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KIRCHHOFF PLATE ELEMENTS∗
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Abstract. We derive a residual a posteriori estimator for the Kirchhoff plate bending problem.
We consider the problem with a combination of clamped, simply supported, and free boundary
conditions subject to both distributed and concentrated (point and line) loads. Extensive numerical
computations are presented to verify the functionality of the estimators.
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1. Introduction. The purpose of this paper is to perform an a posteriori error
analysis of conforming finite element methods for the classical Kirchhoff plate bending
model. So far this has not been done in full generality as it comes to the boundary
conditions. Most papers deal only with clamped or simply supported boundaries; see
[28] for conforming C1 elements, [9, 16, 28] for the mixed Ciarlet–Raviart method
[11], and [8, 7, 18, 14, 20, 29, 21] for discontinuous Galerkin (dG) methods. The
few papers that do address more general boundary conditions, in particular free, are
[5, 19], in which the nonconforming Morley element is analyzed, [3, 4], where a new
mixed method is introduced and analyzed, and [18], where a continuous/discontinuous
Galerkin method is considered. One should also note that the Ciarlet–Raviart method
cannot even be defined for general boundary conditions. Free boundary conditions
could be treated using dG methods following an analysis similar to the one presented
here.

In this study, we will derive a posteriori estimates using conforming methods and
allowing for a combination of clamped, simply supported, and free boundaries. In
addition, we will investigate the effect of concentrated point and line loads, which are
not only admissible in our H2-conforming setting but of great engineering interest,
on our a posteriori bounds in numerical experiments.

The outline of the paper is the following. In section 2, we recall the Kirchhoff–Love
plate model by presenting its variational formulation and the corresponding boundary
value problem. We perform this in detail for the following reasons. First, as noted
above, general boundary conditions are rarely considered in the numerical analysis
literature. Second, the free boundary conditions consist of a vanishing normal moment
and a vanishing Kirchhoff shear force. These arise from the variational formulation
via successive integrations by parts. It turns out that the same steps are needed
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A POSTERIORI ESTIMATES FOR PLATE ELEMENTS A1387

in the a posteriori analysis in order to obtain a sharp estimate, i.e., both reliable
and efficient. In the following two sections, we present the classical conforming finite
element methods and derive new a posteriori error estimates. In the last section, we
present the results of our numerical experiments computed with the triangular Argyris
element. We consider the point, line, and square load cases with simply supported
boundary conditions in a square domain as well as solve the problem in an L-shaped
domain with uniform loading using different combinations of boundary conditions.

2. The Kirchhoff plate model. The dual kinematic and force variables in
the model are the curvature and the moment tensors. Given the deflection u of the
midsurface of the plate, the curvature is defined through

(2.1) K(u) = −ε(∇u),

with the infinitesimal strain operator defined by

(2.2) ε(v) =
1

2

(
∇v +∇vT

)
,

where (∇v)ij = ∂vi
∂xj

. The dual force variable, the moment tensor M , is related to K

through the constitutive relation

(2.3) M(u) =
d3

12
CK(u),

where d denotes the plate thickness and where we have assumed an isotropic linearly
elastic material, i.e.,

(2.4) CA =
E

1 + ν

(
A +

ν

1− ν
(trA)I

)
∀A ∈ R2×2.

Here E and ν are the Young’s modulus and the Poisson ratio, respectively. The shear
force is denoted by Q = Q(u). The moment equilibrium equation reads as

(2.5) div M(u) = Q(u),

where div is the vector-valued divergence operator applied to tensors. The transverse
shear equilibrium equation is

(2.6) − divQ(u) = l,

with l denoting the transverse loading. Using the constitutive relationship (2.4), a
straightforward elimination yields the well-known Kirchhoff–Love plate equation,

(2.7) A(u) := D∆2u = l,

where the so-called bending stiffness D is defined as

(2.8) D =
Ed3

12(1− ν2)
.

Let Ω ⊂ R2 be a polygonal domain that describes the midsurface of the plate.
The plate is considered to be clamped on Γc ⊂ ∂Ω, simply supported on Γs ⊂ ∂Ω,
and free on Γf ⊂ ∂Ω, as depicted in Figure 1. The loading is assumed to consist of a
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A1388 T. GUSTAFSSON, R. STENBERG, AND J. VIDEMAN
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Fig. 1. Definition sketch of a Kirchhoff plate with the different loadings and boundary conditions.

distributed load f ∈ L2(Ω), a load g ∈ L2(S) along the line S ⊂ Ω, and a point load
F at an interior point x0 ∈ Ω.

