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Abstract—Most satellite communications monitoring tools use
simple thresholding of univariate measurements to alert the
operator to unusual events [1] [2]. This approach suffers from
frequent false alarms, and is moreover unable to detect sequence
or multivariate anomalies [3]. Here we consider the problem
of detecting outliers in high-dimensional time-series data, such
as transponder frequency spectra. Long Short Term Memory
(LSTM) networks are able to form sophisticated representations
of such multivariate temporal data, and can be used to predict
future sequences when presented with sufficient context. We
report here on the utility of LSTM prediction error as a de-
facto measure for detecting outliers. We show that this approach
significantly improves on simple threshold models, as well as
on moving average and static predictors. The latter simply
assume the next trace will be equal to the previous trace. The
advantages of using an LSTM network for anomaly detection are
twofold. Firstly, the training data do not need to be labelled. This
alleviates the need to provide the model with specific examples
of anomalies. Secondly, the trained model is able to detect
previously unseen anomalies. Such anomalies have a degree of
unpredictability that makes them stand out. LSTM networks
are further able to potentially detect more nuanced sequence
and multivariate anomalies. These occur when all values are
within normal tolerances, but the sequence or combinations of
values are themselves unusual. The technique we describe could
be used in practice for alerting satellite network operators to
unusual conditions requiring their attention.

I. INTRODUCTION

A. Background

Satellite communications systems are subject to a wide
range of anomalous behaviour; changes in the transmitter
characteristics, the physical channel, and the receiver all
manifest themselves in the received signal. The detection of
anomalies in such systems is a complex problem, and one
that is made more difficult by the unique nature of many
anomalies [4] [5]. This precludes the supervised training
of a classifier using representative examples of normal and
anomalous signals. The approach preferred by commercial
developers of satellite network monitoring and control
systems uses simple univariate threshold-based detectors to
flag anomalies to operators [1] [2]. In the case of frequency
spectra, a representative template of a carrier is set as a
baseline. Should any frequency differ from the corresponding
template frequency by more than a given amount, an error is

signalled. Such systems are notorious for flagging too many
false positives, however, leading users to either ignore or
switch off the thresholds [1].

Since it is not possible to detect novel or ‘zero day’ anoma-
lies by their signatures, we [3] and others [6]–[8] have taken
a different approach. Rather than using labelled anomalies,
we train a model only with normal, unlabelled data, and flag
any deviations from this model of normality. Recently, there
has been interest in using recurrent neural networks, and in
particular Long Short Term Memory (LSTM) networks, for
the detection of anomalies [6]–[8]. Such networks can form
sophisticated representations of high-dimensional time-series
data. The trained network can then be used as a prediction
model on new data, and its prediction error will reflect
the degree to which the data is anomalous. The advantages
of this approach are several. Since this is an unsupervised
learning task, all training data can be both unlabelled, and
nominally normal. This solves the problem of finding and
tagging representative examples of anomalies, which are often
difficult to obtain. In addition, the trained network is able to
detect novel anomalies not in the training set. Such anomalies
will stand out as a result of their unpredictability.

B. Proposed Anomaly Detection Framework

Here we present an LSTM-based anomaly detection system.
The system is used to detect anomalous behaviour in high
dimensional multivariate time series spectrum data from a
satellite transponder. The network is presented with a spectral
time series, typically between 24-64 consecutive time points,
and trained to predict the spectrum several time-steps into the
future. Following training, the magnitude of the prediction
error vector can be used, either directly, or as a likelihood
estimate from a mutivariate normal distribution [6], to flag
anomalies. This model shows a substantial improvement over
both threshold and moving average-based detectors, as well
as a static baseline detector that predicts no change from the
previous spectrum.



Fig. 1. Waterfall diagram of the spectral data set. Spectra are collected at
30-minute increments, with each spectrum including 15731 frequency bins
spread across a bandwidth of ≈ 60 MHz – a bin width of 3904 Hz. The
resolution bandwidth is 7.646 kHz.

