychosis risk. The Psychiatric Genomics
Consortium recently validated six deletions and two duplications
of significant risk factors for schizophrenia, and identified
several novel ones (94). However, while these copy number
variants (CNVs) are associated with an up to 60-fold elevated
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risk of schizophrenia in case-control studies (94), general
population-based studies have also identified people carrying
the same CNVs who have normal functioning and only
minimal problems in cognitive tests (95). In exome and
whole-genome sequencing studies, the first rare mutations
in single genes that are associated with a substantially
increased schizophrenia risk have been identified (96, 97). In
addition, it has been shown that there is a burden of rare
variants in genes intolerant of loss-of-function variants in
schizophrenia (98). It is likely that the number of identified
rare mutations in single genes in schizophrenia will increase
considerably in the near future, and more information will
be available from the phenotypic spectrum associated with
them.

A common feature in CNVs and rare mutations is an
association with a variety of neurodevelopmental problems,
including intellectual disability, and patients with schizophrenia
who have these rare variants have worse cognitive functioning
than other patients with schizophrenia (96–98). Therefore,
genetic testing for these rare variants may be useful for FEP
patients who have a history of neurodevelopmental problems,
poor cognitive functioning, and neurological symptoms. In
contrast, there is currently no evidence on whether these variants
are also predictive of treatment response or the long-term
outcome.

There is also evidence of specific genes that are associated
with both antipsychotic treatment response and side-effect risk
which differ from those associated with disease risk. Alleles in the
dopamine D2 receptor and in the glutamate ionotropic receptor
delta type subunit 2 (GRID2) are associated with antipsychotic
treatment response (99), and several genetic variants that
predispose to antipsychotic-induced weight gain have been
identified (100). In addition, pharmacogenetic tests related to
drug metabolism are already in clinical use (101).

Blood-Based Biomarkers
Besides genetics, other potential blood-based biomarkers for
psychotic disorders have been studied extensively (102), and
several reviews and meta-analyses have been published (102–
106). Some of the main lines of research are presented below.
In general, there is much more research on whether certain
biomarkers cross-sectionally separate patients from healthy
controls than there is research about the possible predictive value
of the biomarkers in patient treatment.

The association of a dysregulated immune response and
psychosis is well-established. Several pro-inflammatory cytokines
are elevated in FEP patients (107–109), including drug-naïve
patients (110). The changes are similar in the cerebrospinal
fluid (CSF) and blood, and they occur across severe mental
disorders (109). There are also changes in the levels of
distinct lymphocyte subtypes (111). While meta-analyses initially
suggested that antipsychotic medication might decrease pro-
inflammatory activation (108), a later meta-analysis did not find
a significant medication effect (110). Further signals of a change
in immune response come from associations with markers of
oxidative stress (112) and the activation of the complement
system (113). While various markers of immune response have

been found to correlate with clinical features, such as structural
brain abnormalities, symptoms and cognitive deficits (114–116),
less is known about their predictive value. These biomarkers
are part of a dynamic signaling network, and we currently do
not fully understand their temporal patterns and variation in
early psychosis. For other medical conditions, concentrations of
immunological molecules in different tissues have been shown
to be quite rapidly changing (117), which is understandable
given their role in the coordination of immune response. In
early psychosis, there may also be other factors, like sleep
deprivation (118), whichmay contribute to the pro-inflammatory
activation. The question remains open regarding to what extent
inflammation might be secondary to metabolic changes, or vice
versa. More information is needed on such confounding factors
before inflammatory markers can be introduced as diagnostic or
prognostic biomarkers.

C-reactive protein (CRP) has been the most commonly used
measure of inflammation. In the largest meta-analysis on CRP
levels and psychotic disorders, CRP levels were increased in both
drug-naïve and unmedicated patients, as well as after the onset
of psychosis (119), although one study with only drug-naïve
FEP patients did not detect any difference in CRP between cases
and controls (120). In Mendelian randomization studies, genetic
variants leading to increased CRP levels are not associated with
an increased risk of schizophrenia (121, 122), suggesting that
the association between elevated CRP and schizophrenia is not
caused by a common genetic mechanism. CRP is associated with
increased mortality risk but not with the risk of rehospitalization
in patients with depression, bipolar disorder or schizophrenia
(123). However, CRP has been studied and suggested as a
biomarker for numerous acute and chronic diseases, and it
remains to be studied whether its best value in treating patients
with psychotic disorders would actually be found in assessing
the risk of comorbidities (e.g., in cardiovascular risk assessment)
(124).

