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Abstract—This paper is concerned with inferring the state of a
It6 stochastic differential equation (SDE) from noisy discrete-time
measurements. The problem is approached by considering basis
function expansions of Brownian motion, that as a consequence
give approximations to the underlying stochastic differential
equation in terms of an ordinary differential equation with
random coefficients. This allows for representing the latent
process at the measurement points as a discrete time system
with a non-linear transformation of the previous state and a
noise term. The smoothing problem can then be solved by sigma-
point or Taylor series approximations of this non-linear function,
implementations of which are detailed. Furthermore, a method
for interpolating the smoothing solution between measurement
instances is developed. The developed methods are compared
to the Type III smoother in simulation examples involving (i)
hyperbolic tangent drift and (ii) the Lorenz 63 system where
the present method is found to be better at reconstructing
the smoothing solution at the measurement points, while the
interpolation scheme between measurement instances appear
to suffer from edge effects, serving as an invitation to future
research.

Index Terms—Non-linear continuous-discrete smoothing,
stochastic differential equation, basis expansion, Brownian
motion.

I. INTRODUCTION

Inference in continuous-time stochastic dynamic systems is
a freqgently occuring topic in disciplines such as navigation,
tracking, and time series modelling [1], [2], [3], [4], [5]. The
system is typically described in terms of a latent Markov
process {X(s)}s>0, governed by a stochastic differential
equation (SDE) [6]. Furthermore, the process {X(s)}s>0 is
assumed to be measured at a set of time instants {t;}%_; by
a collection of random variables {Y (t;)}/_,, each having a
conditional distribution with respect to the process outcome
at the corresponding time stamp. For the special case of an
affine Gaussian system, the calculation of predictive, filtering,
and smoothing distributions amount to computing the first two
joint moments of latent process and the measurement process.
In the case of filtering this procedure is known as Kalman-
Bucy filtering [7]. Subsequently, Rauch, Tung, and Striebel
showed that the smoothing moments can be expressed in terms
of ordinary differential equations with the filter moments as
inputs [8].

Although the theory of filtering and smoothing in linear
systems is well established, the non-linear case is still an
area of intense research. An early strategy, for filtering, was
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to linearise the system around the mean trajectory using
truncated Taylor series expansions which enables the use
of the aforementioned methods for affine systems [9]. This
Taylor series approach was later extended to smoothing by
combining it with the development of non-linear smoothing
theory [10]. Later on, sigma-point approaches to continuous-
discrete smoothing emerged based on Euler discretisations and
taking the limit of the discrete time smoother [11]. Additionally,
in [12] a series of sigma-point smoothers were derived based
on the non-linear smoothing theory of [10]. A different line of
research is to approximate the family of smoothing distributions
with a Gaussian process via variational Bayes [13], [14].

On the other hand, Brownian motion can be approximated
using a basis function expansion [15], which results in
approximating the underlying stochastic differential equation
with an ordinary differential equation with random coefficients
[16]. Based on this, another type of sigma-point filter for
continuous-discrete systems was developed in [17].

In this paper, non-linear continuous-discrete smoothers are
derived based on Wong-Zakai expansions of Brownian motion
[15]. This allows the latent stochastic process to be represented
as a discrete time system with non-linear transformations of
the state and noise terms. Based on this smoothers based
on both sigma point and Taylor series approximations are
developed, thus generalising the methodology in [17] to
smoothing problems. Furthermore, a scheme for interpolating
the smoothing distribution between measurement instances is
developed. The developed methods are validated in simulation
experiments.

The rest of this paper is organised as follows. This section
is concluded by establishing notation and formalising the
problem formulation. Basis function expansions of Brownian
motion and the corresponding ordinary differential equation
approximations to stochastic differential equations are reviewed
in Section II. In Section III the Gaussian smoother based on
basis function expansions of Brownian motion is formally
derived, and sigma point and Taylor series implementations are
subsequently developed as well as a method for interpolating
the smoothing distribution between measurement instances.
Simulation results for the derived smoothers are compared to
the Type III smoother (see [12]) in Section IV, and finally
conclusions are given in Section V.