Next, we will turn to the boundary conditions, which are best understood from
the variational formulation. (Historically, this was also how they were first discovered
by Kirchhoff; cf. [26].) The elastic energy of the plate as a function of the deflection
v is 1

2a(v, v), with the bilinear form a defined by

(2.9) a(w, v) =

∫
Ω

M(w) : K(v) dx =

∫
Ω

d3

12
C ε(∇w) : ε(∇v) dx,

and the potential energy due to the loading is

(2.10) l(v) =

∫
Ω

fv dx+

∫
S

gv ds+ Fv(x0).

Defining the space of kinematically admissible deflections

(2.11) V = { v ∈ H2(Ω) : v|Γc∪Γs = 0, ∇v · n|Γc = 0},

minimization of the total energy

(2.12) u = argmin
v∈V

{
1

2
a(v, v)− l(v)

}
leads to the following problem formulation.

Problem 1 (variational formulation). Find u ∈ V such that

(2.13) a(u, v) = l(v) ∀v ∈ V.

To derive the corresponding boundary value problem, we recall the following
integration by parts formula, valid in any domain R ⊂ Ω:

(2.14)

∫
R

M(w) : K(v) dx

=

∫
R

div M(w) · ∇v dx−
∫
∂R

M(w)n · ∇v ds

=

∫
R

A(w) v dx+

∫
∂R

Q(w) · n v ds−
∫
∂R

M(w)n · ∇v ds.
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A POSTERIORI ESTIMATES FOR PLATE ELEMENTS A1389

At the boundary ∂R, the correct physical quantities are the components in the normal
n and tangential s directions. Therefore, we write

(2.15) ∇v =
∂v

∂n
n +

∂v

∂s
s

and define the normal shear force and the normal and twisting moments as

(2.16)
Qn(w) = Q(w) · n, Mnn(w) = n ·M(w)n,

Mns(w) = Msn(w) = s ·M(w)n.

With this notation, we can write

(2.17)

∫
∂R

Q(w) · n v ds−
∫
∂R

M(w)n · ∇v ds

=

∫
∂R

Qn(w)v ds−
∫
∂R

(
Mnn(w)

∂v

∂n
+Mns(w)

∂v

∂s

)
ds

and thus rewrite the integration by parts formula (2.14) as

(2.18)

∫
R

M(w) : K(v) dx

=

∫
R

A(w) v dx+

∫
∂R

Qn(w)v ds

−
∫
∂R

(
Mnn(w)

∂v

∂n
+Mns(w)

∂v

∂s

)
ds.

The key observation for deriving the correct boundary conditions is that, at any
boundary point, a value of v specifies also ∂v

∂s . Defining the Kirchhoff shear force
(cf. [12, 23, 13])

(2.19) Vn(w) = Qn(w) +
∂Mns(w)

∂s

an integration by parts on a smooth part S of ∂R yields

(2.20)

∫
S
Qn(w)v ds−

∫
S
Mns(w)

∂v

∂s
ds =

∫
S
Vn(w)v ds−

∣∣∣b
a
Mns(w)v,

where a and b are the end points of S.
We are now in position to state the boundary value problem for the Kirchhoff

plate model. Assuming a smooth solution u in (2.13), we have

(2.21)

a(u, v) =

∫
Ω

A(u)v dx+

∫
∂Ω

Qn(u)v ds

−
∫
∂Ω

(
Mnn(u)

∂v

∂n
+Mns(u)

∂v

∂s

)
ds.

With the combination of clamped, simply supported, and free boundary conditions
at ∂Ω = Γc ∪ Γs ∪ Γf , we have for any v ∈ V ,

(2.22)

∫
∂Ω

Qn(u)v ds−
∫
∂Ω

(
Mnn(u)

∂v

∂n
+Mns(u)

∂v

∂s

)
ds

=

∫
Γf

Qn(u)v ds−
∫

Γf

Mns(u)
∂v

∂s
ds−

∫
Γs∪Γf

Mnn(u)
∂v

∂n
ds.
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A1390 T. GUSTAFSSON, R. STENBERG, AND J. VIDEMAN

In the final step, we integrate by parts at the free part of the boundary. To this end,
let Γf = ∪m+1

i=1 Γif , with Γif smooth. Integrating by parts over Γif yields

(2.23)

