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Tracking of dynamic functional connectivity from
MEG data with Kalman filtering

Filip Tronarp, Narayan Puthanmadam Subramaniyam, Simo Särkkä and Lauri Parkkonen

Abstract—Owing to their millisecond-scale temporal resolu-
tion, magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) are well-suited tools to study dynamic functional con-
nectivity between regions in the human brain. However, current
techniques to estimate functional connectivity from MEG/EEG
are based on a two-step approach; first, the MEG/EEG inverse
problem is solved to estimate the source activity, and second,
connectivity is estimated between the sources. In this work, we
propose a method for simultaneous estimation of source activi-
ties and their dynamic functional connectivity using a Kalman
filter. Based on simulations, our approach can reliably estimate
source activities and resolve their time-varying interactions even
at low SNR (<1). When applied on empirical MEG responses to
simple visual stimuli, our approach could capture the dynamic
patterns of the underlying functional connectivity changes
between the lower (pericalcarine) and higher (fusiform and
parahippocampal) visual areas. In conclusion, we demonstrate
that our approach is capable of tracking changes in functional
connectivity at the millisecond resolution of MEG/EEG and
thus making it suitable for real-time tracking of functional
connectivity, which none of the current techniques are capable
of.

I. INTRODUCTION

The two fundamental principles of brain organization
are functional segregation and integration that span multi-
ple spatio–temporal scales. Functional integration is usually
considered to manifest as functional connectivity, which is
defined as statistical interdependencies between brain areas
[1] that share functional properties. Recently, the concept
of dynamic functional connectivity has become increas-
ingly popular. Using functional magnetic resonance imaging
(fMRI), researchers have observed temporal fluctuations in
functional connectivity during both rest and execution of
specific cognitive tasks [2], [3].

Although several studies have established the dynamic
nature of fMRI-derived functional connectivity, fMRI is still
an indirect measure of neural activity. In contrast, magnetoen-
cephalography (MEG) and electroencephalography (EEG)
are direct measures of electric neural activity and have
excellent temporal resolution in the scale of milliseconds.
They are thus well-suited for studying dynamic functional
connectivity and several studies have already shown that
functional connectivity changes over short time intervals [4],
[5].
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However, due to the limited spatial resolution of MEG and
EEG, estimating functional connectivity from these signals is
not a straightforward task and it typically employs a two-
step approach. In the first step, the inverse problem for
estimating the source activities in the cortex from MEG
or EEG signals is solved, e.g., by using minimum-norm
estimation (MNE) [6]. In the second step, anatomical atlases
are employed to parcel the cortex to regions of interest
(ROI) and the estimated source activities within the ROIs
are collapsed to obtain a representative activity time course
for each ROI (for example, using flipped mean). Functional
connectivity can then be estimated between a subset or
all the ROIs using a variety of methods such as phase-
locking value (PLV), phase-lag index (PLI), or multivariate
autoregressive (MVAR) models, to name a few. A major
weakness of the two-step approach is that the estimation of
source activity is not informed by the connectivity structure
and that connectivity estimation is not informed about the
limitations of source estimation (e.g. spatial leakage). Most
of the source estimation algorithms used in the Step 1 of the
two-step approach assume independence across the sources
or ROIs. To introduce additional information during source
estimation, linear MVAR models with spatially local interac-
tions and self-interactions were proposed [7], [8]. However,
these approaches ignore long-range interactions across brain
regions. Furthermore, estimation of dynamic connectivity
with two-step approaches that use MVAR models are limited
to sliding window analysis and are not capable of estimating
connectivity at every time point.

In this work, we propose a novel statistical framework for
the simultaneous estimation of source activity and pointwise
dynamic connectivity from MEG data. Our approach is
based on joint Kalman filtering and uses a state-space model
that enables tracking time-varying connectivity. The novelty
of our algorithm with respect to other existing one-step
approaches [9], [10] is that our approach explicitly allows for
statistical dependence between the source activity and their
dynamic connectivity, and is suitable for real-time tracking
of dynamic functional connectivity.

II. METHODOLOGY

A. State-space model

The raw MEG data are assumed to be generated by the
following model

yn = Gqn + vn



where G is a cortically constrained lead-field matrix, qn

are the dipole source amplitudes, vn is a Gaussian white
noise sequence with covariance R, and n is the time index.
As we shall consider the tracking a subset of the source
amplitudes associated to the anatomical ROIs together with
their connectivity, we use the flipped-mean and whitened
lead-field given by

yn = WGHxn + Wvn = G′xn + Wvn,

where H is the flipped-mean averaging matrix, W is the
whitening matrix, that is Wvn ∼ N (0, I). Furthermore, to
keep the computational cost down and thus making real-time
operation feasible, we shall consider only a subset of the
ROIs, write x>n = [(x

