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Abstract—Annotating genes/proteins is a vital issue in biology.
Particularly we focus on human proteins and medical annotation,
which both are important. The most proper data for our
annotation is human phenotype ontology (HPO), which are sparse
but reliable (well-curated). Existing approaches for this problem
are feature-based or network-based. The feature-based approach
can incorporate a variety of information, by which this approach
is more appropriate for noisy data than reliable data, while
the network-based approach is not necessarily useful for sparse
data. Low-rank approximation is very powerful for both sparse
and reliable data. We thus propose to use matrix factorization
to approximate the input annotation matrix (proteins × HPO
terms) by factorized low-rank matrices. We further incorporate
network information, i.e. protein-protein network (PPN) and
network from HPO (NHPO), into the framework of matrix
factorization as graph regularization over the two low-rank
matrices. That is, the input annotation matrix is factorized into
two low-rank factor matrices so that they can be smooth over
PPN and NHPO. We call our software of implementing the
above method “AiProAnnotator”, which in this paper has been
empirically examined using the latest HPO data extensively under
various experimental settings, including performance comparison
under cross-validation, computation time and case studies, etc.
Experimental results showed the high predictive performance and
time efficiency of AiProAnnotator clearly.

I. INTRODUCTION

Annotating gene/protein function is a fundamental issue
in biology which has been well-considered in a variety of
domains in bioinformatics, such as sequence comparison, gene
function prediction and text mining for cooccurrent genes, etc.
A typical example is annotating genes by Gene Ontology (GO)
terms [1], which turns into a massive-scale multilabel classifi-
cation problem with noisy, imbalanced labels, covering a wide
range of species and label types. We address a similar issue,
but our focus is more specific and twofold: 1) human proteins,
because they are most important among those of all species.
Also human genes have an ethical issue on opening sequenc-
ing results, which in general would make computationally
annotating human proteins more important. 2) Medical side
of annotation, such as abnormalities, disorders and diseases,
which would be also practically the most important aspect in
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Fig. 1: HPO has four subontologies, in which terms are related
with each other as a directed acyclic graph, mainly keeping
the hierarchical tree structure.

function assignment. These two focuses would be reasonable,
since an ontology called human phenotype ontology (HPO)
has been generated by [2] and well-developed, particularly
emphasizing diseases, more generally abnormalities [3].

HPO collects data from major databases of human hered-
itary disorders, by which HPO currently contains all clinical
descriptions in OMIM [4], all annotated entries of Orphanet
[5] and over 60 recurrent syndromes in DECIPHER [6].
HPO has four subontologies (see Fig. 1): organ abnormality,
inheritance, clinical modifier and mortality/aging, which have
around 12,000, 28, 100 and 8 terms, respectively, meaning
that organ abnormality is highly weighed. The HPO terms are
connected to each other, basically holding a hierarchical tree
structure, keeping more general classes closer to the root and
vice versa, while strictly the structure is a directed acyclic
graph (DAG), since specialized terms can be related with
more than one more general terms. A noteworthy point of
the HPO is that annotations are sparse such that only 261,183
annotations (1.2%) are made for the entire matrix of 3,354
proteins and 6,229 HPO terms (January 2017 release), with
increasing around 23,448 annotations (9% of 261,183) in 2017.
The current number of annotated proteins, i.e. around 3,500, is
expected to increase in the future, implying that computational
predictive approaches would be urgent.

Existing computational approaches for HPO annotation



would have two directions: 1) feature-based and 2) network-
based approaches. The feature-based approach uses informa-
tion of genes/proteins as features to predict appropriate terms
to be annotated. In general the feature-based approach is
very useful for sparse data and also noisy cases, because
this approach can incorporate auxiliary information into the
original sparse, noisy input data, by which data can be
augmented to improve the predictive performance. In fact,
this type of approach, particularly learning to rank, has been
proved to be very useful for GO annotation [1]. However
comparing with GO annotation, HPO annotation are much
more curated, reliable and stable. Also HPO annotations are
sparse as shown above, but this sparseness is much less than
GO, by focusing on human proteins and abnormality terms
only. Besides, existing feature-based approaches rarely take
advantage of HPO information, e.g. hierarchical structure and
co-occurrence of HPO terms. The network-based approach is
currently more prevalent than the feature-based approach for
HPO annotation. In general a method in this direction uses at
least two inputs: the network from HPO (hereafter NHPO) and
HPO annotation (the matrix of HPO terms × proteins) as both
networks, and sometimes one more input: the relationships
over proteins/genes (hereafter protein-protein network (PPN)).
One way is that these networks are combined together to form
one large-scale network for HPO annotation. For example,
random-walk [7] or some simple score computation [8] have
been used. Also optimization-based methods use the input
matrix directly [9], [10]. However these methods cannot work
well enough for sparse data, in which nodes are disconnected
so often, even if they can be relevant to each other.