A. Notation

For the stochastic process {Y (t)}5_; the following sets
are defined

D (t) = {y(tr) [t <t},
(™) ={y(t) | tr <t},

The density of the process X (¢) conditioned on the set of
outcomes of Y (t;) up to time 7 is then denoted by f(z,t |
% (7)) and f(x,t | # (77)) for the outcomes up to just before
7. Conditional expectations, covariances, and cross-covariances
are similarly denoted by E[- | #(7)], V[- | #(7)], and C[, - |
% (1)]. As a shorthand, the filtering moments at time ¢ are
denoted by

(la)
(1b)

E/[] =E[|Z(1),
VFH V[ Z(@®)];
CI[1=EL,- @),

the mean and covariance of X (¢) with respect to the filtering
distribution are given special notation according to

z(t) = E{ [X (1)),
S(t) = VI [X(@#)-

Similarly, the smoothing moments are denoted by (conditioning

on ¥ (tk))

(3a)
(3b)

E°[]=E[ | #(tx)],
VE[] = VI [ 2 (tx)),
C[] =E[,-| #(tx)),

and the mean and covariance of X (¢) with respect to the
smoothing distribution are denoted by

2(t) = E5[X (1)),
Qt) = VS[X(t)].
Furthermore, for the Itd process X (t), its Ito differential is

denoted by dX (¢), dt is a time differential, and J; is a time
derivative.

(5a)
(5b)

B. Problem Formulation

In this paper, systems of the following form are considered
dX(t) = p(X(t))dt + o(t) dB(t), (6a)
Y(te) = h(X(tx)) + V (tr), (6b)

where f(z,0) = N(z;2(07),2(07)), p: R¥x — Rix js
the drift function, o: R4 — Réx*ds ig the diffusion matrix,
B(t) is a vector of standard Brownian motions, h: R4x —
R is the measurement function, and V (#;) is a Gaussian
white noise sequence with C[V (¢;), V(t;)] = driA. Given a
measurement sequence, {y(t;)}_,, the objective of inference,
in the Bayesian sense, is then to find the family of conditional
densities

fla, 7| Z(ty)), k=1,..., K. 7
When 7 = t; the probability density in Equation (7) is said
to be a filtering distribution, when 7 > ¢ it is a predictive
distribution, and when 7 < ¢, it is a smoothing distribution.

II. APPROXIMATION OF STOCHASTIC DIFFERENTIAL
EQUATIONS USING BASIS EXPANSION OF BROWNIAN
MOTION

In this section, the approach based on basis function
expansions of Brownian motion to approximating stochastic
differential equations is reviewed. In Section II-A basis expan-
sions of Brownian motion are reviewed and in Section II-B the
approach to approximating the stochastic differential equation
taken in this paper is presented.

A. Basis Function Expansions of Brownian Processes

A standard Brownian motion B(¢) can be expanded in
terms of a set of orthonormal basis functions, {¢;(¢)}7°,,
on the interval [0,7]. Using the standard inner product on
L3([0,T],R),

T
(6.4) = /0 o(r)!(r) dr, ®)

gives the following basis expansion of B(t) [16]

oo t
:ZWI/ i(r)dr, t € [0,T), ©)
=1 0

where the coefficients, {I¥;}7°, is a standard Gaussian white
noise process. With this representation the increment, dB(t),
can be written as

(10)

B(t) = Wig(t)dt
=1

For instance, the Karhunen-Loeve expansion would correspond

to
o= (3] o (155,

Though other orthonormal bases are also possible such as Haar
functions, corresponding to Lévy-Ciesielski constructions of
Brownian motion [18].