The anti-N-methyl-D-aspartate-type glutamate receptor
(anti-NMDAR) encephalitis can in some cases present with
prominent psychotic symptoms (125, 126). The identification
of encephalitis in patients with early psychosis is crucial, as
over 75% of patients with classic anti-NMDAR encephalitis
have substantial recovery with specific treatments, while
antipsychotic treatment is not effective (125). Based on several
reports, however, the diagnostic evaluation of autoimmune
encephalitis in FEP can be focused on those presenting specific
neurological symptoms (125). Other than anti-NMDAR
antibodies, autoantibodies detected in autoimmune encephalitis
seem to remain negative in patients with isolated early psychotic
symptoms (127). However, a recent study found that patients
with schizophrenia and NMDAR antibodies suffer from more
severe symptoms than other patients with schizophrenia despite
a negative test for encephalitis (128). Therefore, the role of
autoantibodies as biomarkers of longer-term outcomes deserves
attention in future studies.

Several endocrine markers have also been studied in FEP, but
it is unclear whether they reflect primary changes or secondary
effects. They correlate with inflammation and metabolic changes,
and the link to early trauma and stress response is strong for all
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of them. For instance, Misiak et al. have reviewed evidence for
increased levels of testosterone and dehydroepiandrosterone in
FEP (129) and suggest that these alterations might be related to
a stress response. In drug-naïve FEP patients, there is evidence
for an increased level of morning cortisol, cortisol awakening
response, and increased prolactin levels, all of which may refer
to a dysregulated hypothalamic-pituitary-adrenal (HPA) axis
(130). In clinical high-risk patients, elevated cortisol predicted
transitioning to psychosis (131), and in FEP patients it is
correlated with the severity of symptoms and aggression (102). Its
predictive value is less clear (102). Increased leptin in psychosis
is mostly explained by a medication effect on weight gain, and
a meta-analysis did not find significant changes in drug-naïve
patients (132).

Peripheral monoamines and their metabolites have been
studied as candidate biomarkers for treatment response in
FEP. Elevated levels of plasma homovanillic acid, the principal
dopamine metabolite, and the norepinephrine metabolite 3-
methoxy-4-hydroxyphenylglycol have been associated with a
better treatment response in a few, relatively small, studies
(102). Tryptophan metabolite kynurenine acid (KYNA) has been
studied extensively in recent years. A meta-analysis found that
KYNA levels are elevated in CSF, but not in plasma, in patients
with schizophrenia (133), and KYNA elevation is linked to
proinflammatory activation (134). In addition, ratios of different
tryptophan metabolites have predicted treatment response in
patients with schizophrenia (135).

In the search for biomarkers, “omics”-based methodologies
are becoming widely used. Proteomic methods have been used
to identify the biomarkers that differentiate FEP or first-episode
schizophrenia patients from controls (104). There tends to be
consistency between studies in the identified biological pathways,
many of which have already been mentioned before; the
most important were the acute-phase pathway, communication
between innate and adaptive immune cells, lipid and glucose
metabolism, blood formation and clotting, and the stress
response (104). Studies using the metabolomics and lipidomics
approaches in schizophrenia research were recently reviewed
by Davison et al. (106). The most consistent findings across
studies have been elevated 3-methoxy-4-hydroxyphenylglycol,
glutamate, lipid peroxidation metabolites, and triglycerides
(triacylglycerols), and decreased creatinine, vitamins (B6, D, E,
and folate), phosphatidylcholines, phosphatidylethanolamines,
and polyunsaturated fatty acids (106). Several groups have
suggested biomarker panels that differentiate patients with
schizophrenia from healthy controls, but there is little overlap in
individual metabolites in these panels (106). Fewer studies have
investigated whether these biomarkers have prognostic value. As
examples of such studies, 3-hydroxykynurenine was predictive
of symptom improvement in first-episode schizophrenia in one
study (136), and the higher baseline levels of triacylglycerols with
a low carbon number and double-bond count were predictive
of weight gain in FEP in another study (137). Of note is that
low levels in some biomarkers of nutrition, like vitamin D,
require supplementation, and it may be relevant to monitor
them as a part of the general health assessment of patients with
FEP.