From these observations, we use matrix factorization to
approximate the HPO annotation matrix (of proteins × HPO
terms) by factorized low-rank matrices, which can capture
the factors in HPO term annotation of proteins. Since the
HPO annotation matrix is binary (zero or one), our matrix
factorization should be reasonably non-negative matrix fac-
torization (NMF), which has proved to be useful for solving
sparse problems in biology [11]–[14]. Also we transform our
other two networks, NHPO and PPN, into adjacency matrices
or graphs, and then generate two graph Laplacians. We use
these two graph Laplacians to regularize the NMF over the
main HPO annotation matrix, meaning that the main matrix is
factorized into two matrices so that each of the two low-rank
matrices should be smooth over each of the given two graphs,
i.e. NHPO and PPN. We call our model “AiProAnnotator”
(AiPA for short). We empirically tested the performance of
AiPA, comparing with three network-based approaches, which
are raised in the related work section, using the latest large-
scale HPO data with around 300,000 annotations. Experi-
mental results showed that AiPA outperformed competing
methods in a variety of settings of data usage, such as cross-
validation and using test data independent of training data,
etc., indicating the effectiveness of low-rank approximation
and network information on the human phenotype ontology
problem. Finally empirical case studies confirmed the speed
and practical usefulness of AiPA.

II. RELATED WORK

As mentioned in introduction, existing work can be divided
into two approaches: feature-based and network-based.

The two notable methods of the feature-based approach
are PHENOstruct [15] and Clus-HMC-Ens [16]. Feature-based
methods, in general, generate a feature vector and HPO anno-
tations (labels) for each gene as an input of a classifier, and
then the trained classifier is used for prediction. This procedure
is true of these two methods. Also both these methods are used
for both GO and HPO annotations (or originally they are used
for GO annotations and then applied to HPO annotation). In
this sense, we can say that the difference of HPO annotation
from GO annotation has not been necessarily considered so
well in these methods. Clus-HMC-Ens uses decision tree
ensembles, while PHENOstruct (originally GOstruct for GO
annotation) uses a modified support vector machine (SVM).

The network-based approach uses two networks (HPO an-
notation matrix and NHPO) and in some cases one more
network (PPN and totally three) and run some algorithm over
these networks for HPO annotation. The assumption behind
the network-based approach is that properties of nodes in
networks should be similar more as the connected nodes are
more similar. We raise three methods as representatives below,
which are all used in our experiments for comparison.

Xie et al. conduct random walk over the Kronecker product
graph between PPN and NHPO [17], [18]. We call this method
BiRW, standing for Bi–network Random Walk. Petegrosso
et al. [9] use all three networks, HPO annotation, NHPO
and PPN, as well as two more networks, GO annotation and
network from GO. The idea behind this approach is to transfer
information of GO annotation to HPO annotation through
GO, PPN and NHPO, particularly regularizing two annotation
matrices by these three networks. This method is called
tlDLP, standing for transfer learning dual label propagation
[9]. However transferring GO annotation to HPO annotation
is not our setting and out of our scope. So we focus on
a model, called DLP, standing for dual label propagation,
which is generated while developing the final model using
GO annotation. In DLP, the objective function is the weighted
error loss between the target matrix of HPO annotation, being
regularized by both NHPO and PPN. DLP is very similar to
our model, particularly using two graph regularizers (which are
the same as those in our model), while a significant difference
is DLP uses the target HPO annotation matrix directly to be
regularized by NHPO and PPN, while our model factorizes
the target HPO annotation matrix into two low rank matrices,
each being separately regularized by NHPO and PPN.

The last method is called ontology-guided group lasso
(OGL), which uses, instead of the graph regularizer for HPO
in DLP, an ontology-guided group norm for HPO [10]. Except
this point, OGL is the same as DLP. So OGL is also different
from our model, in the sense that low rank matrices are not
generated.

The biggest disadvantage of the network based method is
data sparseness directly affects the performance heavily, and



particularly, as mentioned in introduction, HPO annotation is
still sparse. Also all of them use the input HPO annotation ma-
trix directly, which is rather large, by which the computational
burden is usually very heavy, which is another big problem.

