
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Addad, Rami; Cadette Dutra, Diego; Bagaa, Miloud; Taleb, Tarik
Benchmarking the ONOS Intent interfaces to ease 5G service management

Published in:
2018 IEEE Global Communications Conference, GLOBECOM 2018

DOI:
10.1109/GLOCOM.2018.8648078

Published: 01/01/2018

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Addad, R., Cadette Dutra, D., Bagaa, M., & Taleb, T. (2018). Benchmarking the ONOS Intent interfaces to ease
5G service management. In 2018 IEEE Global Communications Conference, GLOBECOM 2018 (IEEE Global
Communications Conferences). IEEE. https://doi.org/10.1109/GLOCOM.2018.8648078

https://doi.org/10.1109/GLOCOM.2018.8648078
https://doi.org/10.1109/GLOCOM.2018.8648078


This is the accepted version of the original article published by IEEE. 
 
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Benchmarking the ONOS Intent interfaces to ease
5G service management

Rami Akrem Addad1, Diego Leonel Cadette Dutra1, Miloud Bagaa1, Tarik Taleb1

Hannu Flinck2, and Mehdi Namane1
1 Dep. of Communications and Networking School of Electrical Engineering, Aalto University, Espoo, Finland

2 Nokia Bell Labs, Espoo, Finland
Emails:{firstname.lastname}@aalto.fi; hannu.flinck@nokia-bell-labs.com

Abstract—The use cases of the upcoming 5G mobile networks
introduce new and complex user demands that will require
support for fast reconfiguration of network resources. Software
Defined Network (SDN) is a key technology that can address
these requirements, as it decouples the control plane from the
data plane of the network devices and logically centralizes the
control plane in the SDN controller. SDN network operating
system (ONOS) is a state-of-art SDN controller that aims to
address this important scalability limitation from its design.
An important feature of ONOS is that it allows network
administrators to configure and manage networks with a high-
level of abstraction by using Intent specifications. An Intent
is a policy expression describing what is the desired outcome
rather than how the outcome should be reached. The concept
of Intents coupled with the distributed storage space are the
key components for the theoretical scalability of ONOS. In this
paper, we present our evaluation of the ONOS Intent northbound
interface using a methodology that takes into consideration the
interface access method, type of Intent and number of installed
Intents. Our preliminary analysis indicates a linear increase in
the computational cost with regards to the number of submitted
Intents, with the access method being a major factor in the
overall computational cost.

I. INTRODUCTION

5G networks are not only about broadband connectivity but
are also intended to create a basis for the provisioning of a
wide variety of applications that have performance demands
beyond the capacity of current networks. In order to meet
the user expectations and anticipated traffic growth, mobile
network operators are overhauling their communication infras-
tructure to 5G [1]. Equally important to investments in new
radio and transport technologies are the investments to manage
and control the network resources. The Software Defined
Networking (SDN) [2], [3] technology brings flexibility in
the granularity of controlling network resources [4], [5]. It
is commonly identified as a key enabler for 5G networks
since it can efficiently provide on-demand reconfiguration of
the critical networking resources [6], [7]. SDN control may
be based on OpenFlow [8], NETCONF, PCEP, and similar
protocols that separate traffic flow processing from the control
and management of the network devices performing the traffic
flow processing (e.g. routing or switching).

To take advantage of the flexibility of the SDN concept, a
new network element, SDN controller [9]–[12], needs to be
deployed. The controller is a logically centralized entity that

is responsible for storing the current network configuration
requested by its operator and to program this configuration to
the SDN-enabled switches of the infrastructure. The controller
may also be involved in traffic flow processing as the switches
may request it to handle packets that they do not know how
to forward. The OpenFlow protocol supports such reactive
operation mode in SDN-enabled networks, which facilitates
automatic reconfiguration of the network. This fine-grained
level of control is typically implemented by embedding or
linking an application with the controller software or using a
RESTful interface offered by the controller.