∫
Γi
f

Qn(u)v ds−
∫

Γi
f

Mns(u)
∂v

∂s
ds =

∫
Γi
f

Vn(u)v ds−
∣∣∣ci
ci−1

Mns(u)v,

where c0 and cm+1 are the end points of Γf and ci, i = 1, . . . ,m, its successive interior
corners. Combining (2.21)–(2.23), and noting that v(c0) = v(cm+1) = 0, gives finally

(2.24)

a(u, v) =

∫
Ω

A(u)v dx−
∫

Γs∪Γf

Mnn(u)
∂v

∂n
ds

+

m+1∑
i=1

∫
Γi
f

Vn(u)v ds−
m∑
i=1

{
(Mns(u)|ci+ −Mns(u)|ci−

}
v(ci),

where Mns(u)|ci± = limε→0+Mns(u)|ci+ε(ci±1−ci)
Choosing v ∈ V in such a way that three of the four terms in (2.24) vanish and

the test function in the fourth term remains arbitrary and repeating this for each
term, we arrive at the following boundary value problem:

• In the domain we have the distributional differential equation

(2.25) A(u) = l in Ω,

where l is the distribution defined by (2.10).
• On the clamped part we have the conditions

(2.26) u = 0 and
∂u

∂n
= 0 on Γc.

• On the simply supported part it holds that

(2.27) u = 0 and Mnn(u) = 0 on Γs.

• On the free part it holds that

(2.28) Mnn(u) = 0 and Vn(u) = 0 on Γif , i = 1, . . . ,m.

• At the interior corners on the free part, we have the matching condition on
the twisting moments

(2.29) Mns(u)|ci+ = Mns(u)|ci− for all corners ci, i = 1, . . . ,m.

3. The finite element method and the a posteriori error analysis. The
finite element method is defined on a mesh Ch consisting of shape regular triangles.
We assume that the point load is applied on a node of the mesh. Further, we assume
that the triangulation is such that the applied line load is on element edges. We denote
the edges in the mesh by Eh and divide them into the following parts: the edges in
the interior E ih, the edges on the curve of the line load ESh ⊂ E ih, and the edges on the

free and simply supported boundary, Efh and Esh, respectively. The conforming finite
element space is denoted by Vh. Different choices for Vh are presented in section 4.
Note that we often write a . b (or a & b ) when a ≤ Cb (or a ≥ Cb) for some positive
constant C independent of the finite element mesh.
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A POSTERIORI ESTIMATES FOR PLATE ELEMENTS A1391

Problem 2 (the finite element method). Find uh ∈ Vh such that

(3.1) a(uh, vh) = l(vh) ∀vh ∈ Vh.

Let K and K ′ be two adjoining triangles with normals n and n′, respectively,
and with the common edge E = K ∩K ′. On E we define the following jumps:

(3.2) JMnn(v)K|E = Mnn(v)−Mn′n′(v)

and

(3.3) JVn(v)K|E = Vn(v) + Vn′(v).

In the analysis, we will need the Girault–Scott [15] interpolation operator Πh :
V → Vh for which the following estimate holds:

(3.4)

∑
K∈Ch

h−4
K ‖w −Πhw‖20,K +

∑
E∈Eh

h−1
E ‖∇(w −Πhw)‖20,E

+
∑
E∈Eh

h−3
E ‖w −Πhw‖20,E . ‖w‖22 and ‖Πhw‖2 . ‖w‖2.

Note that the Girault–Scott interpolant uses point values at the vertices of the mesh.
We use this property in the proof of Theorem 1 to derive a proper upper bound for
the error in terms of the edge residuals.

Next, we formulate an a posteriori estimate for Problem 2. The local error indi-
cators are the following:

• the residual on each element,

h2
K‖A(uh)− f‖0,K , K ∈ Ch;

• the residual of the normal moment jump along interior edges,

h
1/2
E ‖JMnn(uh)K

∥∥
0,E

, E ∈ E ih;

• the residual of the jump in the effective shear force along interior edges,

h
3/2
E ‖JVn(uh)K− g‖0,E , E ∈ ESh ,

h
3/2
E ‖JVn(uh)K‖0,E , E ∈ E ih \ ESh ;

• the normal moment on edges at the free and simply supported boundaries,

h
1/2
E ‖Mnn(uh)

∥∥
0,E

, E ∈ Efh ∪ E
s
h;

• the effective shear force along edges at the free boundary,

h
3/2
E ‖Vn(uh)‖0,E , E ∈ Efh .