III. METHODS

A. Notation

Let Np and Nh be the number of proteins and HPO terms,
respectively. Let Y be the (Np×Nh) HPO annotation matrix,
where Yij = 1 if protein i is annotated by j; otherwise Yij =
0. Let Sp be PPN, i.e. protein-protein network, where Sp

i,j

is the score of the relationship between protein i and protein
j. Similarly let Sh be the network of HPO terms, generated
from HPO, where Sh

i,j is the similarity between term i and
term j. Our goal is to estimate Ŷ by using Y , Sp and Sh.

B. Proposed method

1) Preprocessing: generating a network from HPO: We
generate NHPO, i.e. a network from HPO, by measuring the
similarity between two HPO terms in HPO, we use a similarity
defined in [19]. This similarity has been used extensively as
a semantic similarity in natural language processing to define
the similarity between two labeled nodes by how many times
these labels co-occur in a corpus.

For HPO, this similarity between two HPO terms s and t
is defined as:

Sh
s,t =

2 · I(mca(s, t))
I(s) + I(t)

(1)

where I(s) = log(p(s)), p(s) = count(s)
Np

, count(s) is the
number of proteins annotated by s and mca(s, t) is given as
follows:

mca(s, t) = arg min
k∈A(s,t)

p(k),

where A(s, t) is the set of all common ancestors of s and t.
This similarity between s and t is used as a weight attached

to the edge between nodes s and t of the network of HPO. The
similarity would be larger as annotations by s and t are shared
by a larger number of proteins. Also this would happen more
likely as the common ancestor of s and t is closer. This means
that Sh considers both the number of proteins annotated by
two HPO terms at the same time and also the distance between
the two HPO terms in the hierarchical structure.

2) Nonnegative matrix factorization (NMF): NMF aims
to approximate the original input matrix by two low-rank
matrices, which turns into capturing the factors of the original
matrix. Mathematically input matrix Y ∈ RNp×Nh

+ can be
factorized into two rank K matrices, U ∈ RNp×K

+ and
V ∈ RNh×K

+ to minimize the objective function of the
Flobenius norm:

J = ||Y −UV T ||2F
s.t. U ≥ 0,V ≥ 0. (2)

Usually L2 (Tikhonov) regularization is added to Eq. (2) to
avoid overfitting of U and V to training data.
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Fig. 2: Model

The input Y has unknown (missing) values and we filter
out them by using weight matrix W ∈ {0, 1}Np×Nh , where
Wij = 1 if the annotation between protein i and HPO terms
j (Yij) is known ; otherwise zero1. Then the formulation is
given as follows:

JNMF = ||W � (Y −UV T )||2F + λ(‖U‖2F + ‖V ‖2F )
s.t. U ≥ 0,V ≥ 0, (3)

where � is Hadamard product (element-wise product), and λ
is a regularization coefficient.

In prediction, we define Ŷ by using the estimated U and
V , where Ŷ = UV T , by which unknown missing annotations
can be estimated.

3) Network regularization: From (1), we have similarity
matrix Sh of HPO which we can think is equivalent to the
adjacency matrix or network. We then regularize V by using
Sh, which results into the standard graph regularizer using
graph Laplacian as follows:

1

2

∑
i,j

Sh
i,j ||Vi − Vj ||2

= trace(V T (Dh − Sh)V )

= trace(V TLhV ), (4)

where Vi is the i-th row vector of V , Dh is a diagonal matrix
the corresponding diagonal is the node degree and Lh = Dh−
Sh is the graph Laplacian of Sh .

Similarly we can have the graph regularizer for PPN from
Sp

trace(UTLpU), (5)

where Lp = Dp − Sp is the graph Laplacian of Sp and
similarly Dp is the graph degree diagonal matrix.

Minimizing this graph regularization term means the fidelity
of the low rank matrix V (or U ) to the smoothness over Sh

(or Sp). Note that this graph regularization is standard and
has been used in a variety of applications already [20].

1Note that W is also an input of our method.