While the first generation of SDN controllers were both
logically and physically centralized software, this introduced
major concerns about the scalability of the SDN-enabled net-
works. This was addressed by a new generation of controllers,
e.g., OpenDaylight, that aimed to distribute the controller over
multiple servers. However, this approach led to the known
problems of consistency of distributed systems [13], [14]. The
OpenDaylight [15] project chose to address this issue of a
classical trade-off between scalability and implementation by
using a strong consistency model that reduces the implemen-
tation burden but also limits scalability, while still providing
high availability.

The next generation of SDN controllers aims to implement
a higher level abstraction to manage the network functionality
through their northbound interfaces by hiding the details of
the OpenFlow and other protocols from the operator. The
Open Network Operating System (ONOS) [16] is a state-of-
art SDN controller that was designed to guarantee scalability,
high-availability, and performance. It offers the possibility to
configure and manage networks in a simple way, leveraging
a high-level abstraction provided by ONOS Intents. Concep-
tually, Intents represent desires of the network administrator
what to do rather than how to do. ONOS compiles Intents into
one or more Flow Rules that implement the desired network
behavior.

While previous works have benchmarked the performance
of other SDN controllers, most of them used simulation or
emulation tools, such as Cbench. These tools aimed to gener-
ate an OpenFlow traffic, which is equivalent to benchmarking
ONOS’ southbound interface [17]. Since the Intent interface
of ONOS represents a major feature in its scalability, it is
important to understand in detail how the use of Intents



impacts the performance of the controller as a function of
the Intent load submitted to it. It is equally important to
understand if there are any performance differences between
the different methods of providing the Intent specifications.
The major contributions of this paper are an experimental
evaluation of the performance of ONOS RESTful and com-
mand line northbound interfaces for the 3 basic Intent types,
and a preliminary analysis based on these results that point to
best practices in the development of complex behaviors and
ONOS-aware distributed applications.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. In Section III, we describe
the benchmarking methodology that we used for evaluating
ONOS. In Section IV, we present the results of our experi-
mental evaluation. Finally, Section V concludes the paper and
introduces some future research work.

II. BACKGROUND AND RELATED WORK

A. Related Work

In recent years, SDN has gained a lot of momentum with
a number of open sources controllers being developed for
various purposes. In this section, we focus on the research
work focusing on ONOS and its performance.

Berde et al. [16] analyze the performance of the first two
ONOS prototypes, introducing the path installation perfor-
mance metric for the second prototype. The metric covers
the average time of processing application requests up to
the network state update, showing how quickly the physical
network is configured. Kim et al. [18] presented the design
and the implementation of OFMon that is a monitoring
system recording OpenFlow message exchanges on the ONOS
logging system. It provides in real time monitoring results to
the network administrator through both the ONOS command
line interface (CLI) and the GUI. We use this tool for the
performance analysis of CPU and memory consumption.

Yamei et al. [17] presented a comparative analysis of
the performances of both ONOS and OpenDaylight [15]
Controllers using three tools: IXIA Test Instrument(XG12),
Cbench, and Mininet. Those tests were done measuring met-
rics like channel capacity, flow modification delay and cluster
fail-over time. The Open Networking Laboratory [19] has
done a number of detailed performance analysis and scale-
out tests such as topology event latency, Intents processing
latency, and topology scaling operation.

Salman et al. [20] presented a deep performance com-
parison of a number of SDN controllers including ONOS,
OpenDaylight, and LIBFLUID RAW. The comparison was
done using Cbench, the most commonly used OpenFlow
testing tool. The SDN controllers were evaluated using both
the latency and the throughput modes from Cbench, varying
other parameters such as the number of switches and threads.
Bianco et al. [21] developed a quantitative model in order
to estimate the number of exchanged packets on the control

plane when setting up flows between ONOS and the switches
it controls. They applied their model to different realistic net-
work topologies. They also evaluated precisely the OpenFlow
traffic generated on the control plane and the average number
of flow rules installed in each switch.

