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Abstract: Direct driven hydraulic drives (DDH) have the advantages of compact high power density
in hydraulic systems and flexible control of electric motors. These advantages can benefit non-road
mobile machinery (NRMM) applications. However, maintaining high efficiency while working in
sub-zero conditions with NRMM is challenging. Therefore, this paper investigates the effect of
hydraulic oil on the efficiency of a DDH in a cold environment for an NRMM application. In the DDH
setup, the speed and position control of a double-acting cylinder was implemented directly with
an electric motor drive in a closed-loop system without the conventional control valves. Efficiency
measurements of the DDH setup with two oils (conventional multi-grade and high-performance)
were conducted under different operating conditions (speed and payload) and environmental
conditions (temperature in °C). The paper provides an evaluation of the electro-hydraulic system
and a discussion on the usage of hydraulic oil by non-road mobile working machines in sub-zero
conditions. An experimental investigation demonstrated an improvement in efficiency of 5%-unit at
22 °C, from 2%-unit to 5%-unit at 3 °C, and of almost a 10%-unit at temperatures below zero (—10 °C)
by changing oil.

Keywords: hydraulic actuator; hydraulic drives; electric drives; efficiency; losses; zonal hydraulics;
direct driven hydraulics; non-road mobile working machines; low temperature; high-performance oil

1. Introduction

Efficiency and operational costs are key factors driving the non-road mobile machine (NRMM)
industry today. However, the European Union (EU) [1] members and the United States (USA) [2], among
other countries, are demanding new solutions by applying tighter regulations. In response, there is an
increasing amount of proposals arising for more eco-friendly technological solutions. The academic and
industrial sectors are actively proposing solutions for mining, goods manufacturing, forest harvesting,
cargo logistics, construction, and agriculture. For instance, academic studies related to construction
are concentrating on electrification and hybridization [3-7]. In response to these demands, the NRMM
market has created new products with fully and partially electrified machines [8-11]. However, most of
these market examples concentrate on meeting regulation demands while at the same time achieving
attractive cost reductions, whereas academic studies mostly concentrate on efficiency. Commonly
applied methods to improve efficiency are electrifying the power train [12] and/or changing the working
hydraulics in order to capture potential and/or kinetic energy [7,13], and applying control-based
energy-saving strategies [5]. All of these mentioned methods require significant changes in NRMM and
monitoring of expenses.
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To overcome these limitations, this work addresses alternative methods and investigates the
effect of hydraulic oil on system efficiency as an affordable solution. In references [14-16], the authors
demonstrated that the proper selection of fluid with an optimal viscosity—temperature relationship
could improve efficiency and reduce gasoline consumption in excavators and forklifts. In reference [17],
it was demonstrated that hydraulic fluids play a major role in this context in temperature ranges
above 0 °C. It should be considered that the NRMM ambient operating outdoor temperatures may
vary between +50 °C and —40 °C, depending on the location in the world. Therefore, the utilized test
temperature range appears to be inappropriate and unrealistic.

It is apparent that research related to sub-zero (0 °C) conditions in this area is rather limited. For
instance, a research series in arctic conditions was undertaken in Finland at the end of the 1980s. This
research included testing different pumps [18], hydraulic motors [19], cylinder seals [20], O-rings [21],
and hose assemblies [22] in an outdoor environment with a temperature range of —20 °C to —50 °C.
Another independent experimental study [23,24] from Kracow University demonstrated that operating
in low temperatures required the proper selection of hydraulic fluids and careful design of the pump
suction systems.

Therefore, attempting to find solutions to maintain the high efficiency of an NRMM in sub-zero
conditions is both attractive and challenging. In this study, it was proposed to utilize a simplified
version of an NRMM—the direct driven hydraulic drive (DDH). It was shown in earlier publications
that the DDH drive benefits NRMM as a compact solution, which provides high hydraulic power and
flexible control of the electric motor [25-27].

Therefore, this paper addresses the effect of hydraulic oil on system efficiency for sub-zero
conditions with the example of the direct driven hydraulic drive. The remainder of this paper is
organized in the following manner. Section 2 describes the scheme and principles of the DDH system
and the experimental procedures used to obtain the measurements. Measurements with conventional
multi-grade and high-performance oils were carried out at different temperatures. The results are
illustrated in Section 3. The differences in efficiency between the different temperature ranges are
discussed from an energy-saving point of view in Section 4. Finally, conclusions are given.

2. Test Case and Experimental Procedure

This section contains a description of the test setup and experimental procedure and the definitions
of various efficiencies.

Figure 1 illustrates the simplified experimental test setup of DDH. The setup used a speed-
controlled electric servo motor and a frequency converter. The electric motor rotated two hydraulic
pump/motors in order to directly control the position of the double-acting cylinder in an open loop
control. The lifting-lowering movement cycle, which occurred at different speeds and payloads, was
enabled with a program for the electric drive which controlled both the electrical and hydraulic sides
of the DDH setup.