Algorithm 1 The training algorithm of AiProAnnotator

Require: Annotation matrix, Y ∈ Rnp×nh ;
protein-protein network (PPN), Sp ∈ Rnp×np ;
Hierarchical structure of HPO terms

Ensure: U , V .
1: Generate the network of HPO terms, i.e. NHPO, Sh by
(1).
2: repeat
3: Update V by (10) .
4: Update U by (11).
5: until convergence
6: Return : U , V and Ŷ = UV T

4) Model formulation: Combining (3), (4) and (5), our
model formulation is given as follows:

min
U≥0,V ≥0

‖W � (Y −UV T )‖2F + λ(‖U‖2F + ‖V ‖2F )

+αtrace(UTLpU) + βtrace(V TLhV ), (6)

where α and β are the regularization coefficients, balancing
between the approximation loss and graph smoothness.

5) Model optimization: Minimizing Eq. (6) is a biconvex
problem regarding U and V , and so we take a regular manner
for solving this problem: alternating least square (ALS), which
alternately optimizes one of the two parameters, fixing the
other, until convergence.

We first show the derivation of the updating rule of V .
Fixing U , the objective function can be written as follows:

J(V ) = ‖W � (Y −UV T )‖2F + λ‖V ‖2F
+ βtrace(V TLhV ) (7)

The derivative of J(V ) with respect to V is

∂J(V )

∂V
= −2(W � Y )TU + 2(W �UV T )TU

+ 2λV + 2βLhV (8)

The Karush-Kuhn-Tucker complementary condition leads to

[(W �UV T )TU − (W � Y )TU

+λV + βL(h)V ]ijVij = 0 (9)

We can write Lh = Lh+ − Lh− (where Lh+ = (|Lh| +
Lh)/2 and Lh− = (|Lh| − Lh)/2) and then derive the
following multiplicative updating rule:

Vij ←− Vij

√
(W � Y )TU + βLh−V

(W �UV T )TU + λV + βLh+V
(10)

The problem given by (6) is simply symmetric between U
and V . So the derivation of the updating of U , is simply
reverse of the above case, and the multiplicative rule of U
can be given as follows:

Uij ←− Uij

√
(W � Y )V + α(Lp−U)

(W � (UV T )V + λU + αLp+U
(11)

TABLE I: Statistics of two datasets: Data-201706 and Data-
201712.

Dataset Data-201706 Data-201712
#proteins 3,459 3,644
#HPO terms 6,407 6,642
#leaves of HPO 4,092 4,274
#annotations 284,621 317,443
Ave. #annotations per protein 82.28 87.11
Ave. #annotations per HPO 44.42 47.79
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Fig. 3: HPO terms were divided into five groups by the number
of annotations per HPO term. The number of HPO terms per
group (left-hand side of each group) and the total number
of annotations per group (right-hand side of each group) are
shown from Data-201706.

6) Pseudocode and implementation: The pseudocode of
our optimization process is presented in Algorithm 1. We
implemented the optimization by MATLAB, using the code
provided by [20].

IV. EXPERIMENTAL SETTING AND RESULTS

A. Data

1) HPO annotation: We generated two matrices of HPO
annotation, by using two recent versions of HPO annotation,
which were downloaded from the website of HPO project:
June 2017 release and December 2017 release, which we call
Data-201706 and Data-201712, respectively. Table I shows the
statistics of these two matrices.

We then divided HPO terms into five groups, due to the
number of annotations per HPO term: 1 to 10, 11 to 30, 31
to 100, 101 to 300 and more than 300. Fig. 3 shows the two
distributions of “the number of HPO terms per group” and
“the total number of annotations per group” in blue and red,
respectively, over the five groups from Data-201706.

2) NHPO (network of HPO): The hierarchical structure of
HPO was downloaded from the website2.

3) PPN (protein-protein network): We obtained PPN from
the STRING database [21] ver 10.0a, as integrated protein-
protein relationship data for human proteins. We used
STRING, because the information from this database was most

2https://raw.githubusercontent.com/obophenotype/
human-phenotype-ontology/master/hp.obo



powerful for predicting HPO annotation in [15]. STRING uses
various sources, such as co-expression, co-occurrence, fusion,
neighborhood, genetic interactions, physical interactions, to
assign a score to each relationship, indicating the reliability.
The obtained PPN for Data-201706 has 214,410 edges by
3,459 nodes (proteins), where the average number of edges
per node reaches 62.

B. Evaluation Criteria

Annotation-centric measure: We use each annotation
(protein-HPO term pair) as one instance and evaluate the
compared methods by using Area Under the receiver operator
characteristics Curve (AUC) [22]. Considering the sparseness
of the (binary) annotation matrix of proteins versus HPO
terms, we compute Area Under the Precision-Recall curve
(AUPR) as well.
Protein-centric measure: For each protein, prediction scores
by all available HPO terms are computed and sorted, and AUC
(AUPR) was computed from the sorted scores. The computed
AUCs (AUPRs) were averaged over all proteins, resulting in
micro-AUC (micro-AUPR).
HPO Term-centric measure: We think that term-centric mea-
sure is important, since typically scientists or biologists first
focus on a certain HPO term and are interested in obtaining
genes/proteins which can be annotated by the focused HPO
term. The HPO term-centric measure can be computed in the
totally reverse manner of the protein-centric measure, having
the following two steps: 1) AUC (AUPR) was first computed
for each HPO term. 2) The computed AUCs (AUPRs) were
averaged over all HPO terms, which resulted in macro-
AUC (macro-AUPR). Additionally, we averaged the computed
AUCs (AUPRs) over HPO terms at only leaves of the HPO
hierarchical structure, and we call the obtained AUC (AUPR)
leaf-AUC (leaf-AUPR).

We further checked macro-AUC (macro-AUPR) for each
of the five groups, which were generated by focusing on the
number of annotations per HPO term in Sec. IV-A1 (see
Fig. 3). So entirely (from annotation-, protein-, and HPO
term-centric measures) we had eight criteria to check the
performance.

C. Experimental procedures

1) Parameter setting: We compared with three network-
based methods: BiRW [18], DLP [9] and OGL [10], which
are described in Section II. We also take Logistic Regres-
sion (LR) as a feature based baseline method which means
training a collection of LR classifiers on each single HPO
term, independently. Specifically, the features for LR has been
constituted by PPN. In this comparative experiment, we used
a grid-search for finding the optimum set of parameters.

The parameter of BiRW was selected out of
{0.1, 0.2, ..., 0.9}. β and γ, regularization coefficients
(i.e. hyperparameters) of DLP and OGL, were selected out of
{10−6, 10−5, ..., 106}. We note that these parameter ranges
are decided, following [9]. Our model has four parameters:
K, α, β and λ, which are determined by internal five-fold

cross-validation, where the training data is further randomly
divided into five folds (one for parameter evaluation and
the rest for training). Also in this parameter evaluation
step, values are selected out of all combinations of the
following values: {100, 200} for K, {2−3, 2−2, ..., 22, 23} for
λ, {2−7, 2−6, ..., 26, 27} for α and β.

Our model has hyperparameters, α and β, where our model
was changed by modifying the values of these parameters. We
evaluate each of these settings as different methods as follows:

1) NMF: α = 0 and β = 0
Our model is exactly (3), which we call NMF.

2) NMF-PPN: α 6= 0 and β = 0
Under this setting, the regularization term of NHPO is
gone, while that of PPN is remained. So we call this
model NMF-PPN.

3) NMF-NHPO: α = 0 and β 6= 0
This setting is reverse to NMF-PPN. That is, the reg-
ularization term of PPN is gone, while that of NHPO
remains.

4) AiProAnnotator (AiPA for short): α 6= 0 and β 6= 0
This is our final model with the two network regulariza-
tion terms. That is, both PPN and NHPO are used.

2) Two data settings: We conducted two different settings
to check the performance of the compared methods from two
different viewpoints:

1) Cross-validation over Data-201706
We conducted 5 × 5-fold cross-validation over all annota-
tions in Data-201706. That is, we repeated the following
procedure five times: all known annotations are randomly
divided into five, equal folds, from which four are for
training and the remaining one fold is for testing. In
particular, to avoid any overlap between data for training
and for testing, after selecting the test annotation between
protein p and HPO term h, all annotations between
protein p and HPO terms, which are descendants of HPO
term h in the hierarchical structure of HPO are removed
from the training data. This means that we predict the
annotation of protein p out of all unknown HPO terms,
which is we think fair and strict evaluation.

2) Independent test using Data-201712
HPO annotation is incomplete, due to various factors,
such as slow curation. The way of annotation might be
changed as time passes. So we conducted more severe
experiment than regular cross-validation, using data ob-
tained in different time period. That is, the training data
were obtained before June 2017. All annotations in Data-
201706 were used for training, where internal five-fold
cross-validation was done for setting up parameter values,
and then after this training, annotations obtained from
June to December 2017 was used for testing.