II. METHODS

A. Network Parameters

A three layer, 200 x 200 x 200 LSTM network was trained,
using the RMSprop optimizer with a learning rate of 0.0001.
This learning rate was selected after trying rates of 0.1, 0.01,
and 0.001, as suggested by [9]. The input size was a vector
of 24 contiguous historical time points, each consisting of a
spectrum snapshot of 500 frequencies. These training samples
represent the context from which predictions must be learned.
The output size was 2500, representing the 500 predicted
frequencies at 1-5 future time-steps. Dropout of 30% was
used between layers to prevent overtraining [10] [11], and
all the raw data were normalized to the range [0,1] [11].
There were a total of 2456 consecutive spectrum measures,
taken at 30 minute intervals, which were split 70:30 into
training and validation sets. The entire data set is shown
as a waterfall diagram in Figure 1. For the experiments
described herein, a subset of the transponder data, composed
of 500 frequencies and representing a single carrier, was used.
The LSTM network model was trained until there was no
improvement in prediction error on the validation data. This
was typically between 30-60 epochs.

TABLE I
MAXIMUM PREDICTION ERRORS ± STD FOR THE LSTM AND BASELINE
PREDICTORS AT 5 LEVELS OF LOOKAHEAD. ADVANTAGE REPRESENTS
THE % DECREASE IN PREDICTION ERROR OF THE LSTM RELATIVE TO

THE BASELINE MODEL. CARRIER DATA WERE USED FOR THESE FIGURES.

Lookahead LSTM Baseline Advantage

1 0.348 ± 0.060 0.473 ± 0.079 35.8%
2 0.352 ± 0.066 0.474 ± 0.078 34.8%
3 0.356 ± 0.070 0.477 ± 0.080 34.0%
4 0.359 ± 0.074 0.486 ± 0.092 35.3%
5 0.362 ± 0.077 0.492 ± 0.092 36.0%

TABLE II
MEAN PREDICTION ERRORS ± STD FOR THE LSTM AND BASELINE

PREDICTORS AT 5 LEVELS OF LOOKAHEAD. CARRIER DATA WERE USED
FOR THESE FIGURES.

Lookahead LSTM Baseline Advantage

1 0.079 ± 0.066 0.102 ± 0.081 29.2%
2 0.082 ± 0.071 0.107 ± 0.086 30.1%
3 0.085 ± 0.075 0.111 ± 0.091 30.6%
4 0.088 ± 0.079 0.115 ± 0.095 30.8%
5 0.090 ± 0.082 0.118 ± 0.099 31.0%

B. Model Training and Statistics

Each spectrum snapshot consisted of 500 frequencies, and
the model received as input random slices consisting of 24
such consecutive snapshots. The network was then trained to
predict the next five spectrum traces, using the ‘regression’
model, with mean square error as the loss function. In this
model, a prediction is represented as a single expected value
for each of the 500 frequencies. For evaluation purposes,
the model’s prediction error was taken as the absolute dif-
ference between the actual and predicted next frequencies.
The effectiveness of the LSTM was compared to a baseline
model. The static baseline model always predicts that the next
trace will be identical to the last trace. In the absence of
any other information, this represents a ‘best effort’ predictor.
The relative advantage of the LSTM to the baseline model
was calculated as the difference of their prediction accuracy
scores, and expressed as a percentage of the LSTM score. For
completeness, the LSTM was also compared to predictions
based on the average of the training data, and the moving
average of the previous ten data points. The prediction errors
of the models were compared using an independent samples t-
test. The test compared 702 LSTM to 702 baseline prediction
errors (df = 1402), using the mean absolute prediction error
computed across the 500 frequencies for each data point. The
models were significantly different across all lookahead levels,
but only level one results, which showed the smallest differ-
ences between mean absolute prediction errors, are reported
here.



TABLE III
MEAN PREDICTION ERRORS ± STD FOR THE LSTM AND BASELINE

PREDICTORS AT 5 LEVELS OF LOOKAHEAD ASSESSED ON DATA WHERE NO
CARRIER WAS PRESENT.

Lookahead LSTM Baseline Advantage

1 0.087 ± 0.073 0.119 ± 0.101 37.7%
2 0.087 ± 0.073 0.120 ± 0.101 37.5%
3 0.088 ± 0.074 0.121 ± 0.102 37.1%
4 0.089 ± 0.074 0.121 ± 0.102 36.8%
5 0.089 ± 0.075 0.122 ± 0.102 36.6%