The DDH setup (illustrated in Figures 1 and 2) was tested under various conditions in a cold
chamber. The cold chamber used for these tests had an adjustable ambient temperature range from
—50 °C to +30 °C. The selected ambient temperatures for the experimental investigations were +22 °C,
+3 °C, and —10 °C. For each temperature, a set of measurements were performed by varying the
payload (0 kg to 120 kg) and motor speed (600 rpm, 800 rpm, 1000 rpm). Thermocouples were used
to monitor the initial temperatures on the surfaces and within the test setup at the beginning of each
measurement sequence. Each measurement sequence consisted of five actuator lifting-lowering cycles.
Each measurement set was only repeated twice due to time constraints related to cold chamber use.
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4. Discussion

The above experiments demonstrated an improvement of the overall system efficiency due to
Oil B at all motor speeds and loads and at all tested ambient temperatures. At +22 °C, the change of
payload from 0 to 120 kg increased the total system efficiency by an average of 35%-unit. In addition,
the difference between oils with 0 kg payload at the same temperature showed a 5%-unit increase in
efficiency. At a temperature of +3 °C and 0 kg payload, an increase from 2%-unit to 5%-unit in efficiency
was observed. At +3 °C, the increase of efficiencies between 0 and 120 kg payload was approximately
29%-unit. An overall reduction of efficiencies under all combinations of payload and motor speed
was observed when lowering the ambient temperature from +22 °C to +3 °C. Also, at an ambient
temperature of —10 °C, a significant drop in the overall system efficiency was observed compared to
temperatures +22 °C and +3 °C. At —10 °C, despite the overall drop in efficiency, Oil B again gave a
better efficiency with nearly a 10%-unit difference when compared to Oil A. Figure 6 illustrates that the
electric motor applied less torque with Oil B than with Oil A at the same temperature. When operating
at —10 °C, a motor with a higher torque was needed for both oils to move the actuator downwards
due to the lower temperature, and the associated change in oil viscosity appeared to cause more
stiffness in the system. It is a known fact that oil viscosity largely depends on the temperature. Cold
temperatures are just as dangerous as overheating; extremely cold temperatures affect the lubrication
of the system through changes in viscosity. Too high a viscosity in cold temperatures could cause
a catastrophic failure of the pump at start-up, while too low a viscosity in high temperatures could
accelerate the pump wearing due to compromising the thickness of the protective oil films, causing
metal-to-metal contact. The degradation of the oil viscosity is accelerated with temperature variation.
In conventional systems, excessive temperatures will oxidize the o0il and lead to sludge deposits in
the system. As shown in Figure 7, the hydro-mechanical efficiency with Oil B was better at +3 °C
compared to Oil A. However, at the same time, there was a decrease in the electro-hydraulic efficiency.

Serious problems affecting cold weather operations are a direct result of the interaction between
cold temperatures and moisture. For instance, running systems in low temperatures will allow
condensation to occur in the reservoir, increasing the likelihood of pump cavitation. In addition,
the possibility of thermal shocks, which result from a too rapid increase or decrease in temperature,
exposes frame components to stress that can lead to damage or permanently reduced service life.

These results are applicable to most non-road mobile machinery for Scandinavian countries,
Russia, Canada, and the USA (Alaska). Cold conditions are common in these regions, and considering
the expansion of searches for natural resources and the tightening of TIER regulations, this research is
becoming increasingly important. These results can help to create future NRMM that are suitable for
extreme climate conditions. Furthermore, the investigation of potential aging effects of temperature
cycles on selected components and oils with long-term tests and the creation of DDH models in
extreme cold conditions are required.

5. Conclusions

Today’s governments of leading countries are applying tighter regulations for the NRMM industry.
In response, there is a rising trend to produce more eco-friendly technological solutions. However,
in order to meet regulations without significant changes to the NRMMs and without drastically
increasing expenses, improving efficiency becomes an important topic to address.

To meet these requirements, this work addresses alternative methods and investigates the effect
of hydraulic oil on system efficiency as an affordable solution. A considerable amount of literature
on the subject demonstrated that research relating to sub-zero (0 °C) conditions in this area is rather
limited. Therefore, to make results more realistic, the utilized temperature test range were set both
above and below 0 °C in order to meet the NRMM ambient operating outdoor temperatures, which
vary between +50 °C and —40 °C.

In this study, a simplified version of an NRMM—the direct driven hydraulic drive—was utilized.
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This research concentrated on analyzing the efficiency of a DDH system in sub-zero environments.
In DDH hydraulic systems, the oil flow is controlled directly by the rotational speed of the pump.
An experimental investigation proved that the oil properties were important for DDH efficiency, and
the efficiency of a DDH system in a cold environment could be significantly improved by switching to
high-performance oil (Oil B). Efficiencies were improved by 5%-unit at +22 °C, by 2%-unit to 5%-unit
at +3 °C, and by almost 10%-unit at temperatures below zero (—10 °C) by changing from Oil A to Oil B.
The results of this study also demonstrated that with the high-performance oil (Oil B), the system
used less torque than with the conventional multi-grade oil (Oil A) at the same temperature. However,
at sub-zero temperatures (in this case, —10 °C), the system needed higher torque to force the actuator
to move downwards in order to follow the requested actuator position. This phenomenon was not
observed at 22 °C with either of the oils.
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