(11a)

(11b)

B. An Approximate Stochastic System

The stochastic differential equation in Equation (6a) can be
approximated by an ordinary differential equation by using a
basis expansion of Brownian motion [15], [16], [17]. However,
making a basis expansion for the entire interval, [t1,¢x] would
require a prohibitive amount of basis functions (large L), hence
an interval wise basis expansion is more suitable. That is, B(t)
is expanded at each measurement interval, {[tj,t;1]} 5"
Now define

¢ (1) = [ (1) oL(t)],

each coordinate of B(t) can then be approximated on the
interval [tgy1,tx] as

(12)

ZW” Ifk+1 / ¢l dT te [tk7tk+1] (13)

=1



or in matrix form
t
B(t) = W(tk+1)/ o(r)dr, t € [tg, tgr1] (14)
tr

From this it follows that X (¢) is given by

X(8) ~ X(to) + / (X (7)) dr

t K—1 to
+ / S Ntptens) (M ()W (b1 (7) dr,
‘0 k=0

where  is an indicator function. The solution X (¢) can be
obtained by integrating the following ODE on the interval
[t()? t]

i

DX (1) = p(X (@) + D Xitrtuga) T (OW (Ehy1) (1)

0

el
I

The solution at the measurement points {t }/_, can be written
in terms of the following recursion
X(trt1) = FIX(tr), W (trs1)], 15)

hence the continuous-discrete smoothing problem can be
converted into a discrete-discrete smoothing problem.

III. CONTINUOUS-DISCRETE SMOOTHING USING BASIS
FUNCTION EXPANSION

In this section, the Gaussian smoothing approach based on

basis function expansions of Brownian motion is presented.

In Section III-A the equations needed to implement both the
filter and the smoother are derived. Sigma-point and Taylor
series based approximations to the smoothing equations are
then derived in Section III-B and Section III-C, respectively.

A. Derivation

Suppose the filtering distribution at time tj, is given by
Flty | % (t) = N 2(t), S(t). (16)

Now, in order to find a Gaussian approximation to the predictive
distribution,

a7

by

and the covariance is given by

St 1) = VE [FIX (1), W (tis)]
X(ty), / M(X(T))dT]

tk

=X(tg) + (Cf;

+CF | X (t), / ()W ()6 () dT]

tr

tei i
X(w). | u(Xm)dT]

AT u(X(T))dT]

+C;

+Cf

I b i
Lof | X (), / U(T)W(tkﬂ)(p(f)df]

+Cf, / W (1)) /

tr tr

+ VI / ()W tg1) (7 dT].

tr

Additionally, for the smoother gain, the cross-covariance
between X (¢1) and X (¢, ,,) needs to be computed; it is given
by

(C:i [X(tk)v X(tl;+1)] = Z(tk)

+CF | X(t), / u(X(T))dT]

19)

tr

+cf

X(t), /t (W ()6 (7) dT] .

The gain needed for the smoother implementation (cf. [5]) is

then given by
G(tr) = CLIX (t), X (b )ID 7 (tp)- - (0)

Subsequently, approximation strategies for implementing the
aforementioned moment computations shall be devised.
B. Sigma-Point Implementation

In order to develop a sigma-point implementation of the
smoother, the strategy for developing the corresponding filter
is employed [17]. Let vec be the vectorisation operator, then

define o X(ty)
(tk) = {vecW(tk)} '

Now Z(ty,) is Gaussian distributed according to

2n

Z(ty) ~ J\/( [E%k)] ,blkdiag[E(tQ,I]), (22)

where blkdiag is the block diagonal matrix containing its

arguments on the block diagonals. Now let {Z;(t)}/7, and

j=1



{A }}Z1 be sigma-points and weights associated with Z (),
respectively. Furthermore, let X;(t;) and W;(t;) be the sub-
vectors of Z;(t) corresponding to X (tz) and vec W (t),
respectively. The sigma-point, X;(t, ), is then given by