III. RESULTS

For both the LSTM and baseline predictors, the errors
at all five lookahead levels were dominated by the high
degree of noise in the data. Maximum absolute prediction
errors for spectra from a carrier ranged from 35% to 49%
(Table I), while the mean errors were between 8% and 12%
(Table II). The mean prediction error increased to between
9% and 12% when predictions related to frequency spectra
in the absence of a carrier (Table III). Figures 2 and 3 are
heat maps representing the absolute prediction errors for
predictions at 1-5 levels of lookahead for both the LSTM
and baseline models. The predictions are for the validation
data only. As expected, the error for both models increases
when asked to predict the spectrum of a carrier further
out in time (increasing lookahead, Tables I and II, Figure
2). This trend is less apparent when the LSTM model is
trained on frequency data in the absence of a carrier (Table
III and Figure 3). Interestingly, the margin separating the
mean prediction error of the two models also increases with
increasing lookahead (from 29% to 31%, Table II). This
indicates that the LSTM has formed a prediction model that
is able to predict trends over multiple time steps in unseen
spectrum data. This more sophisticated model allows the
LSTM to increasingly outperform static predictions as the
prediction horizon increases.

It is clear that the mean prediction errors of the LSTM are
consistently lower than that of the baseline model. This holds
true in both the presence (two-sample t(1402) = 19.5, p <
0.0001) and absence of a carrier signal (two-sample t(1402) =
99, p < 0.0001). For carrier-based predictions, the maximum
error for the LSTM model was around 35.5%, compared to
the 48% baseline (Table I). This represents an improvement
of 12.5% in absolute terms. The maximum prediction error
is closely aligned to commercial satellite monitoring and
control systems. These use the maximum single deviation of
the current spectrum from a representative spectrum mask
to flag anomalies [1] [2]. We further compared the mean
absolute prediction errors of the two models, as a more
refined measure. For the LSTM model, this was around 8%,
compared to 11% for the baseline model (Table II). While this
difference of ≈ 3% is small in absolute terms, it represents

Fig. 2. Heat map of prediction errors for the LSTM and baseline models.
The leftmost column shows the raw waterfall spectrum data. The middle
column shows the LSTM prediction errrors at 1-5 levels of lookahead, from
left to right. The final column shows the identical data for the baseline pre-
dictor. Lighter colours represent larger prediction errors. Note that lookahead
columns have been compressed to fit the 5 levels to the diagram.

a relative improvement of approximately 30% for the LSTM
network, and is statistically highly significant (two-sample
t(1402) = 19.5, p < 0.0001). It is also in line with the LSTM
network’s 35% relative advantage seen in the maximum error
results (Table I).

For the data corresponding to the absence of a carrier,
the relative difference between the models was increased,
rising to 37% (LSTM 8.7%, baseline 12%, Table III). An
examination of the heat maps in Figures 2 and 3 indicates
that the improvement in prediction errors is heterogeneous. It
can be seen from these maps that the LSTM model makes
lower prediction errors on the steady background and carrier
signals relative to the baseline model. In contrast, larger
and more abrupt changes in the signal are better predicted
by the baseline model. This explains the sharper banding
visible in the LSTM versus baseline predictions in Figure
2: the LSTM prediction errors are much larger in these regions.

Current satellite communications monitoring tools use
deviation from a representative mean spectrum to detect
anomalies [1] [2]. We have used the mean of the combined



Fig. 3. Heat map of prediction errors for the LSTM and baseline models in
the absence of a carrier. The leftmost column shows the raw signal data, with
systematic changes in the background levels revealed by dark banding. The
middle column shows the LSTM prediction errrors at 1-5 levels of lookahead.
The final column shows the identical data for the baseline predictor. The
lighter colours apparent in the last column indicate the highter prediction
errors of the baseline predictor.

carrier training data, in addition to a moving average over
the previous ten spectra, as further comparative prediction
models. The mean model has an absolute prediction error of
0.103 ± 0.07, which not surprisingly is similar at all levels of
lookahead. The moving average model does somewhat better,
ranging from 0.092 ± 0.06 at level one lookahead to 0.103 ±
0.064 at level five lookahead. The LSTM prediction errors are
29.7% and 16% lower than these two models, respectively,
at one level of lookahead. Independent t-tests confirmed that
the prediction errors of the LSTM were significantly lower
than both of these models (p « 0.0001 in all comparisons).