D. Experimental results

1) Predictive performance in cross-validation over Data-
201706: Table II shows the values of eight criteria obtained
by averaging over 5×5 cross-validation (totally 25 runs) on



TABLE II: The results of eight criteria obtained by 5×5-fold cross validation over Data-201706 for totally eight competing
methods.

method AUC AUPR micro-AUC micro-AUPR macro-AUC macro-AUPR leaf-AUC leaf-AUPR
LR 0.775 0.028 0.760 0.072 0.579 0.052 0.532 0.020
BiRW 0.875 0.066 0.826 0.096 0.732 0.056 0.597 0.031
OGL 0.785 0.051 0.776 0.078 0.603 0.034 0.536 0.014
DLP 0.902 0.073 0.875 0.100 0.736 0.094 0.659 0.055
NMF 0.961 0.496 0.900 0.273 0.753 0.139 0.701 0.089
NMF-PPN 0.963 0.525 0.902 0.281 0.756 0.142 0.703 0.089
NMF-NHPO 0.965 0.541 0.903 0.290 0.756 0.144 0.702 0.094
AiProAnnotator (AiPA) 0.970 0.559 0.905 0.295 0.760 0.146 0.705 0.096

TABLE III: Macro-AUC obtained by 5×5 cross-validation
over Data-201706 for eight competing methods.

method [1-10] [11-30] [31-100] [101-300] [≥301]
LR 0.526 0.553 0.633 0.735 0.755
BiRW 0.608 0.854 0.875 0.835 0.815
OGL 0.586 0.670 0.788 0.812 0.806
DLP 0.622 0.880 0.914 0.863 0.834
NMF 0.649 0.908 0.942 0.948 0.911
NMF-PPN 0.651 0.911 0.943 0.951 0.916
NMF-NHPO 0.653 0.919 0.946 0.947 0.919
AiPA 0.654 0.922 0.943 0.957 0.931

Data-201706. In this experiment we compared totally eight
methods, in which four are existing methods (LR, BiRW,
OGL and DLP) and four are modifications of our own method
(NMF, NMF-PPN, NMF-NHPO and AiPA). The table shows
our four methods clearly better than the four existing methods.
For example, in AUPR, our four methods achieved around 0.5
to 0.55, while all the values by the existing methods are less
than 0.1. In fact in all eight criteria, this performance of our
four methods were kept over the existing methods. Thus the
difference is very clear, and we can say that low-rank approx-
imation is useful for HPO annotation problem. Furthermore,
among our four methods, AiPA outperformed other setting
always in eight conditions, indicating that network information
was well incorporated into our formulation.

Tables III shows AUC obtained for five groups divided by
the number of annotations. Again these tables show the same
conclusion as those in Table II. That is, AiPA outperformed
all other methods in all cases, except only one case, where the
group with the moderate number of annotations, 31 to 100. So
in summary, we can say that in terms of cross-validation, our
approach can achieve high performance for HPO annotation
problem. In particular, one noteworthy, interesting point is our
method worked well for the HPO terms with a very small
number of annotations, i.e. only one to ten annotations per
HPO term. In fact, this situation is usually hard for low-rank
approximation, while AiPA achieved the best performance.
This result indicates that low-rank approximation is useful for
all types of groups including HPO terms with a very small
number of annotations in the problem of HPO annotation.

2) Computation time in cross-validation over Data-201706:
We checked the computation (training) time of the seven
methods compared in cross-validation, where the time was
averaged over the totally 25 runs (5 × 5 folds). Table IV

TABLE IV: Training time of a single run in 5 × 5 cross-
validation (average over 25 runs)

method computation time
LR ∼ 3.5 hours
BiRW ∼ 1.5 hours
OGL, DLP ≥ 4 hours
NMF, NMF-PPN, NMF-NHPO, AiPA ∼ 30 minutes

TABLE V: AUC from Independent test using Data-201712

BiRW DLP OGL NMF NMF-PPN NMF-NHPO AiPA
0.7971 0.8298 0.7322 0.8527 0.8923 0.8959 0.9187

shows computation time under the same machine setting. Our
four models are faster than others, particularly being more
than eight times faster than OGL and DLP. Training data is
updated periodically, and so the software must be trained by
the updated data often, by which this advantage would be a
sizable difference. In addition to this, OGL and DLP need
much more memory spaces than the other methods, which
would be another serious problem.

3) Predictive performance in independent test using Data-
201712: Table V shows AUC obtained by the experiment
of using independent data for seven competing methods.
Among the three existing methods, DLP achieved the best
performance, e.g. 0.8298 by AUC. NMF outperformed DLP
with AUC of 0.8527, and two modifications of NMF with one
network regularizer further achieved a better performance with
AUC of around 0.89. Finally AiPA gave the best performance,
AUC of more than 0.9.