B. Background

1) OpenFlow: OpenFlow [8] was the first protocol that
implemented the SDN concept of extracting switch control to
a centralized controller. OpenFlow provides a detailed view
and control of the traffic flows passing through SDN-enabled
switches. In this way, OpenFlow bypasses the restrictions of
a switch control that is ”locked” into proprietary operating
systems of network equipment. As a result, network operators
would be able to implement new strategies and protocols for
traffic forwarding and routing.

An OpenFlow-enabled switch [22] includes a flow table
that contains rules for identifying different types of traffic,
processing each packet of the flow (forwarding, dropping,
adding/modifying VLAN tags), and recording the number of
packets processed for this flow. If no rule matches to a packet,
the switch can send the header of the packet to the SDN
controller. The latter would make further decisions on how the
packet should be processed and pushes appropriate entries to
create flow rules into the flow table of the switch. These new
rules will be used for the similar subsequent packets. Thanks
to this strategy, the packet processing overhead on the SDN
controller should be mitigated.

2) The Open Network Operating System:
Open Network Operating System – ONOS – is an SDN

controller that has been conceived to support scalability, high
availability and performance [23]. It was designed for network
service providers with the following key features: a distributed
core for maximum scalability, modularity, southbound abstrac-
tions, and northbound abstractions. The latter is divided into
two main parts, the global network view (which provides the
applications with a view of the network - the hosts, switches,
and links), and the Intent Framework, that enables the network
administrator to manage the network with a high-level of
abstraction by submitting Intents. An Intent could be, for
example, to set up a connection between two particular hosts
in the network. Intents will be handed over to the ONOS
core, which is responsible for translating them via Intent
Compilation, into Installable Intents, which are Actionable
Operations to ONOS. The compilation process takes into
account the network state and behavior requested in the Intent
to generate one or more flow rules to implement the requested
behavior in the ONOS managed network. These actions are
then carried out by the Intent Installation process, which
results in a set of flow rules being installed on one or more
selected switches in the network.

As shown in Figure 1, there are three different ways to
push Intents on ONOS: (1) by creating an ONOS application,
(2) using the Command Line Interface (CLI), or (3) through



Fig. 1. ONOS Intent framework mechanism.

the RESTful interface. The first two access methods are
equivalent, which means that the CLI will delegate the Intent
creation according to the ONOS application; while using the
RESTful interface is equivalent to calling a Web Service
with a particular request using the HTTP protocol. This Web
Service will relay this request to the ONOS Core, after having
transformed it into a request in a query format that can be
understood by the latter. The generic basic Intents provided
by ONOS are: point-to-point, single-to-multi-point, multi-to-
single-point and host-to-host. We have chosen to benchmark
the performances of the three first Intents, as for our test
network the host-to-host Intent would not provide useful
insights to ONOS Intent framework as it will be translated
into a set of point-to-point Intents.

III. METHODOLOGY

Evaluating SDN controllers based on simulated or emulated
traffic sets is effective to better understand their strength,
robustness, and scalability. However, such an approach is not
suitable for benchmarking the Intent abstraction of ONOS.
While the benchmarking of the southbound interface can be
done using Cbench (as discussed in Section II) to generate
flow requests, the northbound interface that implements Intent
abstraction operates not on flows but policy-based directives
containing descriptions of network resources, their constraints
and criteria to select traffic.

To the best of our knowledge, the other published per-
formance evaluation of the SDN controllers used simulation
tools to create flow requests with the focus mainly on the
interaction between the SDN controller and the Open Flow
protocol. Instead, our work is focusing on how the SDN
controllers behave and how their performance changes when
using different Intents and what is the impact of using different
interfaces to communicate Intents to the ONOS controller.
Moreover, we focus our evaluation on the basic Intents
provided by the ONOS core architecture, as we study how
ONOS behaves when an external application is submitting
Intent installation requests at a high rate. The results presented
in this paper allow us to evaluate how an external application
can use ONOS to install its desired network configuration
while mitigating the cost associated with the communication
with the SDN controller.