The global error estimator is then defined through

(3.5)

η2 =
∑
K∈Ch

h4
K‖A(uh)− f‖20,K +

∑
E∈ESh

h3
E‖JVn(uh)K− g‖20,E

+
∑

E∈Eih\E
S
h

h3
E‖JVn(uh)K‖20,E +

∑
E∈Eih

hE‖JMnn(uh)K
∥∥2

0,E

+
∑
E∈Efh

h3
E‖Vn(uh)‖20,E +

∑
E∈Efh∪E

s
h

hE‖Mnn(uh)
∥∥2

0,E
.
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Theorem 1 (a posteriori estimate). The following estimate holds:

(3.6) ‖u− uh‖2 . η.

Proof. Let w = u − uh and w̃ := Πhw ∈ Vh be its interpolant. In view of the
well-known coercivity of the bilinear form a and Galerkin orthogonality, we have

(3.7)
‖u− uh‖22 . a(u− uh, w) = a(u− uh, w − w̃)

= l(w − w̃)− a(uh, w − w̃).

Since x0 is a mesh node and the interpolant uses nodal values, we have

(3.8) F
(
w(x0)− w̃(x0)

)
= 0,

and hence

(3.9) l(w − w̃) = (f, w − w̃) + 〈g, w − w̃〉S .

From integration by parts over the element edges, using the fact that the interpolant
uses values at the nodes, it then follows that

(3.10)

‖u− uh‖22
. (f, w − w̃) + 〈g, w − w̃〉S − a(uh, w − w̃)

= (f, w − w̃) + 〈g, w − w̃〉S
−
∑
K∈Ch

{
(A(uh), w − w̃)K + 〈Qn(uh), w − w̃〉∂K

− 〈Mns(uh), ∂∂s (w − w̃)〉∂K − 〈Mnn(uh), ∂∂n (w − w̃)〉∂K
}

= (f, w − w̃) + 〈g, w − w̃〉S
−
∑
K∈Ch

{
(A(uh), w − w̃)K + 〈Vn(uh), w − w̃〉∂K

− 〈Mnn(uh), ∂∂n (w − w̃)〉∂K
}
.

Regrouping and recalling definitions (3.2) and (3.3) yields

(3.11)

‖u− uh‖22
.
∑
K∈Ch

(f −A(uh), w − w̃)K

−
∑
E∈ESh

〈JVn(uh)K− g, w − w̃〉E −
∑

E∈Eih\E
S
h

〈JVn(uh)K, w − w̃〉E

−
∑
E∈Eih

〈JMnn(uh)K, ∂
∂nE

(w − w̃)〉E

−
∑
E∈Efh

〈Vn(uh), w − w̃〉E −
∑

E∈Efh∪E
s
h

〈Mnn(uh), ∂
∂nE

(w − w̃)〉E .

The asserted a posteriori estimate now follows by applying the Cauchy–Schwarz in-
equality and the interpolation estimate (3.4).
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Instead of the jump terms in the estimator η, we could consider the normal and
twisting moment jumps

h
1/2
E ‖JMnn(uh)K

∥∥
0,E

, h
1/2
E ‖JMns(uh)K

∥∥
0,E

and the normal shear force jumps

h
3/2
E ‖JQn(uh)K‖0,E , h

3/2
E ‖JQn(uh)K− g‖0,E .

In this case we cannot, however, prove the efficiency, i.e., the lower bounds.
Next, we will consider the question of efficiency. Let fh ∈ Vh be the interpolant

of f and define

(3.12) oscK(f) = h2
K‖f − fh‖0,K .

Similarly, for a polynomial approximation gh of g on E ⊂ S we define

(3.13) oscE(g) = h
3/2
E ‖g − gh‖0,E .

In the following theorem, ωE stands for the union of elements sharing an edge E. In
its proof, we will adopt some of the techniques used in [17].

Theorem 2 (lower bounds). For all vh ∈ Vh it holds that

h2
K‖A(vh)− f‖0,K . ‖u− vh‖2,K + oscK(f), K ∈ Ch,(3.14)

h
1/2
E ‖JMnn(vh)K‖0,E . ‖u− vh‖2,ωE

+
∑
K⊂ωE

oscK(f), E ∈ E ih,(3.15)

h
3/2
E ‖JVn(vh)K‖0,E . ‖u− vh‖2,ωE

+
∑
K⊂ωE

oscK(f), E ∈ E ih \ ESh ,(3.16)

h
3/2
E ‖JVn(vh)K− g‖0,E . ‖u− vh‖2,ωE

+
∑
K⊂ωE

oscK(f) + oscE(g), E ∈ ESh ,(3.17)

h
1/2
E ‖Mnn(vh)‖0,E . ‖u− vh‖2,ωE

+
∑
K⊂ωE

oscK(f), E ∈ Efh ∪ E
s
h,(3.18)

h
3/2
E ‖Vn(vh)‖0,E . ‖u− vh‖2,ωE

+
∑
K⊂ωE

oscK(f), E ∈ Efh .(3.19)

Proof. Denote by bK ∈ P6(K) the sixth-order bubble that, together with its first-
order derivatives, vanishes on ∂K, i.e., let bK = (λ1,Kλ2,Kλ3,K)2, where λj,K are the
barycentric coordinates for K. Then we define

(3.20) γK = bKh
4
K(A(vh)− fh) in K and γK = 0 in Ω \K

for vh ∈ Vh. The problem statement gives

(3.21) aK(u, γK) = (f, γK)K ,

where aK(u, γK) =
∫
K
M(u) : K(γK) dx. We have

(3.22)

h4
K‖A(vh)− fh‖20,K . h4

K‖
√
bK(A(vh)− fh)‖20,K

= (A(vh)− fh, γK)K

= (A(vh), γK)K − (f, γK)K + (f − fh, γK)K

= aK(vh − u, γK) + (f − fh, γK)K .
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The local bound (3.14) now follows from applying the continuity of a, the Cauchy–
Schwarz inequality, and inverse estimates.

Next, consider inequality (3.15). Suppose E = K1 ∩K2 for the triangles K1 and
K2; thus ωE = K1 ∪K2. Let λE ∈ P1(ωE) be the linear polynomial satisfying

(3.23) λE |E = 0 and
∂λE
∂nE

= 1,

and let p1 be the polynomial that satisfies p1|E = JMnn(vh)K|E and ∂p1
∂nE
|E = 0.

Moreover, let p2 ∈ P8(ωE) be the eighth-order bubble that takes value one at the
midpoint of the edge E and, together with its first-order derivatives, vanishes on
∂ωE . Define w = λEp1p2. Since

(3.24)
∂w

∂nE

∣∣∣
E

=
∂λE
∂nE

JMnn(vh)Kp2 = JMnn(vh)Kp2,

scaling yields the equivalence

(3.25)
‖JMnn(vh)K‖20,E ≈

∥∥∥ ∂w
∂nE

∥∥∥2

0,E
≈ ‖√p2 JMnn(vh)K‖20,E

=
〈
JMnn(vh)K, ∂w∂nE

〉
E
.

Furthermore, since

(3.26)
∂w

∂s

∣∣∣
E

= 0, w|E∪∂ωE
= 0 and ∇w|∂ωE

= 0,

the integration by parts formula (2.18) yields

(3.27)
〈
JMnn(vh)K, ∂w∂nE

〉
E

= −
∫
ωE

M(vh) : K(w) dx+ (A(vh), w)ωE
.

Extending w by zero to Ω \ ωE , we obtain from the problem statement (2.13)

(3.28)

∫
ωE

M(u) : K(w) dx− (f, w)ωE
= 0.

Hence, using the Cauchy–Schwarz inequality, we get from (3.27)

(3.29)

〈
JMnn(vh)K, ∂w∂nE

〉
E

=

∫
ωE

M(u− vh) : K(w) dx+ (A(vh)− f, w)ωE

. ‖u− vh‖2,ωE
|w|2,ωE

+ ‖A(vh)− f‖0,ωE
‖w‖0,ωE

.

By scaling, one easily shows that

(3.30) |w|2,ωE
. h

−1/2
E

∥∥∥ ∂w
∂nE

∥∥∥
0,E

and ‖w‖0,ωE
. h

3/2
E

∥∥∥ ∂w
∂nE

∥∥∥
0,E

.

The estimate (3.15) then follows from (3.24), (3.25), (3.29), (3.30), and the already
proved bound (3.14).
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E

K2

K ′2

K1

K ′1

Fig. 2. A depiction of the sets ωE (the entire polygon) and ω′E (the gray area). The triangles
K′1 and K′2 are symmetric with respect to the edge E.

Since (3.16) follows from (3.17) with g = 0, we prove the latter. Due to the
regularity condition imposed on the mesh there exists for each edge E a symmetric
pair of smaller triangles (K ′1,K

′
2) that satisfy ω′E = K ′1 ∪K ′2 ⊂ ωE ; see Figure 2. Let

w′ = p′2(JVn(vh)K − gh), where p′2 is the eighth-order bubble that takes value one at
the midpoint of E and, together with its first-order derivatives, vanishes on ∂ω′E . By
the norm equivalence, we first have

(3.31) ‖JVn(vh)K− gh‖20,E ≈ ‖w′‖20,E . 〈JVn(vh)K− gh, w′〉E .