(s)
n )>, (x

(c)
n )>] and G′ = [G(s),G(c)],

with x
(s)
n denoting source amplitudes to be estimated and

x
(c)
n are considered clutter sources1. Further assuming x

(c)
n

is a white noise sequence with covariance sλsI for s, λs > 0,
gives the measurement relation

yn = G(s)x(s)
n + en, (1)

where en is a white noise sequence with covariance ∆ =
I + sλsG

(c)(G(c))>. Thus, the measurement error accounts
for biological noise. We shall return to appropriate selection
of s and λs later. Now, in order to track the source amplitude
and the connectivity, the following state-space model is used

an+1 = an + εan+1 (2a)
xn+1 = An+1xn + εxn+1, (2b)

where xn := x
(s)
n ∈ RP , an := vecAn ∈ RP 2

, εan+1 ∼
N (0,Qa), and εxn+1 ∼ N (0,Qx). The whole system is then
measured according to

yn = C
[
a>n x>n

]>
+ en, (3)

where C =
[
0 G(s)

]
, with the zero entry corresponds to a

zero matrix of an appropriate size.

B. Kalman Filtering

In order to infer the joint state (an,xn), a Kalman filter
is employed [11]. That is, (an,xn) is assumed to be jointly
Gaussian distributed,[

an

xn

]
∼ N

([
ân

x̂n

]
,

[
Σaa

n Σax
n

(Σax
n )> Σxx

n

])
. (4)

For short, we write z>n = [a>n ,x
>
n ] and zn ∼ N (ẑn,Σn).

In order to find a Gaussian approximation to the prediction
distribution, the moments x̂−n+1, â−n+1, (Σaa

n+1)
−, (Σxx

n+1)
−,

and (Σax
n+1)

− need to computed. This computation can be
done in a closed form, using e.g. Isserlis’ theorem [12],

x̂−n+1 = Ânx̂n +
∑
j

(Σajx
n )j , â−n+1 = ân,

1Suitable re-ordering of xn and the columns of G′ is employed

where (Σajx
n )j denotes the j:th column of C[aj

n,xn] and
aj
n is the subvector of an corresponding to the j:th column

of An. Furthermore, the superscript − denotes a one-step
predictive moment. The predicted covariances are given by

(Σax
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− =
∑
i

((Σaa
n )i + Qa

i )(x̂n)i + (Σxa
n )>Â>n

(Σxx
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∑
i

(Σaix
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+
(
Ân

∑
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+
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>
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∑
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(Qa
ij + Σaiaj

n )((Σxx
n )ij + (x̂n)i(x̂n)j) + Qx

(Σaa
n+1)

− = Σaa
n + Qa

where Qa
i and (Σaa

n )i are the i:th block columns of Qa and
Σaa

n of size P 2×P , respectively. Furthermore, Qa
ij denotes

the P × P block in Qa at position (i, j), (Σxx
n )ij is the

element of Σxx
n at position (i, j), (x̂n)i is the i:th element

of x̂n, ei is a canonical basis vector of appropriate dimension,
lastly Σaiaj

n is the cross-covariance matrix between the
i:th and the j:th columns of An. The predictive mean and
covariances can then be collected into ẑ−n+1 and Σ−n+1 for
which the filter mean of zn+1 can be obtained by the Kalman
update [11]

Sn+1 = CΣ−n+1C
> + ∆ (7a)

Kn+1 = Σ−n+1(G
(s))> (7b)

ẑn+1 = ẑ−n+1 + Kn+1(yn+1 −Cẑ−n+1) (7c)

Σn+1 = Σ−n+1 −Kn+1Sn+1K
>
n+1. (7d)

C. Heuristics For Parameter Setup

It is important to select the parameters, Qa,Qx, s, and
λs appropriately to achieve adequate tracking performance.
The covariance matrix Qa determines the trade-off between
tracking performance and smoothness of the connectivity
parameter trajectories; in our experiments Qa = I/10 to
Qa = I/1000 appears adequate. The selection of the rest
of the parameters is inspired by the heuristics for choosing
the regularization parameter in standard MNE. Firstly, we
set Qx = λsI and then assume that the contribution to the
measurements of each clutter source in x

(c)
n is a couple of

orders of magnitude less than those in xn, which means
s is small; in our experiments we use s = 1/100. Lastly,
assuming xn and x

(c)
n are white-noise sequences, the relation

between the signal-to-noise ratio (SNR) and λs is given by

λs =
(SNR)2py

tr{G(s)(G(s))>}+ s tr{G(c)(G(c))>}
. (8)

where py is the number of MEG sensors.
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Fig. 1. Exemplary plot of true and estimated AR coefficients for SNR =
0.1

III. SIMULATIONS AND REAL MEG DATA

A. Simulation setup

We simulated dynamic connectivity between two sources
(see Figure 1) using the following time-varying MVAR model

x1,n+1 = a11,tx1,n + a12,tx2,n + εx1,n+1

x2,n+1 = a21,tx1,n + a22,tx2,n + εx2,n+1

where a11,t and a22,t ∼ N (µ, σ1). The cross-interaction
terms are given as a12,t = sin(2 ∗ π ∗ t) + v(t) and
a21,t = sin(2∗π∗0.5∗t)+v(t), where v(t) ∼ N (0, σ2). MEG
data were simulated at varying signal-to-noise ratios (SNR)
using a three-compartment realistically-shaped boundary el-
ement model (BEM) for the head, provided by the MNE-
software [13], that included the surfaces of inner skull, outer
skull and skin with conductivities 0.3 S/m, 0.06 S/m and
0.3 S/m, respectively. The source space was created using
octahedron subdivision and fixed source orientation normal
to the local cortical surface, resulting in approximately 8000
source dipoles distributed evenly across the cortical mantle.

B. MEG data

To facilitate comparison of methods, we used the publicly-
available ”MNE sample” dataset [13] that comprises record-
ings with the 306-channel whole-scalp neuromagnetometer.
For the purpose of this study, we used only the responses
to visual stimuli (checkerboard patterns presented to the left
visual field). The preprocessed data consisted of 67 trials of
700 ms (–200 ms before and 500 ms after stimulus onset)
duration. The head model used was again from the MNE
sample data (see Section III-A). Based on the anatomical
Desikan–Killiany atlas, we predefined the following ROIs,
roughly corresponding to lower and higher visual areas in
the right hemisphere: 1) pericalcarine-rh, 2) fusiform-rh and
3) parahippocampal-rh.

IV. RESULTS AND DISCUSSION

Figure 1 shows an exemplary plot of the true and estimated
AR coefficients for one Monte-Carlo run at SNR = 0.1.
Even at low SNR, our approach is able to track the time-
varying AR coefficients that reflect the self-interaction of and

Fig. 2. Real MEG data. Estimated source activities in the three ROIs
averaged across trials. The shaded regions represents 95% CI.

TABLE I
SIMULATION RESULTS. THE MEAN RMSE COMPUTED ACROSS TIME

AND 100 MONTE-CARLO SIMULATIONS FOR VARYING SNR.

States SNR = 0.1 0.5 1 3 5
x1 0.63 0.36 0.27 0.17 0.13
x2 0.63 0.37 0.28 0.17 0.13
a11 0.05 0.03 0.02 0.02 0.02
a12 0.39 0.29 0.26 0.25 0.25
a21 0.28 0.19 0.17 0.16 0.16
a22 0.05 0.02 0.02 0.02 0.02

the cross-interaction between the sources. We quantify the
reconstruction errors in Table I, where we show the results
from 100 Monte-Carlo realizations for varying SNR. The
mean RMSE values shown in the table are computed across
all the time points and across the 100 Monte-Carlo runs.

For the real MEG responses, source activations and dy-
namic functional connectivity averaged over all the trials are
shown in Figures 2 and 3, along with 95% confidence inter-
vals (CI). From Fig. 2 it can be seen that the source activity in
pericalcarine-rh and fusiform-rh ROIs shows positive peaks at
around 100 ms and 150 ms, respectively, after the stimulus
onset. These peaks are related to the first major visually-
evoked responses originating in the primary visual cortex
(the striate cortex within the calcarine fissure) and higher-
order cortices in the fusiform gyrus [14].

Figures 3 and 4 demonstrate that the functional connectiv-
ities estimated between the three ROIs clearly show different
patterns over time. In particular, we see that the pericalcarine-
rh region has a feedforward influence on fusiform-rh and
parahippocampal-rh region, as reflected by the shift in the
functional connectivity dynamics after the stimulus onset
(first row of Fig. 3). However, no significant shifts in the
connectivity were found for the reverse direction, i.e., from
fusiform-rh or parahippocampal-rh to pericalcarine-rh (first
column of Fig. 3). These preliminary results are intriguing
as they indicate that our method is able to recover transient
changes in functional connectivity between lower and higher
level visual areas. We also performed a two-tailed t-test to
compare the mean of the baseline of functional connectivity
(–200 to 0 ms) to functional connectivity at each time point.



Fig. 3. Time-varying interactions between the three ROIs. The first row
represents self-interaction for pericalcarine-rh and feedforward interaction
from pericalcarine-rh to fusiform-rh and parahippocampal-rh. Middle and
bottom rows are to be interpreted similarly.

Our results revealed significant changes in connectivity (p <
0.05, Bonferroni-corrected) in the direction pericalcarine-rh
→ fusiform-rh and pericalcarine-rh → parahippocampal-rh.

This functional connectivity is likely due to evoked ac-
tivity, i.e. due to the evoked responses elicited in the visual
cortices studied. Focusing on time periods void of evoked
responses or subtracting them from the data before estimating
connectivity may reveal functional connectivity driven by on-
going activity.

We make a short note on computational complexity. Since
the Kalman filter scales cubically with the state dimension,
our method has computational complexity O(P 6). Neverthe-
less, in our experiments even P = 5 appears feasible for real-
time operation, though the method can be scaled for more
ROIs with an optimized software implementation.

V. CONCLUSIONS

We have demonstrated that our functional connectivity
estimation approach based on joint Kalman filtering can reli-
ably estimate source activity and track changes in functional
connectivity even at low SNRs. When applied to real MEG
data, our approach could describe the temporal dynamics in
functional connectivity between lower- and higher-order vi-
sual areas. In the future, we will apply our method to complex
visual stimuli, hypothesized to elicit both feedforward and
feedback connections across visual areas.
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