In our benchmarking of the Intent interface, we are in-
terested in how ONOS behaves in terms of agility and
scalability. We define Agility as the amount of time required
to successfully install a set of Intents, and Scalability as how
many Intents a single ONOS instance can manage. These two
metrics provide a clear understanding of the expected perfor-
mance of an ONOS deployment to a network administrator.
For our analysis, we have selected these three basic Intent
types point-to-point, single-to-multi-point, and multi-to-single-
point that would be used to create more complex Intents.

The compilation and installation times of an Intent depends
significantly on the used computational resources, e.g., CPU
cycles and memory of the used servers. Therefore, to make
our results independent from deployed testbed configuration,
we selected to measure how long it takes to install a fixed
set of Intents using both the CLI and the RESTful inter-
faces provided by ONOS. For the CLI, we augmented the
ONOS code, introducing timekeeping mechanism inside the
ONOS core for each CLI Java class, in our case: (1) Add-
PointToPointIntentCommand.java, (2) AddSinglePointToMul-
tiPointIntent.java, and, (3) AddMultiPointToSinglePointIntent-
Command.java that are used to create point-to-point, single-
to-multi-point, and multi-to-single-point Intents respectively.
We also measured the time for the add method of each Intent
we were benchmarking. For the RESTful interface tests, we
measured the time spent to push the benchmarked Intents
through python scripts.

IV. EXPERIMENTAL EVALUATION

In this section, the results of our evaluation of the basic
Intent types over Intent interfaces of ONOS are shown. The
testbed used in the evaluation consists of two computer nodes
with configurations as in Table I. We are using version 1.9.0
of ONOS. Our test network topology is built using Open
vSwitchs (OVS).

The evaluation of the CLI was carried out directly on the
server running our ONOS instance, while we use another
computer to submit the RESTful requests through the network
to ONOS. The configuration of this auxiliary computer is
described in Table II.

TABLE I
SERVER CONFIGURATION.

Component Description
CPU Intel(R) Xeon CPU E5-2640 v3 2.60GHz

RAM (GB) 8GB
Network 1Gbps

OS (Version) Ubuntu 16.04 LTS

For each type of benchmarked Intent type– point-to-point,
multi-to-single-point, and single-to-multi-point, we ran 50
iterations to find out the mean installation times, standard
deviations, the 95% confidence interval for each set of the
Intents. We vary the number of Intents (workload) installed in
each experiment from 1, 000 to 20, 000. This procedure was
adopted to mitigate possible noise that could be introduced



by the processor cache, system daemons, Java interpreter, or
the network jitter. For the results plotted henceforth, the Y-
axis shows the total time to install the Intents in milliseconds,
while on the X-axis, we show the number of installed intents
in the experiment. The figures show also the mean and the
95% confidence intervals.

TABLE II
AUXILIARY COMPUTER NODE: LOAD GENERATOR FOR THE RESTFUL

INTERFACE.

Component Description
CPU Intel(R) core(TM) i5-6300U @ 2.40GHz

RAM (GB) 8 GB
Network 1Gbps

OS (Version) Ubuntu Desktop 16.04 LTS

A. Multi-to-Single-Point Intent

Figure 2 summarizes our results for applying Multi-to-
Single-Point Intents through CLI and RESTful interfaces of
ONOS varying workload from 1, 000 to 20, 000 Intents. The
95% confidence interval and the mean are calculated using 50
executions of the same Intent. As the 95% confidence intervals
were very small with respect to the mean values for both the
CLI and the RESTful interface, we magnified the confidence
intervals 50 times in the figure (instead of showing the original
values). As can be seen from the figure, the installation time
through ONOS RESTful interface grows from 637.990 ms
to 12, 330.511 ms, when we increase the number of Intents
from 1, 000 to 20, 000 and there is a 20 fold increase in
the mean installation time. Moreover, as we increased the
number of installed Intents, our sample distribution became
more stable reducing the coefficient of variation from 0.0127
to 0.008, which suggests that we did not overload ONOS in
this experimental scenario.

Fig. 2. Multi-to-Single-Point intent - benchmarking results.