When we examine the predictions qualitatively, it is obvious
that the baseline model, by predicting that the next trace
will be identical to the last trace, is effectively sustaining
the noise from that previous trace. This exaggerates its
prediction errors in line with the level of noise. In contrast,
the LSTM-based predictor takes as input the spectra of
several time-steps, allowing it to learn to suppress noise by
filtering and smoothing (Figure 4). This is most pronounced
when we compare the models on data without a carrier,

Fig. 4. A representative single frequency trace shown in green, compared to
its predicted values by the trained LSTM model, shown in black. The network
has learned to ignore much of the noise in its predictions. Note that each time
increment represents a 30 minute interval.

where the LSTM predictions are approximately 37% better
than those of the static baseline model (Table III). In the
carrier data, it can be seen that the baseline model quickly
adapts to dramatic changes in a carrier’s behaviour, simply
predicting that any changes will persist. The LSTM model by
comparison, continues to predict its trained expectations. As a
result, the LSTM more accurately predicts persistent common
patterns, but is less accurate for large and novel changes. In
effect, the LSTM provides much greater contrast between the
ongoing patterns and any changes to these than the baseline
model does. This is exactly the kind of behaviour we want
from an anomaly detection system. By not adapting to large
and unusual changes quickly, as the baseline model does,
the LSTM produces larger prediction errors for such events.
These errors can then be used to flag anomalies.

Figure 5 shows the number of anomalies detected at in-
cremental thresholds for both the LSTM and baseline models.
Here, an anomaly is simply defined as a prediction error value
outside the threshold of the detector. The LSTM network
consistently flags fewer anomalies at any given threshold. This
is a direct consequence of the models’ greater prediction accu-
racy: lower average prediction errors mean fewer errors will
exceed an arbitrary threshold. By having a lower threshold,
we can improve the sensitivity of the model while retaining
its specificity [12]. Although the baseline model flags more
anomalies, its lower prediction accuracy will coincide with
more false positives.

IV. DISCUSSION

We have shown here that an LSTM network is able to
estimate future data points in complex multidimensional time
series data derived from satellite frequency spectra with some
accuracy. A fully trained network can successfully be used
to flag anomalies in unseen data, using a prediction error
threshold. This approach takes noise levels into consideration,



Fig. 5. Graph comparing the number of anomalies detected at a given
threshold level for the LSTM and baseline models. The baseline model has a
much higher average prediction error than the LSTM, so that more prediction
errors will fall above any given threshold. The more accurate predictions of
the LSTM allow a lower threshold for anomaly detection. This results in
greater specificity and fewer false positives.

and adapts to the temporal dynamics and multivariate nature
of the data. The model outperforms both simple threshold and
moving average-based detectors, as well as a minimal static
predictor, by significant margins. The relative improvement
of the LSTM network ranged from 16% against the moving
average, to ≈ 30%-35% against threshold-style and static
predictors. The main advantage of our approach is that the
model can be trained with only normal, unlabelled data, and
that it is able to detect novel never-before-seen anomalies.
While all of the models are able to rapidly classify spectrum
traces as normal or anomalous, the LSTM network takes
significantly longer to train than the simpler models.

We assume here that better prediction performance
results in improved anomaly detection. This is because all
classification models necessarily make a trade off between
sensitivity (recall) and specificity (precision) [12]. Increasing
the sensitivity of a model normally results in lower precision,
such as false positives, and vice versa. If, for example,
we lowered the threshold of our LSTM without improving
prediction accuracy, sensitivity would be improved at the
expense of specificity. By improving prediction accuracy,
however, we can lower the threshold of what is considered
abnormal, but still retain specificity. This is a result of
narrowing the bounds that define normal behaviour with
our refined predictions. These narrower bounds are more
sensitive to genuine outliers, while still tracking and defining
the normal range of behaviours. As a specific example,
a 30% improvement in prediction accuracy enables the
detection threshold to be lowered by an equivalent amount.
For the LSTM detector in Figure 5, lowering its threshold
by 30%, from 0.4 to 0.28, results in a greater than five-fold
increase in the number of anomalies flagged. Since this

increased detection is a consequence of the greater prediction
accuracy, the number of false positives will remain unaffected.

One issue with the current data set is that the transponder
data do not exhibit the kind of rich temporal behaviour
patterns that are most amenable to machine learning systems
[11]. In essence, we are analysing a relatively noisy system
in which a carrier may be in only one of two states:
present, or absent. The decision to raise or lower a carrier
is normally an arbitrary decision by the operators that
demonstrates no clear pattern. The network is thus unable
to anticipate such behaviours. Furthermore, the relatively
coarse-grained time samples, taken at 30 minute intervals, do
not permit us to analyze the effects of rapidly-occuring events.

In future work, we intend to examine more dynamic spectra
at a much finer temporal resolution. By selecting spectra
that display more complex behaviours over time, the LSTM
approach can be evaluated to its fullest potential. We further
intend to explore the prediction horizons of LSTM networks
in order to determine how many time-steps can be anticipated
by such systems in practice.
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