Xj(tyyr) = F[ (tk), W ()]

t;+1
=x0+ [ e

" / 8T () @ o ()W () dr,

tr
where ® is Kronecker’s product and the identity
o(T)W (te)¢(r) = ¢" () @ o (7) vec W (),

was used. Therefore, X;(t, ;) can be found by solving the
following ordinary differential equation [17]

0 X;(t) = (X (1) + 6T (1) @ o ()W (),

on the interval [ty,, ;] with initial condition X)(ts). The
quantities necessary for the smoother can then be approximated
by

(24)

(25)

(i) ZA RGNy (26a)
E(tpy1) = ZA ( (tpy1) — (t12+1))
(26b)
B o T
X (‘Xj(tk+1) - f(tk+1)>
Jz
= A X(t) — (2
023 % (%) 20 60
x XJ‘T(tIZ+1)271(t;+1)-
The smoothing recursion is then given by [5]
#(tr) = @(ty) + G(ty) (ge(tkﬂ) - :z(t,;+1)) (27a)

Qti) = S(t) + Gt (Utnsn) = Bltiny) ) 6T (k).
(27b)

C. Taylor Series Implementation

In this section we derive a Taylor series based approximation
to the smoother. First note that

EF [FIX (1), W (ti4n)]] = 2(t) + / U EF (X ()] dr

tr

m(tk)+/t @) dr,

€2V

hence the mean solves the same differential equation as ordinary
Gaussian filters [9],

(32)

Algorithm 1 Continuous-Discrete Series Expansion based
Sigma Point Smoother

Input: Initia] parameters Z(tp), X(to), sampling intervals
{6tx}7-,}, and vector of basis functions ¢'(t) =
61 . oult)].

Output: Smoothing parameters {&(t;)}<_, and {Q(t)} 5,
{Filter step}
for k=0to K -1

{Predict}
Form sigma points, {Z;(t;)}]7
for the Gaussian vector

ZT(0) = [XT(t) (vee W (1)

321, and weights, {)\j};’il

for j=1to Jz
Solve the differential equation

0 X;(t) = (X (1) + ¢ (1) ® o (t)W; ()

on the interval [t,, ;] with initial condition X (t).
end
Compute the predictive moments and smoother gain

Jz
T(tpy) < Z)‘j)(j(t;H)
j 1

(Lo <_Z)‘ (

x (Xj(tl;+1) (tl;+1))T

aom)

k+1

Gltr) — 300 (1) — 30t ) AT (650, )S 7 85,

{Update}
Form sigma points {X(t, ) jﬁl and weights {); };Zl
for X (¢, ,,) and compute

Jx

Gltpa,) < Z Nh(Xj ()

tk+1 <—Z>\

(h(XJ( k:+1))
Jx

Kt ) < ij(?{j(tiﬂ) -

X hT(Xj(t,;+1))S_1(t,:+1)
T(tr1) < 2ty ) + Kt ) (Y(te1) — g(tk-i-l))
S(thg1) < Bltyq) — K(tl;+1)s(tk+1) (

(Xj tk+1)) - g(tl;-kl))
- g(tlerl))T +A

Z(tyy1))

tk+1)‘

end
{Smoother step}
for k=K—-1t00

#(th) = 2(t) + G () (#(tsr) = 2(t5) )
Qtr)  S(te) + Gt (Qtws1) = S(t) )G (k).

end




Furthermore, in order to compute the covariance and smoother
gain, F' is expanded up to first order around Z(t),

FIX (0. W (b)) ~ 2222 (X (1) a(0)
OF[(1) 0] o )
dvec W (tyi1) vee W(tis).