For the CLI, Figure 2 shows also a linear increase in the
installation time as we increase the number of Intents, albeit

with a lower computational cost. The mean installation time
for 1, 000 intents was 35.771 ms with a standard deviation
and confidence of 13.686 ms and 4.770 ms, respectively. For
20, 000 Intents, the mean installation time is 1, 054.343 ms
with a standard deviation of 210.661 ms. As the figure also
shows, for 10, 000 Intents, the mean installation time was
6, 155.655 ms and 658.857 ms for the RESTful interface and
CLI, while 95% confidence interval for them were 16.996 ms
and 51.652 ms, respectively.

TABLE III
MEAN INSTALLATION TIME AND ITS 95% C.I. FOR MULTI-TO-SINGLE

INTENT.

Num. Intents Mean RESTful (ms) 95% C.I RESTful Mean CLI (ms) 95% C.I CLI
1, 000 637.99 2.816 35.771 4.77
2, 000 1, 251.51 4.718 142.857 9.793
3, 000 1, 859.501 7.295 238.8 19.257
4, 000 2, 506.155 7.769 285.971 17.619
5, 000 3, 122.163 7.831 372.629 21.819
10, 000 6, 155.655 16.996 658.857 51.652
15, 000 9, 215.017 28.424 794.8 50.064
20, 000 12, 330.511 34.455 1, 054.343 73.421

The difference between computational costs of RESTful
and CLI interfaces seems to be stemming from the amount
of I/O code that the Intent requests have to pass through. The
differences in installation times shown in Table III also hint
to that direction.

B. Single-to-Multi-Point Intent

Fig. 3. Single-to-Multi-Point Intent - benchmarking results.

The evaluation of the Single-to-Multi-Point Intent is sum-
marized in Figure 3 and in Table IV. As for the previous
experiment, the mean values for both the RESTful and CLI
interfaces are shown. There appears similar I/O overhead
penalty for the RESTful interface as in earlier experimen-
tation.

Also in Figure 3, we present the details of two workload
points of our evaluation. For the RESTFul interface with



TABLE IV
MEAN INSTALLATION TIME AND ITS 95% C.I. FOR

SINGLE-TO-MULTI-POINT INTENT.

Num. Intents Mean RESTful (ms) 95% C.I RESTful Mean CLI (ms) 95% C.I CLI
1, 000 700.589 4.695 109.800 13.900
2, 000 1, 403.436 5.817 192.514 17.544
3, 000 2, 196.356 4.081 270.600 31.681
4, 000 2, 805.094 5.822 401.657 40.376
5, 000 3, 493.791 7.800 509.057 49.977
10, 000 7, 018.610 21.372 678.171 37.218
15, 000 10, 619.652 24.334 957.886 86.654
20, 000 14, 143.237 35.722 1, 055.714 126.397

10, 000 Intents, the average execution time is 7, 018.609 ms
with a confidence interval of 4.695 ms, whereas for the
CLI the same workload took 678.171 ms with a confidence
interval of 37.218 ms. For the 20, 000 Intents workload, the
mean installation times through the RESTFul interface and
the CLI were 1, 4143.2375 ms and 1, 055.7145 ms, respec-
tively. The 95% Confidence Intervals for this experiment were
4.695 ms and 35.7225 ms for the RESTful interface and CLI,
respectively.

C. Point-to-Point Intent

The two previous performance tests showed that the REST-
ful interface imposes a significant overhead on the installation
of the intents. To evaluate further this behavior, we created a
simulated complex intent that contains multiple Intents with
just one RESTful call using the ONOS’ Point-to-Point Intent,
which implements a simple forwarding from one OVS port
to another. Figure 4 presents the summary of our results with
50 times magnification of the 20, 000 workload point for the
RESTful and CLI interfaces. As can be seen from Figure 4,
the behavior of the simulated complex Intent has a similar
computational cost as the CLI Point-to-Point, albeit with a
higher overhead caused by the RESTful access code and the
new API control code.

Fig. 4. ”Point-to-Point” Intent - benchmarking results.