Increasingly, various biomarkers are combined into panels
in order to have better predictive value, resembling the PRS
of genetic studies. Typically, individual biomarkers and their
analytical methods differ between research groups, and therefore
this line of work is difficult to summarize. One example is given
in the following. Sabine Bahn’s group developed and validated
a biomarker panel using five independent study samples (138).
Their panel consisted of 26 analytes measuring lipid transport,
inflammation, the immune system, hormonal signaling, growth
factor signaling and the clotting cascade (138). The predictive
power of the panel to identify patients who later developed
psychosis from two independent at-risk cohorts was good (the
area under the curve 0.82–0.90) (138). In the North American
Prodrome Longitudinal Study, a classifier was built that was
able to predict psychosis conversion with an accuracy of 0.90
using 15 analytes measuring lipid transport, immune system,
hormonal signaling and the clotting cascade (139). Of note is
that, while the profile of analytes were fairly similar in these
two studies, only three individual analytes (interleukin 8, thyroid
stimulating hormone, and factor VII) were the same in both
panels (138, 139). While this example is not about prognostic
biomarkers, it illustrates the challenges in replicating this type of
biomarker panels.

Physical Comorbidities and Their

Predictors
CVDs are a leading cause of excess mortality in schizophrenia
(6, 7), and preventing CVD risk factors (such as impaired glucose
tolerance and diabetes, obesity and dyslipidemia) in patients with
FEP is an important target.

Weight gain affects a significant proportion of individuals
using antipsychotic medication and is associated with almost all
antipsychotics (8, 140). However, there is considerable individual
variation in antipsychotic-induced weight gain. Various risk
factors for antipsychotic-induced weight gain have been reported
in the literature but only with limited consistency. Several studies
have found that a young age and low BMI before antipsychotic
treatment predict a larger increase in weight (141–144). Other
reported risk factors for weight gain include female sex, a
non-white ethnic background, negative symptoms, poor social
functioning, and co-medications, while smoking and cannabis
use have been associated with less weight gain (141–146). A
dysregulated glucosemetabolismmay alsomark an increased risk
of weight gain (147, 148). Early weight gain predicted further
weight increase in a longer follow-up (149). In a meta-analysis of
the genetic factors affecting antipsychotic-induced weight gain,
13 single-nucleotide polymorphisms (SNPs) in nine genes were
significant predictors, with the most significant effect sizes for
SNPs in ADRA2A, DRD2, HTR2C, and MC4R (100). However, a
PRS computed from the 6 SNPs with the largest effect on weight
gain only explained 5.6% of the variance in weight gain in two
cohorts of FEP patients, showing that the predictive value of
genetic markers is modest (100). Combining the genetic findings
with clinical risk factors for weight gain has resulted in modest
improvements when compared to only using clinical factors.
Whereas, in one study genetic data (SNPs from GWA studies
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of BMI and candidate gene studies) increased the prediction
accuracy compared to using clinical data alone (150), in another
study adding data from PRSs did not improve the prediction of
weight gain compared to the clinical information (148).

Regarding impaired glucose tolerance and dyslipidemias,
antipsychotic medication contributes to them, but many markers
of prediabetes—including insulin resistance, impaired glucose
tolerance, and elevated triglycerides—are more common in
drug-naïve patients with FEP than in age- and gender-matched
controls (130, 151, 152). Insulin resistance seems to precede
obesity in FEP (153, 154), and antipsychotic-naïve FEP patients
do not differ in BMI from controls (155). Antipsychotics have
a more rapid effect on insulin sensitivity than on weight,
which has also been shown in healthy volunteers exposed to
antipsychotics (156). Furthermore, insulin resistance predicts
more increase in weight in patients with FEP during the first year
of antipsychotic treatment (147). A rare, unpredictable adverse
effect of several second-generation antipsychotics is type 2
diabetes manifesting as diabetic ketoacidosis (9). Similarly, there
are case reports of severe triglyceridemia and acute pancreatitis
related to antipsychotics (157, 158). Predictors of progression to
diabetes or the risk of severe dyslipidemias in FEP are currently
lacking.