Using the chain-rule and assuming the operator 9, commutes
with 0/(0X (tx)) and 9/(0 vec W (tx41)) gives

OX(1) _ op(X (1)
YOX (ty)  OX(tx)
_ Ou(X(1) 0X () G
OX(t) 0X(ty)’
and
OX(t)  __ ou(X(1) i
8t8vecW(tk+1) — Ovec W (tgy1) +o (H)@olt)
_op(x(r)  0X() (35)
0X(t) OvecW (tgs1)
+ o' (t) @ a(t).
Therefore,
OF[Z(tx),0]/(0Z(tx)) and OF[Z(tx),0]/(0vec W (tx+1))

can be obtained by integrating the following ordinary differen-
tial equations on the interval [ty,t, ]

OF,(t) = M(Z(t))Fx (1), (36a)
OF,(t) = M(2(1))Fu(t) + ¢" (1) @ (1), (36b)
with initial conditions F(¢;) =1 and F,,(t) = 0, and where

M (z) = Ou(z)/(dz), then
OF[z(ty), 0] _

Cox(ty) = Fe(tiy), (37a)
OF[z(t),0] _ . . _

DvecWitnyy) ~ Lwltee) (37b)

Therefore, to summarise, the predictive moments and smoother
gain are given by

thr1—
ﬂ%ﬁ=ﬂm+/) w(z(r)) dr, (380)
tk
S(tyyr) = Folti )2t FL (t 1) + Fo (i) Fa (),
(38b)
Gtr) = S(tr) ) (t 1 )E " (tyn)- (38¢)

D. Reconstruction of Trajectory Between Measurements

The procedure in the previous sections only provides the
smoothing solution at the discretisation points. However, we
might also be interested in reconstructing the solution between
the points. Recall that in the interval [tg,tg1], X (¢) is given
by

X(t) = X(tg) + //M(X(T))dT

ty

_|_/t ¢T(7)®U(T)dTV8CW(tk+1)-

Algorithm 2 Continuous-Discrete Series Expansion based
Taylor Series Smoother

Input: Initial parameters Z(t;), X(t;), sampling inter-
vals {0t }+_, and vector of basis functions ¢'(t) =
[f1(2) oL (t)].

Output: Smoothing parameters {&(t;)}_, and {Q(tx)}
{Filter step}
for k=0to K -1

{Predict}
Solve the differential equations
0p(t) = p(z(t)),
OpFu(t) = M(2(1)) Fu(t),
OuFy(t) = M(z(t)Fu(t) + 7 (t) @ o (t),

on the interval [ty,t, ] with initial conditions Z(t),

F(ty) =1, and F,(ty) = 0.

Compute the predictive covariance and smoother gain

E(ti1) ¢ Fx(tEH)E(tk)FT(tEH) + Fw(tEH)FJ(t;ZH)
G(tg) < Z(tk)Fg;r(tl;+1)2 (tEH)

{Update}

Hy(t 1) < Oh(z(t;, 1))
Z_l(t;-u — h(Z(ti, 1))

+— H, (tk+1)2(tl:+1)HT(tl;+1) +A

— (1. k1) H (t k+1)S ( ey

— j(tk—o—l) + K (1) (W (ter1) — 9(t,,q))

«— K(t;+1)5( k+1)KT(tlz+1)

/(9z)

end
{Smoother step}
for k=K—-1to0

#(tr) < 2(t) + G(0) (#(tesr) = 2(t5) )
Qtr) < S(te) + Gt (Qtws1) — S(tr) )G (k).

end

Now define

X(te) ] . (43)

Ult) = [vec W (tk+1)

If a Gaussian approximation to the smoothing distribution U (¢, )
can be obtained, then a set of sigma points {uj(tk)}jgl with
corresponding weights, {\; }}]21 can be drawn. Furthermore,

denote
X;(tk)
%“*{WMQJ’

then the sigma points of the smoothing distribution for
X;(t), t € [tr,try1) can be obtained according

X, (t) = u(X; o (W (tk1),

(44)

(1)) +o"(t) @ (45)



which should be solved with initial condition given by X;(tx).
The smoothing mean and covariance of X (¢) can then be
obtained by weighted sums of the solutions X;(¢), as usual.