The mean installation time for 1, 000 Intents was
669.276 ms for the RESTful interface and 57.2 ms for
the CLI, while the 95% confidence interval for the same
experiments were 24.031 ms and 9.468 ms, respectively. For
2, 000 and 3, 000 Intents, the mean installation time roughly
increased at the same rate as the size of the workload for
the RESTful interface as it increased from 1, 226.505 ms to
1, 823.248 ms. The 95% confidence intervals were 11.712 ms
for 2, 000 and 20.107 ms for 3, 000. The results for the CLI
for the same workload follow the same trend, albeit with
slower linear factor going from 162.228 ms to 211.714 ms.
This behavior is attributable to how our benchmark code
interacts with ONOS. The evaluation of the CLI is based on
an existing ONOS command that requests the ONOS core to
execute an Intent installation multiple times. Therefore, our
measurements take into account only the time spent by ONOS
to install the Intent itself and not the time spent for the user
I/O. However, for the RESTful interface, the installation of a
workload was carried out through the ONOS default interface
one by one per request.

TABLE V
MEAN INSTALLATION TIME AND ITS 95% C.I. FOR POINT-TO-POINT

INTENT.

Num. Intents Mean RESTful (ms) 95% C.I RESTful Mean CLI (ms) 95% C.I CLI
1, 000 669.276 24.032 57.2 9.468
2, 000 1, 226.505 11.712 162.229 18.225
3, 000 1, 823.249 20.108 211.714 20.682
4, 000 2, 436.431 17.329 337.343 37.725
5, 000 3, 167.603 40.439 394.4 42.135
10, 000 6, 192.263 77.685 663.829 64.341
15, 000 9, 246.514 104.522 913.886 45.687
20, 000 12, 622.108 75.340 1198.086 66.572

Table V shows the precise mean values plotted in Figure 4.
The results offer further support to our interpretation of the
different overhead increase rates of the RESTful and CLI
interfaces. Finally, in Figure 4, we also present the results
for the 20, 000 Intents workload for both interfaces. The
mean installation time was 12, 622.108 ms with a confidence
interval of 75.340 ms for the RESTful interface, while for the
CLI the mean installation time and confidence interval were
1, 198.086 ms and 66.572 ms, respectively.

D. Result Discussion

The performance evaluation demonstrates that the ONOS
Command Line Interface imposes a smaller overhead to the
Intent northbound interface in comparison to the RESTful
interface and this behavior is consistent across all bench-
marked Intent types. Our preliminary analysis indicates that
the difference in performance is caused by both the extra
computational cost of the RESTful interface and the cost
associated with the remote connection used in our testbed
environment for the RESful test application.

In addition to the above-mentioned performance results, we
have also computed the maximum number of Intents a single
ONOS instance was able to execute in our test topology. We



ran 10 iterations of micro-benchmarks that submitted Intents
in an infinite loop. For each iteration, we waited until ONOS
was unable to install new Intents, and then computed for each
execution the time required to install of all the intents of the
same type. The results are summarized in Table VI.

TABLE VI
LAPTOP SPECIFICATIONS

Intent type Maximum number Required time
Point-to-Point 486, 363.9 311, 046.2

Single-to-Multi-Point 364, 249.7 299, 648.5
Multi-to-Single-Point 335, 267.6 334, 450.5

Finally, our experimental results show that ONOS can de-
liver higher performance if existing Intents types are extended
to create more complex intents. This conclusion holds true for
an ONOS-aware application that interacts with the SDN con-
troller through the RESTful API. Our results also show that
independently of the Intent type and the northbound interface
used, at least for these basic Intents, the computational cost
increases linearly with the number of Intents.

V. CONCLUSION AND FUTURE WORK

Our evaluation showed that while the RESTful interface
is more flexible since it allows applications and services to
directly request ONOS to update the network configuration,
it has a greater overhead in comparison to the ONOS CLI,
and consequently with any application directly linked with
the ONOS core. As we have seen in our experiments, the
RESTful interface is consistently more computationally costly
than the CLI. When averaging this difference across all our
experiments, we can conclude that the RESTful Intent code
path is 9, 488x slower than using the CLI. More specifically
the average overall cost of using the RESTful interface for
the Point-to-Point was 9, 138 times higher, 8, 808 times higher
for the Single-to-Multi-Point, and 10, 520 times higher for the
Multi-to-Single-Point Intent type than if using CLI.