The overall risk of CVDs may not be elevated in drug-naïve
patients with FEP but it already increases significantly during
the first 6–12 months of antipsychotic treatment (159, 160).
Besides the classical risk factors, also elevated total white blood
cell count and CRP levels have been associated with increased
CVD risk, and increased CRP levels have been associated
with mortality in psychotic disorders (123, 161). Of the other
predictors of mortality, smoking increases the mortality risk
due to associated diseases and medical conditions (7, 162).
Antipsychotic use is associated with a lower mortality risk in
several studies (23, 163), but using doses of antipsychotics that
exceed the recommended dose may increase CVD mortality
(164). The prediction of CVD risk for people with severe
mental illness is more accurate if the traditional risk factors—
smoking, diabetes, hypertension, obesity, and dyslipidemia—are
complemented with information on psychiatric diagnosis, the use
of antipsychotics and antidepressants, and harmful alcohol use
(165).Many studies have evaluated the CVD risk for patients with
psychotic disorders compared to the risk for healthy controls
using traditional algorithms like the Framingham risk score
(166), but it has not been studied in large, prospective cohorts
whether these risk algorithms should be tailored to patients with
psychotic disorders.

Suicide Risk and its Predictors
Up to 90% of clinical high-risk patients report suicidal ideation,
between 15 and 26% of FEP patients have made at least one
suicide attempt by their first treatment contacts, and 2–11%
attempt to end their lives over the first year after treatment
onset (167). The risk for an attempt is highest during the month
preceding treatment seeking and the first 2 months following
that (10, 168). Suicide attempts in the early course of illness are
characterized by methods of high lethality and include most of
the suicide completions (168). Long-term follow-up studies and

register studies also show that most suicides occur during the first
2 years after the onset of FEP (10, 169, 170).

The predictors of a higher suicide risk include the earlier age
of onset; a history of previous suicide attempts; the severity of the
symptoms of depression, anxiety, and psychosis; substance abuse;
being male; a high IQ and better neurocognitive functioning;
a high level of education; high socio-economic status; poor
premorbid adjustment; living alone; a longer DUP; insight; and
a family history of suicide (29, 167, 170, 171). Compliance with
treatment has been demonstrated to reduce the suicide risk (171),
whereas the highest OR for suicides has been found for patients
with a previous history of suicide attempts and a history of
alcohol abuse (172).

The neurobiology of suicidality was recently reviewed (173);
the presented biological mechanisms have all also been of interest
in the etiological research of early psychosis. Several investigators
have also presented ML algorithms to identify suicidal patients in
a retrospective setting. The prediction has been done based on the
information from health records, either through an expert review
(154) or using language analysis (155). Applications predicting
the future in the predictive models could detect half of the suicide
attempts and deaths during the next 60 days (156). These models
were not developed specifically for FEP patients, however.

Substance Use
Continuing substance use is predictive of several adverse
outcomes in FEP patients. It is associated with a higher risk of
relapse and a poorer 10-year outcome, whereas patients who
discontinued substance use within 2 years after the first psychotic
episode had similar 10-year outcome as those who had no history
of substance use (174). Sustained cannabis use in FEP patients is
associated with higher relapse rates, longer hospital admissions,
and more severe positive symptoms (175, 176). As reviewed
above, substance abuse is a risk factor for suicidal behavior. In
addition, smoking is a major risk factor for premature mortality
in patients with psychosis, as it is in the general population
(7, 162). To summarize, the outcome is worse across many
domains in FEP patients with persistent SUD but not for those
who discontinue substance use. Therefore, treating a comorbid
SUD should be an integral part of treatment of FEP.

Limitations
In order to build reliable prediction tools, large and
representative patient samples are needed. Clinical follow-
up studies, which require good collaboration and interest
from the participants, always have some attrition. In the Oslo
Schizophrenia Recovery study, 10% of those fully recovered
were no longer in any contact with mental health services (38).
These individuals are easily lost in follow-up, which should
be taken into account when estimating the recovery rates and
predictors of remission and recovery (38). On the other hand,
patients with prominent disorganized symptoms may be too ill
to give an informed consent in the first place. In retrospective
studies where complete information has been available (e.g.,
from a lifetime review of medical records), about 15–20% of
patients with schizophrenia have had the disorganized subtype,
which is characterized by poor functioning from the onset of
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illness and a considerably poorer long-term outcome compared
to other schizophrenia subtypes (177, 178). If these patients
are underrepresented in clinical studies which have intensive
protocols and require the capacity to give informed consent, this
could explain why disorganized symptoms have not emerged
as notable outcome predictors in many studies. Register-based
studies are able to overcome selective attrition, but clinical data
available in health care registers is often superficial and the
information available from those who have dropped out from
treatment is limited, even in countries where different types of
nationwide registers exist (e.g., registers on sociodemographic
factors like work and income).