After the independent test, we then obtained top 30 anno-
tations after sorting all the predicted combinations by their
scores obtained by the estimated Ŷ . Among the thirty anno-
tations, six annotations are found in Data-201712. Table VI
shows those six annotations.

For example, the top annotation in Table VI shows that
gene COL7A1 (gene id: 1294), which is annotated by
HPO term HP:0001072/HP:0000962 (HPO name: thickened
skin/hyperkeratosis). This was not in our training data, while
this appeared in the December 2017 release of HPO. Also the
second annotation in Table VI shows that gene ATP6V0A2
(gene id: 23545) which encodes protein Q9Y487 is newly
annotated by HPO term HP:0001263 (global developmental
delay) in the recent release, while this was not in the previous



TABLE VI: Six new true annotations in top 30 annotations (by AiProAnnotator) out of all new combinations of proteins and
HPO terms in Data-201706. These six annotations were not in training data but found in the latest release of HPO

rank protein ID protein name gene name HPO ID HPO name
4 Q02388 Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) COL7A1 HP:0001072 Thickened skin
15 Q9Y487 V-type proton ATPase 116 kDa subunit a isoform 2 (V-ATPase 116 kDa isoform

a2) (Lysosomal H(+)-transporting ATPase V0 subunit a2) (TJ6) (Vacuolar proton
translocating ATPase 116 kDa subunit a isoform 2)

ATP6V0A2 HP:0001263 Global developmental delay

22 Q9H5I5 Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) PIEZO2 HP:0000422 Abnormality of the nasal bridge
24 O43175 D-3-phosphoglycerate dehydrogenase (3-PGDH) (EC 1.1.1.95) (2-oxoglutarate

reductase) (EC 1.1.1.399) (Malate dehydrogenase) (EC 1.1.1.37)
PHGDH HP:0000366 Abnormality of the nose

25 Q02388 Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) COL7A1 HP:0000962 Hyperkeratosis
26 Q04656 Copper-transporting ATPase 1 (EC 3.6.3.54) (Copper pump 1) (Menkes disease-

associated protein)
ATP7A HP:0002650 Scoliosis

TABLE VII: Predicted HPO terms of P23434 (gene name: GCSH) by four our methods based on NMF. Correctly predicted
HPO terms are in boldface.

method predicted HPO terms #correctly
predicted

NMF HP:0002079, HP:0001276, HP:0000007, HP:0007256, HP:0003287, HP:0000718, HP:0000729, HP:0002167, HP:0001268, HP:0002360 2
NMF-NHPO HP:0000007, HP:0002079, HP:0001250, HP:0001276, HP:0000718, HP:0000729, HP:0012444, HP:0007256, HP:0002360, HP:0000478 3
NMF-PPN HP:0000007, HP:0001276, HP:0007256, HP:0000729, HP:0000718, HP:0000478, HP:0003287, HP:0001268, HP:0001298, HP:0001250 4
AiPA HP:0001250, HP:0000007, HP:0001522, HP:0001276, HP:0002167, HP:0001298, HP:0000478, HP:0000718, HP:0007256, HP:0012444 5
True HP:0000007, HP:0000711, HP:0000718, HP:0001250, HP:0001298, HP:0001522, HP:0002086, HP:0002795, HP:0100247, HP:0100710

TABLE VIII: Performance results, focusing on the subontology of organ abnormality of Data-201706. First three rows of
methods with “Organ” are those trained by HPO terms on organ abnormality, while four rows with “All” are those trained by
using all HPO terms.

method AUC AUPR micro-AUC micro-AUPR macro-AUC macro-AUPR leaf-AUC leaf-AUPR
NMF-Organ 0.955 0.507 0.883 0.250 0.745 0.127 0.682 0.077
NMF-PPN-Organ 0.962 0.555 0.889 0.276 0.755 0.144 0.701 0.091
NMF-NHPO-Organ 0.962 0.535 0.888 0.264 0.756 0.141 0.702 0.089
NMF-All 0.956 0.512 0.884 0.258 0.755 0.129 0.685 0.083
NMF-PPN-All 0.962 0.553 0.889 0.273 0.755 0.143 0.698 0.089
NMF-NHPO-All 0.962 0.556 0.889 0.274 0.755 0.144 0.699 0.090
AiPA-All 0.963 0.558 0.891 0.275 0.759 0.145 0.702 0.091

data. Similarly all other four cases in the table show those not
in previous release of HPO and so not in training data but
appeared in the current 2017 December release of HPO.