Next, we write

(3.32) 〈JVn(vh)K− gh, w′〉E = 〈JVn(vh)K− g, w′〉E + 〈g − gh, w′〉E .

Due to symmetry, ∂w′

∂n |E = 0, and hence (2.18) and (2.20) give

(3.33)

〈JVn(vh)K− g, w′〉E = 〈JVn(vh)K, w′〉E − 〈g, w′〉E

=

∫
ω′E

M(vh) : K(w′) dx− (A(vh), w′)ω′E − 〈g, w
′〉E .

Extending w′ by zero to Ω \ ω′E , the variational form (2.13) implies that

(3.34)

∫
ω′E

M(u) : K(w′) dx− (f, w′)ω′E − 〈g, w
′〉E = 0 .

Hence,

(3.35) 〈JVn(vh)K− g, w′〉E =

∫
ω′E

M(vh − u) : K(w′) dx+ (f −A(vh), w′)ω′E

and the Cauchy–Schwarz inequality, scaling estimates, and (3.14) give

(3.36)

〈JVn(vh)K− g, w′〉E
. h

−3/2
E

(
‖u− vh‖2,ω′E + h2

K‖A(vh)− f‖0,ω′E
)
‖w′‖0,E

. h
−3/2
E

(
‖u− vh‖2,ωE

+
∑
K∈ωE

oscK(f)

)
‖w′‖0,E .

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

30
.2

33
.2

16
.2

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1396 T. GUSTAFSSON, R. STENBERG, AND J. VIDEMAN

The asserted estimate then follows from (3.31), (3.32), and (3.36).
The estimates (3.18), (3.19) are proved similarly to the bounds (3.15) and (3.16),

respectively.

The above estimates provide the following global bound.

Theorem 3. It holds that

(3.37) η . ‖u− uh‖2 + osc(f) + osc(g),

where

(3.38) osc(f) =

√∑
K∈Ch

oscK(f)2 and osc(g) =

√∑
E∈ESh

oscE(g)2.

4. The choice of Vh. Let us briefly discuss some possible choices of conforming
finite elements for the plate bending problem. Each choice consists of a polynomial
space P and of a set ofN degrees of freedom defined through a functional L : C∞ → R.
We denote by xk, k ∈ {1, 2, 3}, the vertices of the triangle and by ek, k ∈ {1, 2, 3},
the midpoints of the edges, i.e.,

(4.1) e1 =
1

2
(x1 + x2), e2 =

1

2
(x2 + x3), e3 =

1

2
(x1 + x3).

The simplest H2-conforming triangular finite element that is locally H4(K) in
each K is the Bell triangle.

Definition 1 (Bell triangle, N = 18).

P = {p ∈ P5(K) : ∂p∂n ∈ P3(E) ∀E ⊂ K},(4.2)

L(w) =


w(xk) for 1 ≤ k ≤ 3,

∂w
∂xi

(xk) for 1 ≤ k ≤ 3 and 1 ≤ i ≤ 2,

∂2w
∂xi∂xj

(xk) for 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ 2.

(4.3)

Even though the polynomial space associated with the Bell triangle is not the
whole P5(K) it is still larger than P4(K). This can in some cases complicate the
implementation. Moreover, the asymptotic interpolation estimates for P5(K) are not
obtained. This can be compensated by adding three degrees of freedom at the mid-
points of the edges of the triangle and increasing accordingly the size of the polynomial
space.

Definition 2 (Argyris triangle, N = 21).

P = P5(K),(4.4)

L(w) =



w(xk) for 1 ≤ k ≤ 3,

∂w
∂xi

(xk) for 1 ≤ k ≤ 3 and 1 ≤ i ≤ 2,

∂2w
∂xi∂xj

(xk) for 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ 2,

∂w
∂n (ek) for 1 ≤ k ≤ 3.

(4.5)

The Argyris triangle can be further generalized to higher-order polynomial spaces;
cf. Šoĺın [25]. Triangular macroelements such as the Hsieh–Clough–Tocher triangle
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are not locally H4(K) and therefore additional jump terms are present inside the
elements. Various conforming quadrilateral elements have been proposed in the liter-
ature for the plate bending problem; cf. Ciarlet [10]. The proofs of the lower bound
that we presented do not directly apply to quadrilateral elements, but the techniques
can be adapted to them as well.