A problem related to blood-based biomarkers is that
psychiatric research rarely fully considers what is already known
about these biomarkers in other medical fields. Many suggested
biomarkers have stronger research evidence from another
medical field and are affected by various confounding factors, like
stress, sleep, nutrition, smoking, exercise, and BMI. There may
be substantial effects of antipsychotic and other psychotropic
medication on various biomarkers, and these have not yet been
fully characterized. On the other hand, some biomarkers may
only be relevant for a specific subtype of FEP. These factors
should be carefully examined before recommending any blood-
based biomarker for clinical use.

FUTURE DIRECTIONS

Methodological advancements may lead to better biomarkers
from one modality or to improved prediction by an optimal
combination of various markers. Clinicians also need better tools
for interpretation of predictive information.

Prediction Strategies and Tools
Disease risk calculators have been available in many medical
fields for decades (179, 180) but are only now emerging in
psychiatry. As an example, a risk calculator for predicting the
psychosis conversion risk in patients with a clinical high-risk state
was recently published (181). The calculator combined scores
on prodromal symptom severity, decline in social functioning,
and verbal learning andmemory (181). However, with increasing
predicted risk, the sensitivity of the test became quite modest
(181).

Outcome prediction tools for FEP do not currently exist.
Two recent studies have used simulated data to illustrate an
approach to developing such tools. Schubert et al. illustrated how
multimodal sociodemographic, clinical, psychological, imaging,
and other neurobiological information could be used to develop
a prediction tool for the different disease trajectories of FEP
(47). Schmidt et al. (105) suggested sequential testing as another
method to improve outcome testing. They presented such a
model in the context of clinical high-risk research, where it
was shown that sequential testing, first with clinical markers
and then with different biological markers—including MRI,
EEG, and blood biomarkers—was able to markedly improve the
accuracy of predicting future psychosis (105). Of the patients
who showed increased risk in all three tests, only 2% did
not convert to psychosis (105). The challenge of sequential

testing is compromised sensitivity as each known test misses
true converters. ML provides promising tools for increasing
sensitivity.

Machine Learning
ML refers to various tools that learn to classify or score new data
once given a training data set (182). Thus, it offers a technique
with which to attain a computer-assisted clinical decision-making
tool. In unsupervised ML, the algorithm differentiates naturally
occurring classes in the data set. In supervised ML, the ML
algorithm is given a known outcome, for example a diagnosis
or a level of functioning. ML algorithms can handle enormous
quantities of data and find, in addition to linear associations,
non-linear associations, including those between an outcome
and different combinations of data features (182). The resulting
complexity of the model easily leads to overfitting, that is,
high accuracy in the training set, but poor generalizability to
independent data sets. The goal of ML analysis is to optimize
the model so that the algorithm performs optimally, both in the
training set and in an independent test set (182, 183).

There are multiple ML methods available, including neural
networks and support vector machine. By some analogy to the
brain’s functioning, neural networks use a set of hierarchical
layers that correspond to different levels of abstraction (182).
A support vector machine finds the largest marginal between
the data points that separates the defined outcomes (184).
By using a matrix of similarities between data points (the
kernel), high dimensional data sets, such as brain images,
can be used efficiently even in small samples (184). ML tools
are not restricted to a single modality, such as a clinical
data set or a brain image, and different modalities can be
combined. They may have complementary information, and
emerging evidence suggests multimodal methods are likely to
enhance accuracy (185). Results from ML analyses in a single
modality can be used as either a concatenated or separate
input to a new ML model, or they can be used in sequential
testing.

Novel Imaging Methods
Non-invasive brain imaging methods are developing constantly.
For example, an increase in MRI field strengths increases the
signal-to-noise ratio and benefits translational research in FEP.
New imaging methods can reveal new aspects of the brain (186).
Such methods may provide complementary data that increase
the accuracy of predictive models either alone or combined with
other data.