In more detail, for the top annotation of protein Q02388 by
HPO HP:0001072, there are ten proteins (O43897, P07585,
P08123, P08253, P12111, P20849, P20908, P25067, P53420,
Q13751) which are annotated by HP:0001072 and also have
the similarity score (with Q02388) of more than 0.9 in
PPN. This indicates that PPN between Q02388 and those ten
proteins imply a strong possibility of annotating Q02388 by
HP:0001072. Similarly, for the second annotation of protein
Q9Y487 by HP:0001263, there exist three proteins (O00203,
O75787, P02786) which are annotated by HP:0001263 and
at the same time have the similarity score (with Q9Y487) of
larger than 0.9. These would be a good example of confirming
that using protein-protein network information is useful for
annotating proteins by unknown HPO terms.

4) Typical example showing the performance advantage
of AiProAnnotator: We here show one typical example of
the results obtained by our four methods, to illustrate the
real performance difference in annotating proteins by HPO
terms. We focus on protein P23434 (gene name: GCSH),
which has true ten annotations, i.e. ten HPO terms to be

annotated, shown in the bottom row of Table VII. Other rows
of Table VII show the top ten HPO terms predicted by our four
methods to annotate P23434. The most right-hand column of
this table shows the number of correctly predicted HPO terms
out of the true ten HPO terms. Interestingly the correctly
predicted number was incrementally increased, starting with
two by NMF, three by NMF-NHPO, four by NMF-PPN and
finally five by AiPA. This result also indicates that using
network information is useful for improving the performance
of annotating proteins by HPO terms.

5) Performance comparison, focusing on organ abnormal-
ity: Most of the past work on annotating proteins by HPO
terms show the performance in each subontology of HPO.
However, focusing on part of data will lose the advantage
of using the entire network information which can connect
proteins or HPO terms even beyond the boundary of two or
more subontology in the network space. Thus we avoided
conducting experiments in each of all subontologies, and
instead we focused on the most major subontology, organ
abnormality (HP:0000118), with 6,370 HPO terms, 3,446 pro-
teins and totally 269,420 annotations. We conducted 5×5 cross
validation on the subontology of organ abnormality, using
the same split for experiments over Data-201706. Table VIII



shows the values of eight evaluation criteria obtained by all
compared methods, i.e. totally seven cases of our models. The
table shows that the performance difference among the seven
cases was very slight. For example, AiProAnnotator using all
data achieved the best performance for all cases except one,
and in AUC, AiProAnnotator was 0.963, being followed by
four other cases with 0.962. From this result, we can imagine
that network information is useful but using both networks,
i.e. PPN and NHPO, might not be so useful for this case.
Also organ abnormality is the major subontology, by which
using all training data seems not so effective for improving
the performance obtained by using organ abnormality only.

V. CONCLUSION AND DISCUSSION

We have presented to use low-rank approximation to the
problem of large-scale annotation of human proteins. Also
we have proposed to use network information, which can
be derived from the both sides of annotation, i.e. protein-
protein network, and the hierarchical structure of the ontology
side. In particular, we have formulated the low-rank approx-
imation into the optimization problem of matrix factorization
with network-derived regularization. We then have empirically
examined the effectiveness of our approach by using the
current HPO database. Experimental results clearly show the
performance advantage of the proposed method under various
settings, including cross-validation, independent test, focusing
on the major subontology of organ abnormality, and detailed
case studies, etc. In particular, our approach of using matrix
factorization or more generally low-rank approximation was
effective to improve the performance of annotation, even for
the group of HPO terms with a very small number of anno-
tations. These results indicate the validity of using low-rank
approximation and also network information regularize the
approximation for the problem of annotating human proteins
by ontology with the hierarchical structure.

Important findings on our approach are: 1) low-rank ap-
proximation works very well for large-scale HPO annotation
or more generally, multilabel classification even for predict-
ing labels with an extremely small number of instances,
i.e. proteins, at least for HPO annotation, 2) protein-protein
network and hierarchical ontology structure were very helpful
as side information for improving the performance of low-
rank approximation, and 3) multiplicative parameter updating
of low-rank approximation (matrix factorization) was time-
efficient, particularly around eight times faster than network-
based approaches, which use the original annotation matrices
directly and so need huge memory spaces also.
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