5. Numerical results. In our examples, we will use the fifth-degree Argyris
triangle. On a uniform mesh for a solution u ∈ Hr(Ω), with r ≥ 2, we thus have the
error estimate [10]

(5.1) ‖u− uh‖2 . hs|u|r

with s = min{r − 2, 4}. Since the mesh length is related to the number of degrees of
freedom N by h ∼ N−1/2 on a uniform mesh, we can also write

(5.2) ‖u− uh‖2 . N−s/2|u|r.

If the solution is smooth, say, r ≥ 6, we thus have the estimates

(5.3) ‖u− uh‖2 . h4 and ‖u− uh‖2 . N−2.

In fact, the rate N−2 is optimal also on a general mesh since, except for a polynomial
solution, it holds that [2, 1]

(5.4) ‖u− uh‖2 & N−2.

In the adaptive computations we use the following strategy for marking the ele-
ments that will be refined [28].

Algorithm 1. Given a partition Ch, error indicators ηK , K ∈ Ch, and a thresh-
old θ ∈ (0, 1), mark K for refinement if ηK ≥ θmaxK′∈Ch ηK′ .

The parameter θ has an effect on the portion of elements that are marked, i.e.,
for θ = 0 all elements are marked and for θ = 1 only the element with the largest
error indicator value is marked. We simply take θ = 0.5, which has proven to be a
feasible choice in most cases.

The set of marked elements are refined using Triangle [24], version 1.6, by requir-
ing additional vertices at the edge midpoints of the marked elements and by allowing
the mesh generator to improve mesh quality through extra vertices. The default
minimum interior angle constraint of 20 degrees is used.

The regularity of the solution depends on the regularity of the load and the corner
singularities; cf. [6]. Below we consider two sets of problems, one where the regularity
is mainly restricted by the load, and another one where the load is uniform and the
corner singularities dominate.

5.1. Square plate, Navier solution. A classical series solution to the Kirch-
hoff plate bending problem, the Navier solution [27], in the special case of a unit
square with simply supported boundaries and the loading

(5.5) f(x) =

{
f0 if x ∈ [ 1

2 − c,
1
2 + c]× [ 1

2 − d,
1
2 + d],

0 otherwise,

reads

(5.6) u(x, y) =
16f0

Dπ6

∞∑
m=1

∞∑
n=1

sin mπ
2 sin nπ

2 sinmπc sinnπd

mn(m2 + n2)2
sinmπx sinnπy.
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Fig. 3. Initial and 6 times refined meshes in the point load case.
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Fig. 4. Elementwise error estimators in the point load case.
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N

η

Uniform
Adaptive

Fig. 5. The results of the point load case.

In the limit c −→ 0 and 2cf0 −→ g0 we get the line load solution

(5.7) u(x, y) =
8g0

Dπ5

∞∑
m=1

∞∑
n=1

sin mπ
2 sin nπ

2 sinnπd

n(m2 + n2)2
sinmπx sinnπy,

and in the limit c, d −→ 0 and 4cdf0 −→ F0 we obtain the point load solution

(5.8) u(x, y) =
4F0

Dπ4

∞∑
m=1

∞∑
n=1

sin mπ
2 sin nπ

2

(m2 + n2)2
sinmπx sinnπy.

From the series we can infer that the solution is inH3−ε(Ω), H7/2−ε(Ω), andH9/2−ε(Ω),
for any ε > 0, for the point load, the line load, and the square load, respectively, in
the three cases. On a uniform mesh, one should thus observe the convergence rates
N−0.5, N−0.75, and N−1.25.
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Fig. 6. The efficiency of the estimator in the point load case. The normalization parameter c
is chosen as the mean value of the ratio η/|||u− uh|||.
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Fig. 7. Initial and 6 times refined meshes for the line load case.

An unfortunate property of the series solutions is that the partial sums converge
very slowly. This makes computing the difference between the finite element solution
and the series solution in H2(Ω)- and L2(Ω)-norms a challenging task since the finite
element solution quickly ends up being more accurate than any reasonable partial sum.
In fact, the “exact” series solution is practically useless, for example, for computing
the shear force, which is an important design parameter.

The H2(Ω)-norm is equivalent to the energy norm,

(5.9) |||v||| =
√
a(v, v),

with which the error is straightforward to compute. In view of the Galerkin orthogo-
nality and symmetry, one obtains

(5.10) |||u− uh|||2 = a(u− uh, u) = l(u− uh),

i.e., the error is given by

(5.11) |||u− uh||| =
√
l(u− uh).
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Fig. 8. Results of the line load case.
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Fig. 9. Elementwise error estimators for the line load case.
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Fig. 10. Initial and 8 times refined meshes for the square load case.
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Fig. 11. Results of the square load case.