For the Taylor series approach, the Jacobian of X (¢) with
respect to X (t;) and vec W (t;4+1) need to be computed. For
short-hand, define

dX(¢)

Fo(t) = X ()’ (46a)
_0X(t)
E1)(tk+1)(t) - aVeCW(tk+1)7 (46b)
and
Fu(tk)(t) = [Fz(tk)(t) Fw(tk-u)(t)} : (47)

Then by the same argument as before, F,;,)(t) evaluated at
the smoothing mean can be approximated by

u

N Fy, (1) =To @ M(Z(t)Fp, ) (t) +

0
(67(1) @ JW] |
where I, is a 2 by 2 identity matrix and

2(t) = p(@(t) + o7 (1) ® o (t)E [vec W (tx41)]
Q(t) = Fu(tk)(t)VS[U(tk)]FT(tk)(t)7 t € [t thg]-

u

(48a)
(48b)

For both the sigma point and Taylor series approaches,
the smoothing distribution of U(¢;) needs to be retrieved.
The key to finding this posterior distribution is to exploit the
Markovianity of the model

flw(tegr), o, tr; 2’ teyr | (k)

= flw(tpsr) | 2, tes 2 trgr, @ (i)
X flx,te; 2’ teyr | Y (tx))

= flw(tir) | 2, tr; 2’ tr)
X flx,tes 2 tey1 | Y (tk)),

(49)

where the second factor can be retrieved from Algorithm 1 or
Algorithm 2 (see [5]). The first factor can be approximated at
the filtering step. More specifically, define

=F (1) = X(tk) CL X (th), X (tes1)]
= UM TCE (X (th), X (tren)]T E(tyy1)

(50a)
= _ Q(tx) G(te)QUtk+1)
=) = Qtes1)G () Q(tk+1)+1 ] (50b)
L(ty) =

[Ch vee W (tea), X (#0)] - CF [vee W (ta), X (b))
x (B (t)) !

= [0 €, [vee W(thn), X ()l (EF (80)) 7
(50¢)

then
Ef, [vee W (te11) | X (8), X (trs1)]

~ X(te) — 2(t) (51a)
) [X(tm - x(t,:ml
VE e W) | X(0). X))

~ T —T(te)ZF (4T T (t1).

Therefore, using the law of iterated expectation (see [19]), the
smoothing moments for vec W (¢;11) and its cross-covariance
with X (¢;) and X (¢x11) are given by

ES [vec W (tpt1)] = D(ts) [I(Z(ﬁg B ig’g)ﬂ)l (52a)
VO [vec W (tpy1)] =1

()5 () — ZF ()T (1) (420

(CS
X (trtr

[ X(tk))] , vec W(tk+1)‘| =T(tx)Z%(tr).  (520)

From all of the aforementioned quantities the joint smoothing
distribution of X (t), X (tx+1), and W (¢x41) can be obtained.
The joint smoothing distribution of X (¢;) and W (¢x41) can
then be obtained by selecting appropriate sub-matrices.

IV. EXPERIMENTAL RESULTS

In this section the proposed methods are evaluated in two
simulation experiments. In the first experiment (Section IV-A),
the between measurement reconstruction is evaluated for the
sigma-point implementation of the proposed smoother. In the
second experiment (Section IV-B), the reconstruction at the
measurement instances is evaluated.

A. Simulation: Hyperbolic tangent drift
In this experiment, the following system is considered.

dX(t) = tanh X () dt + % dB(1),

Y(te) = X (te) + V(tx),

where V(t;) ~ N(0,1/10). The system is simulated 100
times for 10 time units using an Euler-Maruyama scheme
with a step size of 1/100. The system is then downsampled
by a factor 100 which gives the measurement intervals the
competing smoothers are operating on. The proposed smoother
is implemented with the sigma-point method using 1 (SE1SP), 5
(SES5SP), 10 (SE10SP), and 15 (SE15SP) cosine basis functions,
respectively. These are then compared to sigma point (T3SP)
and Taylor series (T3TS) implementations of the Type III
smoothers (see [12]). All smoothers are implemented with first
order exponential integrators and reconstruct the smoothing
solution on the dense grid given by the simulation step size.
An example of the reconstructions on a dense time grid (step
size is 1/100) is shown in Figure 1.