In addition to the development of devices and radioligands,
functional imaging may benefit from task development. Tasks
are necessary in addition to resting-state imaging as they
synchronize mental states and related brain functions, resulting
in imaging signals that are comparable across subjects and
time points. A limitation in common tasks—such as sensory,
motor, or cognitive tasks—is that while they are well-
controlled, they only activate a very limited set of brain
circuitries. In contrast, psychotic disorders are related to
multiple functional alterations across the brain (187). Therefore,
predictive models would likely benefit from rich naturalistic
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stimuli—such as music, stories, or movies—that activate most
of the brain across subjects in a synchronous manner (188,
189).

Biomarkers
Novel methodologies may lead to new biomarker discoveries.
Methodologies are developing rapidly in genetics and various
fields of “omics” research. An example of a novel strategy
is untargeted screening for IgG reactivity to fragments of
human proteins, which has identified potentially interesting
novel autoantibodies in FEP (190). However, in order to have new
biomarkers for clinical use, several steps are needed after initial
discovery (191). As noted by Fond et al. (102), biomarkers need
to be “accurate, reproducible, acceptable to the patient, easy to
interpret, and have an adequate sensitivity and specificity.” This
means that the procedures for assays need to be optimized and
their reproducibility within and between laboratories ensured
(191). Possible important covariates affecting the biomarker
level, like age or sex, need to be identified and taken into
account (191). The frequency of true-positive and false-positive
results must be determined in different clinical settings, after
which the criteria for a positive screening test need to be
defined (191). If biomarkers are combined as risk scores, this
process is needed both for the individual components and
the combined score (191). Finally, the cost-effectiveness of
biomarkers needs to be demonstrated (191). For the great
majority of biomarkers presented in this review, the critical steps
regarding reproducibility and accuracy in clinical settings have
not yet been accomplished.

The Validation of Multimodal Predictive

Models
To be implemented clinically, multimodal predictive models
need to be validated. Discovery studies tend to be small and
need to be replicated in larger samples. Multicenter studies
can provide the necessary evidence that a model functions
independently of certain samples and investigators. It has
been shown, however, that the high heterogeneity of a sample
decreases the performance of the model in multicenter studies
(192). Thus, the model may need to be finally optimized in
the local population. Finally, it is not enough to predict the
future for those with FEP, but the predictions need to serve the
patients’ needs. Thus, the ultimate goal is to show that validated
predictive models help to enhance the outcomes of the patients
in randomized controlled settings.

No predictive model can be deterministic as the future of
many internal and environmental factors is impossible to predict.
Thus, to optimize predictive models, they should be updated
based on follow-up data. Such updates may not need costly
examinations by the health care system. Knowledge about daily
experiences can be collected by mobile applications (193) and
information about changes in movements and communication
can be collected frommobile phones without the need of a patient
actively inputting the data. Such information may help to update
the multimodal prediction models of the future.

User Interface
Multimodal prediction models need visualization tools in
order to be clinically useful. Naturally, before such tools are
incorporated into clinical practice, there has to be robust
evidence that the prediction model itself is valid. An example of
a computer-assisted clinical decision-making tool is the Disease
State Index (DSI) and the Disease State Fingerprint tool, which
were initially developed to predict Alzheimer’s disease risk in
elderly people with mild cognitive impairment and they have
been expanded for use in differentiating the separate types of
dementias (194–196). Two important features in the DSI are
that full information from all potential predictors is not needed
from an individual patient to use the prediction model and
also that the visualization of different risk components is easy
to interpret. Furthermore, the tool illustrates whether there are
inconsistencies between different predictors, in other words if
some outcome predictors point out to a poor, other predictors
indicate a better outcome. Such tools would be very useful
especially for enhancing the use of brain imaging and cognitive
data in outcome prediction for FEP.

Conclusions
The personalized treatment of FEP will need predictive tools.
At a group level, there are already many clinical parameters
that predict different outcomes, but these should be transformed
into an individual-level prediction, where patients typically
have mixed features—some predicting a better outcome, others
a worse outcome. Methodological advancements such as ML
will help in developing multimodal prediction tools and in
transforming the research findings into clinical practice. User-
friendly interfaces are needed for such tools. The possibility to use
such platforms with incomplete information is also important.
At the same time, it has to be remembered that scientific
breakthroughs are often unpredictable. The research field needs
to ensure that novel findings, for example those emerging from
genetic studies, are thoroughly investigated—it is possible that
the biomarkers available within 10 years are completely outside
the lists mentioned in this review.
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