This is especially useful for the point load for which

(5.12) |||u− uh||| =
√
F0

(
u( 1

2 ,
1
2 )− uh( 1

2 ,
1
2 )
)
.

Evaluating the series solution at the point of maximum deflection gives [27]

(5.13)

u( 1
2 ,

1
2 ) =

4F0

Dπ4

∞∑
m=1

∞∑
n=1

(sin mπ
2 sin nπ

2 )2

(m2 + n2)2

=
4F0

Dπ4

∞∑
m=1

(
sin

mπ

2

)2 ∞∑
n=1

(
sin nπ

2

)2
(m2 + n2)2

=
F0

2Dπ3

∞∑
m=1

(sin mπ
2 )2(sinhmπ −mπ)

m3(1 + coshmπ)
.

We first consider a point load with F0 = 1, d = 1, E = 1, and ν = 0.3 and
compare the true error with the estimator η. In this case, we have the approximate
maximum displacement u( 1

2 ,
1
2 ) ≈ 0.1266812, computed by evaluating and summing
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Fig. 12. Elementwise error estimators in the square load case.D
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Fig. 13. The initial (top right) and the final meshes with different boundary conditions. The
boundary conditions at the reentrant corner are either simply supported (top right), clamped (bottom
left), or free (bottom right). Surprisingly enough, the meshes for the simply supported and clamped
boundaries end up being exactly the same.

the first 10 million terms of the series (5.13). Starting with an initial mesh shown in
Figure 3, we repeatedly mark and refine the mesh to obtain a sequence of meshes;
see Figure 4, where the values of the elementwise error estimators are depicted for
four consecutive meshes. Note that the estimator and the adapted marking strategy
initially refine heavily in the neighborhood of the point load as one might expect based
on the regularity of the solution in the vicinity of the point load.

In addition to the adaptive strategy, we solve the problem using a uniform mesh
family where we repeatedly split each triangle into four subtriangles starting from
the initial mesh of Figure 3. The energy norm error and η versus the number of
degrees of freedom N are plotted in Figure 5. The results show that the adaptive
meshing strategy improves significantly the rate of convergence in the energy norm. In
Figure 5, we have also plotted, for reference, the slopes corresponding to the expected
convergence rate O(N−0.5) for uniform refinement and the optimal convergence rate
for P5 elements, O(N−2).

In Figure 5 it is further revealed that the energy norm error and the estimator η
follow similar trends. This is exactly what one would expect given that the estimator
is an upper and a lower bound for the true error modulo an unknown constant. This
is better seen by drawing the normalized ratio η over |||u− uh|||; see Figure 6. Since
the estimator correctly follows the true error and an accurate computation of norms
like ‖u − uh‖2 is expensive, the rest of the experiments document only the values of
η and N for the purpose of giving an idea of the convergence rates.
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Fig. 14. L-shaped domain results. Simply supported (top), clamped (middle), and free (bottom)
boundary conditions on the reentrant corner.
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We continue with the line load case taking g0 = 1 and d = 1
3 , and using the

same material parameter values as before. The initial and final meshes are shown in
Figure 7. The estimator can be seen to primarly focus on the end points of the line
load. The values of η and N are visualized in Figure 8, together with the expected
and the optimal rates of convergence. Again the adaptive strategy improves the
convergence of the total error in comparison to the uniform refinement strategy. The
local error estimators and the adaptive process are presented in Figure 9.

We finish this subsection by solving the square load case with f0 = 1, c = d = 1
3

and the same material parameters as before. The initial and the final meshes are
shown in Figure 10. The convergence rates are visualized in Figure 11 and the local
error estimators in Figure 12. An improvement in the convergence rate is again visible
in the results.

5.2. L-shaped domain. Next we solve the Kirchhoff plate problem in an
L-shaped domain with uniform loading f = 1 and the following three sets of boundary
conditions:

1. simply supported on all boundaries,
2. clamped on all boundaries,
3. free on the edges sharing the reentrant corner and simply supported along

the rest of the boundary.
Due to the presence of a reentrant corner, the solutions belong to H2.33(Ω), H2.54(Ω),
and H2.64(Ω) in the cases 1, 2 and 3, respectively (see [22]). As before, we use
fifth-order Argyris elements to demonstrate the effectiveness of the adaptive solution
strategy. The initial and the final meshes are shown in Figure 13. The resulting total
error estimators and unknown counts are visualized in Figure 14.
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