As can be seen in Figure 3, the competing smoothers are
fairly similar on average, with the basis expansion variants
having a larger propensity for outliers in performance. Plausible

(53a)
(53b)
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Figure 1. Reconstruction on a dense grid for the aforementioned smoothers.
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Figure 2. The square error of the trajectories for the aforementioned smoothers,
averaged over Monte Carlo trials.

causes of this may be discerned from Figure 2 where the basis
expansion approaches appear to be suffering from edge effects
at the measurement points. This suggests improvements can be
made to the method by which they reconstruct the trajectories
between measurement points.

B. Simulation: Lorenz 63

In this experiment a chaotic system is considered. Namely
the Lorenz 63 system, given by

o(Xa(t) — X1(1)) 0 0
AX(t) = | Xi(t)(p—Xa(t)) |dt+ |5 0 | dB),
X1 (t)Xa2(t) — BX3(t) 0 60

with measurements given by
Y(tk) = [1 0 0] X(tk) =+ V(tk),

where V(t;) ~ N(0,1/10). The system is simulated 100
times for 3.5 time units using an Euler-Maruyama scheme

(54)

‘ ‘ ‘ ‘
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Figure 3. Boxplots of the root mean-square errors for the aforementioned
smoothers.

T3SP = T3TS ——— SE5SP
. —— SEI10SP SE5TS —— SE10TS
3 04
=
~
£a)
o]
=
ES
0.2
9]
0L \ \ \ \ \ \ |
0 0.5 1 1.5 2 2.5 3 3.5
t
Figure 4. The square error of the trajectories for the aforementioned

smoothers, averaged over Monte Carlo trials. As can be seen, both sigma
point implementations of the basis expansion approach are almost uniformly
superior to their competitors.

with a step size of 1/1000. The system is then downsampled
by a factor 50 which gives the measurement interval the
competing smoothers are operating on. Two sigma-point
implementations of the proposed smoother are implemented,
using 5 (SESSP) and 10 (SE10SP) basis functions, respectively.
Additionally, two Taylor series implementations of the proposed
smoother are implmented, again using 5 (SE5TS) and 10
(SE10TS) basis functions, respectively. All the aforementioned
smoothers use the cosine basis. This collection of proposed
smoothers are compared to sigma point (T3SP) and Taylor
series (T3TS) implementations of the Type III smoothers. All
the smoothers are use a step-size of 1/1000 for integration
and are implemented with first order exponential integrators.

As can be seen in Figures 4 and 5, the series expansion
based sigma-point smoothers performs the best, followed by
the sigma point implementation of the Type III smoother, and
then the Taylor series based smoothers where its hard to discern
a performance difference between them. This suggests that the
error incurred by the Taylor series approximations dominates
any other sources of errors.
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Figure 5. Boxplots of the root mean-square errors for the aforementioned
smoothers. Note that the difference between the different Taylor series methods
is quite small while the series expansion based sigma-point smoother offers a
significant improvement over all the other alternatives for both 5 and 10 basis
functions.

V. CONCLUSION

A novel class of non-linear continuous-discrete smoothers
were derived based on series expansions of Brownian motion.
We developed sigma-point and Taylor series versions of the
smoothers. The sigma-point implementations were shown to be
outperform other state-of-the-art smoothers in reconstructions at
the measurement points, while the Taylor series implementation
performed similarly to other Taylor series approaches. This
suggests the error incurred by the Taylor expansion dominates
any other source of errors. Furthermore, the method for
reconstructing the trajectory between measurements, used by
the basis expansion approaches, appear to suffer from edge
effects at the measurement points, inviting further research into
the topic. Another line of future research is to generalise the
discrete time iterative smoothers to the current frame work
[20], [21], [19].
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