For future work, we plan to create new complex Intents by
using the basic Intents as building blocks and to evaluate their
scalability and performance. These compound Intents will
be formed by an external application requesting the network
reconfiguration.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
Project CSN under Grant No. 311654. The work was also
supported in part by a direct funding from Nokia Bell Labs,
Espoo, Finland.

REFERENCES

[1] “The Mobile Economy 2017,” GSMA Intelligence, Tech. Rep., 2017,
accessed: 2017-04-13.

[2] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[3] S. ONF, “Architecture Issue 1.1,” Tech. Rep., 2016, accessed: 2017-04-
13.

[4] D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis, “Ensuring End-
to-End QoS Based on Multi-Paths Routing Using SDN Technology,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
Dec 2017, pp. 1–6.

[5] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“MIRA!: An SDN-based Framework for Cross-Domain Fast Migration
of Ultra-Low Latency 5G Services,” in 2018 IEEE Global Communi-
cations Conference, IEEE GLOBECOM, Abu Dhabi, UAE, Dec 2018.

[6] T. Taleb, B. Mada, M. I. Corici, A. Nakao, and H. Flinck, “PERMIT:
Network Slicing for Personalized 5G Mobile Telecommunications,”
IEEE Communications Magazine, vol. 55, no. 5, pp. 88–93, May 2017.

[7] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing; Softwarization: A Survey on Principles, Enabling Technologies;
Solutions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp.
1–1, 2018.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[9] D. Erickson, “The beacon openflow controller,” in Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’13. New York,
NY, USA: ACM, 2013, pp. 13–18. [Online]. Available: http:
//doi.acm.org/10.1145/2491185.2491189

[10] S. Kaur, J. Singh, and N. S. Ghumman, “Network programmability
using pox controller,” in International Conference on Communication,
Computing & Systems, ser. ICCCS. IEEE, 2014.

[11] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE In-
ternational Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, June 2014, pp. 1–6.

[12] A. Ksentini, M. Bagaa, and T. Taleb, “On Using SDN in 5G: The
Controller Placement Problem,” in 2016 IEEE Global Communications
Conference (GLOBECOM), Dec 2016, pp. 1–6.

[13] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–
42, Feb 2012.

[14] A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “Toward Elastic
Distributed SDN/NFV Controller for 5G Mobile Cloud Management
Systems,” IEEE Access, vol. 3, pp. 2055–2064, 2015.

[15] “Opendaylight website,” https://www.opendaylight.org/.
[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn os,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620744

[17] F. Yamei, L. Qing, and H. Qi, “Research and comparative analysis of
performance test on sdn controller,” in 2016 First IEEE International
Conference on Computer Communication and the Internet (ICCCI), Oct
2016, pp. 207–210.

[18] W. Kim, J. Li, J. W. K. Hong, and Y. J. Suh, “Ofmon: Openflow mon-
itoring system in onos controllers,” in 2016 IEEE NetSoft Conference
and Workshops (NetSoft), June 2016, pp. 397–402.

[19] “Onos website,” https://wiki.onosproject.org/pages/viewpage.action?
pageId=3441823, accessed: 2017-03-30.

[20] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers:
A comparative study,” in 2016 18th Mediterranean Electrotechnical
Conference (MELECON), April 2016, pp. 1–6.

[21] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,
“Scalability of {ONOS} reactive forwarding applications in {ISP}
networks,” Computer Communications, vol. 102, pp. 130 – 138, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366416303413

[22] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 493–512, First 2014.

[23] ON.LAB, “ntroducing onos - a sdn network operating system for service
providers,” Tech. Rep., 2014. [Online]. Available: http://onosproject.
org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf


