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BENCHMARK COMPUTATIONS OF STRESSES IN A SPHERICAL
DOME WITH SHELL FINITE ELEMENTS∗

ANTTI H. NIEMI†

Abstract. We present a computational framework for analyzing thin shell structures using the
finite element method. The framework is based on a mesh-dependent shell model which we derive
from the general laws of three-dimensional elasticity. We apply the framework for the so-called
Girkmann benchmark problem involving a spherical shell stiffened with a foot ring. In particular,
we compare the accuracy of different reduced strain four-node elements in this context. We conclude
that the performance of the bilinear shell finite elements depends on the mesh quality but reasonable
accuracy of the quantities of interest of the Girkmann problem can be attained in contrast to earlier
results obtained with general shell elements for the problem.
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1. Introduction. The role of thin shell theory in structural analysis has changed
dramatically over centuries from center stage to supporting cast, partly because of
the advent of the finite element method. This paper will bring shell theory back to
the forefront by studying a family of four-node finite elements based on it. The study
is carried out in the context of a challenging benchmark problem involving a stiffened
doubly curved thin shell.

Conventional shell finite element formulations involve various explicit and implicit
modeling assumptions that extend beyond the limits of mathematical convergence
theory currently available. The theoretical problems arise from the fact that the
general shell elements used in industrial finite element analysis have been developed
through “finite element modeling,” where the connection of the discretization to the
actual differential operators of the mathematical shell model is obscure; cf. [31].

A prerequisite for traditional finite element error analysis is a well-posed varia-
tional problem formulated in some suitable Hilbert space. For shells such mathemati-
cal models can be formulated using differential geometry of surfaces and theoretically
stable formulations have been analyzed, e.g., in [24, 1, 6]. However, these works deal
only with the bending-dominated deformations and do not address the membrane-
dominated and intermediate cases which are very important for instance in civil and
structural engineering. We refer the reader to [29] for a precise characterization of
different shell deformation states in context of cylindrical shells.

On the other hand, it is possible to interpret the modeling assumptions of con-
ventional shell elements in context of the mathematical models. For instance, the
degenerated solid approach associated to certain four-node elements has been trans-
lated to explicit strain reduction procedure within a specific shell model in [17, 18] and
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that procedure has been numerically analysed in [11, 12, 22, 19]. This line of research
is not limited to the theoretical analysis of existing formulations only. It can also be
used to enhance the formulations and develop new ones as shown in [20], where a new
four-node shell finite element of arbitrary quadrilateral shape was developed based on
shell theory.

Thanks to modern computation technology, such as the hp-adaptive finite element
method [7, 34], shell analysis can also be based directly to three-dimensional elasticity
theory. Such an approach rules out the modeling errors arising from the simplifications
of dimensionally reduced structural models but requires more degrees of freedom for
the discrete model. Also, if simplified representations of the stress state such as the
stress resultants are needed, they must be post-processed from the three-dimensional
stress field, and this can be nontrivial.

A model problem called the Girkmann problem, which was revived some time
ago, highlights the above complications rather dramatically; see [32, 21, 28, 8]. The
problem involves a concrete structure consisting of a spherical dome stiffened by a
foot ring under a dead gravity load. The task is to determine the values of the shear
force and the bending moment at the junction between the dome and the ring as well
as the maximum bending moment in the dome.

The problem was initially presented and solved analytically in the textbook [10].
More recently, in the bulletin of the International Association of Computational Me-
chanics (IACM) [26], the problem was posed as a computational challenge to the finite
element community. The purpose of the challenge was to find out how the process of
verification, that is, the process of building confidence that an approximative result
is within a given tolerance of the exact solution to the mathematical model, is carried
out by the community given the Girkmann problem. The results have been sum-
marized in [27, 32] without attribution and details on how verification was actually
performed. Out of the 15 results submitted, 11 have a very large dispersion and are
not within any acceptable tolerance of the reference values computed in [32, 21, 28]
using different models and formulations.

So far detailed verification studies have been published for the axisymmetric mod-
els based on elasticity theory as well as axisymmetric dimensionally reduced models.
In [32], the p-version of the finite element method was used in conjunction with the
extraction procedure of [3] to compute accurate values for the quantities of inter-
est. Similar approach with the hp-version of the finite element method was taken
in [21], where also the axisymmetric h-version with selective reduced integration was
successfully employed to discretize the dimensionally reduced model.

In the present work, we introduce a finite element framework for thin shell analy-
sis and use the Girkmann problem to demonstrate its possibilities. More precisely, we
benchmark different variants of the MITC-type shell element proposed earlier by the
author in [20] by modeling a quarter of the dome and by using symmetry boundary
conditions. We show that the performance of the formulations varies depending on
the performed strain reductions and the mesh regularity. Nevertheless, reasonable ac-
curacy for the main quantities of interest is obtained contrary to the earlier published
results obtained with general shell elements.

The main difference of the present approach as compared with the conventional
ones is that the quadrilateral mesh is not taken as such to represent the shell middle
surface. Rather, it serves only as a computational domain used to represent the
imagined shell middle surface by interpolating the nodal normal vector.

The paper is organized as follows. In the next section, we develop the shell theory
used to construct the different finite element methods. The finite element methods
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are described in section 3 together with a discussion on their well-posedness and
implementation aspects. Section 4 is devoted to description of the analysis procedure
for the Girkmann problem and numerical results. The paper ends with conclusions
in section 5.

2. Variational formulation of the shell problem. We will employ the Ein-
stein summation convention so that Greek indices range over the values 1, 2 while
Latin indices have the values 1, 2, 3. The former refer to surface coordinates while
the latter refer to general three-dimensional curvilinear coordinates. Our surface
coordinate systems can be assumed orthonormal so that we can formulate our strain-
displacement relations and constitutive laws directly in terms of physical components
and traditional partial derivatives, which will be denoted by a comma. Moreover,
Euclidean vectors are displayed using overhead arrows, whereas boldface notation
is reserved for the column vectors and matrices storing the components of different
surface tensors in the assumed orthonormal coordinate system.

A shell domain Ω ⊂ R
3 of constant thickness t is defined as

(2.1) Ω = �Φ(K × (−t/2, t/2)),

where the shell mapping �Φ is of the form

(2.2) �Φ(x, y, ζ) = �r(x, y) + ζ�n(x, y).

Here the parametric surface �r(x, y) represents the middle surface of the shell and
�n(x, y) is the unit normal vector to the middle surface. Thus ξ1 = x, ξ2 = y, and
ξ3 = ζ constitute a curvilinear coordinate system in 3-space, called shell coordinates.

In the following, we imagine that the middle surface is defined as

(2.3) �r(x, y) = x�i1 + y�i2 + f(x, y)�i3, (x, y) ∈ K,

where�i1,�i2,�i3 are fixed Cartesian unit vectors. Moreover, we assume that the middle
surface differs only little from the coordinate plane K, i.e., the shell is shallow. More
precisely, we assume that the function f : K → R is smooth in the curvature length
scale R defined by

1

R
= max

α,β
||f,αβ||∞,K .

If hK = diam(K) and R is taken as the length unit, the shallowness assumption can
be formulated as

(2.4) f,α = O(ĥK),

where ĥK = hK/R ≤ 1.
Under the shallowness assumption (2.4), the tangent basis vectors

(2.5) �eα(x, y) =�iα + f,α(x, y)�i3

associated to the middle surface parametrization (2.3) are orthonormal within the

accuracy of O(ĥ2
K).

2.1. Shell kinematics. According to the standard kinematic hypothesis we as-
sume that the displacement vector can be written in the form

(2.6) �U(x, y, ζ) = (uλ(x, y) + ζθλ(x, y))�eλ(x, y) + w(x, y)�n(x, y),
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where u = (u1, u2) are the tangential displacements of the middle surface, w is the
transverse deflection, and the quantities θ = (θ1, θ2) are the angles of rotation of
straight material fibres normal to the middle surface.

Referring to the curvilinear coordinates ξ1 = x, ξ2 = y, and ξ3 = ζ, the linearized
Green–Lagrange strain tensor is defined by

(2.7) eij =
1

2
(�Φ,i · �U,j + �Φ,j · �U,i), i, j = 1, 2, 3.

We find directly from (2.6) that

(2.8) �U,α = (uλ,α + ξ3θλ,α)�eλ + (uλ + ξ3θλ)�eλ,α + w,α�n+ w�n,α

for α = 1, 2 and

(2.9) �U,3 = θλ�eλ.

Similarly, the combination of (2.2), (2.3), and (2.5) yields

(2.10) �Φ,α = �eα + ζ�n,α, α = 1, 2,

and

(2.11) �Φ,3 = �n.

The components of the strain tensor are represented as a power series of the
variable ζ. If we take into account two terms, the in-plane strains may be written as

(2.12) eαβ ≈ εαβ + ζκαβ .

Using relations (2.10) and (2.8), the membrane strain tensor εαβ = eαβ |ζ=0, which
arises from stretching of the deformed middle surface, can be written as

(2.13) εαβ ≈ 1

2
(uα,β + uβ,α)− bαβw,

where

(2.14) bαβ = −�eα · �n,β =
f,αβ√

1 + f,λf,λ
, α, β = 1, 2,

are the coefficients of the second fundamental form of the middle surface. In (2.13),
terms multiplied by the “rotation coefficients” �eα · �eλ,β have been neglected as quan-

tities of relative order O(ĥK) based on the shallowness assumption (2.4). We content
ourselves here to first order of accuracy since, in general, the coefficients bαβ cannot
be approximated more precisely with linear or bilinear interpolation functions; see
section 3.3.

Introducing the coefficients of the third fundamental form of the middle surface

cαβ = �n,α · �n,β , α, β = 1, 2,

the elastic curvature tensor καβ =
∂eαβ

∂ζ |ζ=0 in (2.12), which arises from bending of
the deformed middle surface, comes out as

(2.15) καβ ≈ 1

2
(θα,β + θβ,α) + cαβw − 1

2
(bαλuλ,β + bβλuλ,α), α, β = 1, 2

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

30
.2

33
.2

16
.2

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B444 ANTTI H. NIEMI

based again directly on (2.10) and (2.8). Here, terms multiplied by �eα ·�eλ,β or �n,α ·�eλ,β
have been neglected as quantities of relative order O(ĥK).

It is possible to simplify the bending strain expressions by sacrificing their tenso-
rial invariance. It is straightforward to verify that

cαβ ≈ bαλbλβ

within the adopted accuracy, so that we may write (2.15) componentwise as

(2.16)

κ11 ≈ θ1,1 + b12(b12w − u2,1)− b11ε11,

κ22 ≈ θ2,2 + b12(b12w − u1,2)− b22ε22,

κ12 ≈ 1

2
(θ1,2 + θ2,1 + b11(b12w − u1,2) + b22(b12w − u2,1))− b12

2
(ε11 + ε22).

In these expressions, the contribution of the terms b11ε11, b22ε22, and b12(ε11+ε22) to
the maximum in-plane strains at the outer and inner surfaces of the shell is of relative
order O(t/R) only. Therefore, the number of terms in the kinematic relations can be
slightly reduced by retaining only the underlined terms in the calculations.

Finally, the transverse shear strains are defined as

(2.17) γα = 2eα3, α = 1, 2.

These can be written in terms of the displacements by first noting that since �eα and
�n are orthogonal, we have �eα,β · �n = −�eα · �n,β , and consequently bαβ = �n · �eα,β. Now,
the combination of (2.11) with (2.8) and (2.10) with (2.9) according to (2.7) yields

(2.18) γα = θα + bλαuλ + w,α, α = 1, 2,

and completes the description of shell kinematics.

2.2. Constitutive equations. Assuming linearly elastic isotropic material with
Poisson ratio ν and Young modulus E, the constitutive law relating stresses and
strains can be written with respect to the approximately orthogonal shell coordinate
system (x, y, ζ) attached to the middle surface as

(2.19)
σαβ =

E

1− ν2
[(1− ν)eαβ + νeλλδαβ] ,

σα3 =
E

1 + ν
eα3, α, β = 1, 2,

where δαβ is the Kronecker delta. The elastic coefficients in the above formula have
been modified to yield so-called plane stress state tangent to the middle surface.
This modification is necessary to avoid Poisson locking in context of the kinematic
assumption (2.6).

We follow the standard convention of structural mechanics and introduce the
internal forces and moments which are the stress resultants and stress couples per
unit length of the middle surface. These can now be defined as

(2.20) nαβ =

∫ t/2

−t/2

σαβ dζ, mαβ =

∫ t/2

−t/2

σαβζ dζ, qα =

∫ t/2

−t/2

σα3 dζ

and correspond to the membrane forces, bending moments, and transverse shear forces
in static equilibrium considerations.
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2.3. Potential energy functional. Integrals over the shell domain Ω can be
evaluated in terms of the assumed shell coordinates as

∫
Ω

{·} dΩ ≈
∫
K

∫ t/2

−t/2

{·} dζdxdy.

The combination of (2.20), (2.19), (2.17), and (2.12) allows us to write the elastic
strain energy functional as

(2.21)

UK(u, w, θ) =
1

2

∫
Ω

(σαβeαβ + σα3eα3) dΩ

≈ 1

2

∫
K

(nαβεαβ + qαγα +mαβκαβ) dxdy,

where

(2.22)

nαβ =
Et

1− ν2
[(1− ν)εαβ + νελλδαβ ] ,

qα =
Et

2(1 + ν)
γα,

mαβ =
Et3

12(1− ν2)
[(1− ν)καβ + νκλλδαβ ]

and the strains are given in terms of the displacements in (2.13), (2.18), and (2.16).
Similarly, the potential energy corresponding to external distributed surface forces

(f1, f2, p) and moments (τ1, τ2) as well as edge forces (N1, N2, Q) and moments
(M1,M2) is

(2.23)

VK(u, w, θ) =−
∫
K

(fλuλ + pw + τλθλ) dxdy

−
∫
∂K

(Nλuλ +Qw +Mλθλ) ds,

and the total energy is given by the sum

(2.24) EK(u, w, θ) = UK(u, w, θ) + VK(u, w, θ).

3. Finite element methods. We assume that the whole shell domain Ω̃ is
formed as the union

Ω̃ =
⋃

K∈Ch

ΩK ,

where each ΩK is a domain of the form (2.1) and Ch stands for a mesh of convex
quadrilaterals K corresponding to parametrizations of patches of the shell middle
surface according to (2.3). We also assume that the whole middle surface

S =
⋃

K∈Ch

�rK(K)

is a smooth surface and that it can be described alternatively by a single, global
parametrization �ρ(ξ̃1, ξ̃2). It follows that the transformations between the local and
global coordinate systems TK = �r−1

K ◦ �ρ, K ∈ Ch, are diffeomorphisms.
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Without losing generality, we may assume that the coordinates ξ̃1, ξ̃2 are orthogo-
nal. If {�g1(ξ̃1, ξ̃2), �g2(ξ̃1, ξ̃2)} are the corresponding normalized tangent vectors of the
middle surface, and ũα, w̃, and θ̃α stand for the associated displacement and rotation
components, then these components are related to the local components uK

α , wK and
θKα as

(3.1) uK
α ◦ TK = ũλ�gλ ·�iα, wK ◦ TK = w̃, θKα ◦ TK = θ̃λ�gλ ·�iα

according to (2.5) and (2.6). The total potential energy of the structure is expressed
as the sum of elementwise contributions such that

(3.2) E(ũ, w̃, θ̃) =
∑

K∈Ch

EK(uK , wK , θK),

where (ũ, w̃, θ̃) is the globally defined generalized displacement field. The solution
of the problem is determined according to the principle of minimum potential energy
from the condition

E(ũ, w̃, θ̃) = min
(ṽ,z̃,ψ̃)∈U

E(ṽ, z̃, ψ̃),

where the energy space U is defined as the set of those kinematically admissible
generalized displacement fields for which the energy functional is finite. The existence
of a unique minimizer (for maxK hK sufficiently small) follows from the well-posedness
of the corresponding Reissner–Naghdi shell model; see, e.g., [5].

It is now straightforward to formulate a finite element method where each dis-
placement component is approximated separately as in the space

(3.3) Uh = {(ũ, w̃, θ̃) ∈ U : (uK , wK , θK) ∈ [Q1(K)]5 ∀K ∈ Ch},

where Q1(K) denotes the standard space of isoparametric bilinear functions on K
and (uK , wK , θK) is the local generalized displacement field defined in (3.1).

3.1. Euler equations. If needed, the system of partial differential equations
characterizing the solution of the shell problem can be determined by using calculus
of variations. The local form reads

(3.4)

−n1λ,λ + b1λqλ + (b12m22),2 + (b11m12),2 = f1

−n2λ,λ + b2λqλ + (b12m11),1 + (b22m12),1 = f2

−bαβnαβ − qλ,λ + (b12)
2(m11 +m22) + (b11 + b22)b12m12 = p

−m1λ,λ + q1 = τ1

−m2λ,λ + q2 = τ2.

The first two equations are obtained by calculating the variations of the total energy
with respect to the tangential displacements u1 and u2, and they represent the force
balance in the tangential directions �e1 and �e2, respectively. The third equation cor-
responds to the force balance in the normal direction �n and is obtained by taking the
variation with respect to the transverse deflection w. Finally, variations with respect
to the rotations θ1 and θ2 yield the last two equations corresponding to the moment
balance about the �e2 and �e1 directions, respectively.

Calculus of variations yields also the differential form of the natural boundary
conditions. For instance, if K is a rectangle and the boundary coincides with the
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line y = const, the five possible Neumann conditions that complement the separate
Dirichlet condition on each displacement component are

n12 − b12m22 − b11m12 = N1,

n22 = N2,

q2 = Q,

m12 = M1,

m22 = M2.

It should be noted that the appearance of the bending moments in the first three
balance laws in (3.4) depends on the choice of the expressions for the bending strains.
Here, we have used the suggested definition (2.16) that seems to be the simplest
one. The ambiguity carries over also to the differential form of the natural boundary
conditions and influences the appearance of the effective in-plane shear forces.

3.2. Strain reduction techniques. To avoid locking when approximating ben-
ding-dominated problems, membrane and transverse shear strains must be reduced.
To introduce the different methods, we denote by FK = (xK , yK) the bilinear mapping
of the reference square K̂ = [−1, 1]× [−1, 1] onto K and by

JK = JK(x̂, ŷ) =

⎛
⎜⎝
∂xK

∂x̂

∂xK

∂ŷ
∂yK
∂x̂

∂yK
∂ŷ

⎞
⎟⎠

the Jacobian matrix of FK . Here (x̂, ŷ) are the coordinates on K̂.
We start by defining on the reference square K̂ the function spaces

(3.5) S(K̂) =

{
ŝ =

(
a+ bŷ
c+ dx̂

)
: a, b, c, d ∈ R

}

and

(3.6) M (K̂) =

{
τ̂ =

(
a+ bŷ c

c d+ ex̂

)
: a, b, c, d, e ∈ R

}

for the reduced transverse shear strains and membrane strains, respectively. Denoting
by t̂ the unit tangent vector on ∂K̂, the canonical degrees of freedom associated with
S(K̂) are

(3.7) ŝ 	→
∫
ê

ŝT t̂ dŝ for every edge ê of K̂,

whereas the degrees of freedom associated with M(K̂) are defined as

(3.8)

τ̂ 	→
∫
ê

t̂
T
τ̂ t̂ dŝ for every edge ê of K̂,

τ̂ 	→
∫
K̂

τ̂12 dx̂dŷ.

The corresponding spaces associated to a general elementK ∈ Ch are then defined
using covariant transformation formulas as

(3.9) S(K) = {s = (J−T
K ŝ) ◦ F−1

K = SK(ŝ) : ŝ ∈ S(K̂)}
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and

(3.10) M(K) = {τ = J̄
−T
K (τ̂ ◦ F−1

K )J̄
−1
K = M̄K(τ̂ ) : τ̂ ∈M(K̂)}.

In case of general quadrilateral elements with nonconstant Jacobian matrices, the
transformation in (3.10) must be fixed to a single orientation, e.g., at the midpoint of
K̂ so that J̄ = J(0, 0). Otherwise the function space (3.10) for the reduced membrane
strains and stresses does not necessarily include constant fields which would degrade
the accuracy of the formulation.

Denoting by ΛK̂ :H1(K̂) → S(K̂) and Π K̂ :H1(K̂) →M(K̂) the interpolation
operators associated to the degrees of freedom (3.7) and (3.8), the corresponding
projectors for a general K ∈ Ch are defined as

ΠK = M̄K ◦ΠK̂ ◦ M̄−1
K and ΛK = SK ◦ΛK̂ ◦ S−1

K .

The transformation rule (3.9) guarantees that the degrees of freedom (3.7) are pre-
served on K:

s 	→
∫
e

sT t ds for every edge e of K,

where t is the unit tangent vector on ∂K, but the analogous statement does not hold
in context of (3.10) for general meshes.

The finite element introduced in (3.5) and (3.7) is a well known edge element
denoted by the symbol RTce1 in the recently introduced the periodic table of the finite
elements [2] and has been described in the context of plate bending, e.g., in [13, 4].
The element (3.5), (3.8) is less customary at least in the mathematical literature,
probably because of its nonelegant extension to quadrilateral shapes. In any case
the historical roots of the element are very deep in the literature on finite element
technology for plane elasticity. Our current formulation corresponds essentially to the
stress field of the Pian–Sumihara element introduced in [23], which in turn may be
viewed as an extension of the nonconforming displacement methods introduced by
Wilson et. al. [36] and Turner et. al. [35]. We refer the reader to [25] for the complete
mathematical theory of these formulations in context of plane elasticity. In the present
context, the convergence theory is confined to special cases involving cylindrical or
globally shallow shells on special meshes; see [11, 12, 22, 19].

We shall use the label MITC4C for the formulation for which only the transverse
shear strains are projected into the space (3.9)

(3.11) γ ↪→ ΛKγ

and the label MITC4S for the formulation where also the membrane strains are pro-
jected:

(3.12) ε ↪→ ΠKε, γ ↪→ ΛKγ

when evaluating the strain energy according to (2.21) and (2.22).
In addition, we consider stabilized variants of both methods, where the shear

modulus G = E
2(1+ν) in (2.22) is modified as

(3.13) G ↪→ GK =
t2

t2 + αKh2
K

·G.

Here αK is a positive stabilization parameter independent of t and hK . This stabiliza-
tion idea originates from the corresponding plate bending elements; see, e.g., [33, 15].

Finally, the abbreviation DISP4 is used for the standard displacement method
without any strain reduction or stabilization.
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3.3. Implementation. The implementation of the present formulation follows
the standard steps used to construct quadrilateral plane-elastic elements with some
twists. The shape functions are the usual bilinear ones on the reference square K̂,
and the computation of derivatives and numerical integration using the standard 2×2
Gauss quadrature are performed in the canonical way.

The first twist concerns mesh generation. As it may happen that the four nodes
of a quadrilateral element in an arbitrary surface mesh do not lie in the same plane,
a straightening operation is needed in order to define the plane element K used in
the current formulation. This can be accomplished in many ways, but we follow the
procedure of [16] described also in [20] that naturally also yields the directions of the
local coordinate axes �i1 and �i2.

The second difference is related to the strain-displacement relations (2.13), (2.15),
and (2.18), which involve the coefficients of the second fundamental form in addition
to the standard shape function derivatives. Within the limits of the local shallowness
assumption, these coefficients can be computed using the interpolated normal vector
�nh as

bαβ ≈ −�iα · �nh,β, α, β = 1, 2.

To carry out the interpolation, the nodal normals are needed as geometric input data
in addition to the node positions. The former are also used to construct the two
orthonormal tangent direction �g1, �g2 used to enforce the continuity of the tangential
displacements and normal rotations according to (3.1).

The current implementation (assembly, solution, and postprocessing) is carried
out using Mathematica while Gmsh is used for the mesh generation [14, 9]. An
additional preprocessing step is the determination of the nodal normals that can be
performed by using the analytic surface representation if available, or by averaging
the normals of the elements sharing a common node.

4. Numerical results. We start by recalling the statement of the Girkmann
benchmark problem from [26, 32]. The problem involves a concrete structure consist-
ing of a spherical dome stiffened by a foot ring under a dead gravity load; see Figure 1.
The task is to determine the values of the transverse shear force and the meridional
bending moment at the junction between the dome and the ring as well as the max-
imum value of the bending moment in the dome assuming that the gravity load is
equilibrated by a uniform pressure acting at the base of the ring. The material of
the concrete is assumed to be linearly elastic, homogeneous, and isotropic with a van-
ishing Poisson ratio. The value of the Young modulus is specified as E = 20.59GPa
although it has no effect on the values of the quantities of interest.

We follow here the classical approach, where the unknown reactions are taken to
be the horizontal force R and the bending moment M and are assumed to be positive
when acting on the shell. In this splitting (shown in Figure 1), the normal force N
becomes determined from the vertical force balance as

(4.1) N =
−gr0

1 + cosα
,

where g = Ft is the vertical surface load density corresponding to the assumed weight
density F = 32690N/m3, α is the opening angle of the dome, and r0 is its radius
(Figure 1). The shear force requested in the problem statement is then defined as
Q = R/ sinα.

The classical solution procedure can then be formulated as follows. Let us assume
that Λ and Ψ denote the horizontal displacement of the midpoint of the junction and

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

30
.2

33
.2

16
.2

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B450 ANTTI H. NIEMI

ρ0
r0

ρ0 = 15.0 m

α = 40◦

r0 = ρ0/ sinα

0.60 m

0.50 m

A B

N

R
M

N

R
M

α

t = 0.06 m

ρ0

Fig. 1. The Girkmann problem. Cross-section of the structure.

the angle of rotation of the junction line, respectively. Then, the linearity of the
material model implies that the following relations must hold:

(4.2)
EΛ = EΛS

0 + kS11R+ kS12M = EΛR
0 + kR11R+ kR12M,

EΨ = EΨS
0 + kS21R + kS22M = EΨR

0 + kR21R + kR22M,

where Λ
S/R
0 and Ψ

S/R
0 denote the displacement and the rotation of the shell/ring due

to known loads only and k
S/R
ij , i, j = 1, 2 are the compliance constants associated to

the unknown reactions R and M . These parameters can be defined separately for the
shell and the ring by analyzing sequentially the following load cases,

Gravity load (shell), equilibrating pressure (ring) and N as in (4.1),(Case 1)

R = 1N/m,(Case 2)

M = 1Nm/m,(Case 3)

and recording the values of the horizontal displacement and the rotation in each case.

4.1. Convergence studies. Our focus is on the performance of the shell ele-
ments so that we consider first the convergence of the parameters in (4.2) for the
dome using two different kinds of mesh sequences with the maximum element size h
approaching zero in both cases. The first mesh sequence is based on regular refine-
ment of the initial mesh with three elements as shown in Figure 2. The second mesh
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Fig. 2. Regularly refined mesh sequence.

Fig. 3. Mesh sequence generated with the frontal method of Gmsh.

sequence is shown in Figure 3 and is generated using the frontal algorithm of Gmsh
restricted so that each edge has a fixed number of elements [30].

The results are shown in Tables 1 and 2 for the different mesh sequences. The
reported values are normalized against the reference values

(4.3)
EΛS

0 ≈ −2.300e6N/m, kS11 ≈ 8.345e3, kS12 ≈ 1.477e4 1/m,

EΨS
0 ≈ −9.338e5N/m2, kS21 ≈ −1.477e4 1/m, kS22 ≈ −5.113e4 1/m2

computed using the same axisymmetric shell model as in [21]. The values are nearly
identical to those of [28] computed using a classical shell model which neglects trans-
verse shear deformations.1

The discretization parameter N stands for the number of elements per edge and
is varied from 8 to 256. The required displacement and rotation values are calculated
as the averages of the corresponding nodal values over the junction line and, for the
stabilized variants of the methods, the value α = 0.2 is used for the stabilization pa-
rameter. These results do not exhibit significant differences between the formulations
apart from the standard displacement method DISP4, which locks in Cases 2 and 3
as expected.

However, a more detailed investigation reveals a rather drastic difference between
the different formulations in the solutions of the membrane-dominated Case 1. Fig-
ure 4 shows the total displacement of the shell midsurface calculated on the frontal
mesh with 16 elements per edge using the MITC4S and MITC4C formulations. It is
evident that the MITC4S formulation suffers from numerical instabilities associated
to the consistency error arising from the reduction of the membrane strains; cf. [22].
The instability is manifested here by the loss of symmetry of the numerical solution.
It is intriguing that the circumferentially averaged displacements still converge and
that the phenomenon disappears when a regular mesh is used as shown in Figure 5.

Finally, it should be pointed out that similar instabilities as shown in Figure 4
(left) are featured also by the lowest-order linear or bilinear shell elements employed
currently in many industrial finite element analysis programs.

1The unit of force adopted in reference [28] is Girkmann’s kilopond, 1 G = 9.807N.
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Table 1

Convergence of the compliance coefficients for the dome with respect to the mesh parameter N
on the regular mesh sequence (Figure 2).

EΛS
0

N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4C
8 0.98 0.70 0.75 0.68 0.75
16 1.00 0.89 0.90 0.89 0.90
32 1.00 0.97 0.97 0.97 0.97
64 1.00 0.99 0.99 0.99 0.99
128 1.00 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00 1.00

EΨS
0

N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 1.00 1.96 2.19 1.93 2.12
16 0.99 1.42 1.47 1.41 1.47
32 1.00 1.13 1.14 1.13 1.14
64 1.01 1.03 1.04 1.03 1.04
128 1.01 1.01 1.01 1.01 1.01
256 1.01 1.00 1.00 1.00 1.00

kS11
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.20 0.51 0.64 0.52 0.66
16 0.28 0.78 0.87 0.78 0.89
32 0.40 0.93 0.96 0.93 0.97
64 0.56 0.98 0.99 0.98 0.99
128 0.74 1.00 1.00 1.00 1.00
256 0.89 1.00 1.00 1.00 1.00

kS12
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.04 0.39 0.56 0.36 0.53
16 0.09 0.71 0.83 0.70 0.83
32 0.17 0.91 0.95 0.90 0.95
64 0.32 0.97 0.99 0.97 0.99
128 0.56 0.99 1.00 0.99 1.00
256 0.80 1.00 1.00 1.00 1.00

kS22
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.01 0.52 0.66 0.67 0.79
16 0.03 0.78 0.88 0.81 0.90
32 0.07 0.93 0.97 0.94 0.97
64 0.18 0.98 0.99 0.98 0.99
128 0.42 1.00 1.00 1.00 1.00
256 0.72 1.00 1.00 1.00 1.00

4.2. Section force and moment computations. In order to determine the
unknown reactions R and M and the deformation of the stiffened shell, we need the
compliance coefficients of the ring. These can be approximated by using the principle
of virtual work as

(4.4)
EΛR

0 ≈ 1.363e7N/m, kR11 ≈ −2683, kR12 ≈ 8418 1/m,

EΨR
0 ≈ −6.949e6N/m2, kR21 ≈ −8418 1/m, kR22 ≈ 3.696e4 1/m2.
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Table 2

Convergence of the compliance coefficients for the dome with respect to the mesh parameter N
on the frontal mesh sequence (Figure 3).

EΛS
0

N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4C
8 1.00 0.74 0.92 0.72 0.98
16 1.02 0.91 0.94 0.90 0.94
32 1.01 0.97 0.98 0.97 0.98
64 1.01 0.99 1.00 0.99 1.00
128 1.00 1.00 1.00 1.00 1.00
256 1.00 1.00 1.00 1.00 1.00

EΨS
0

N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.96 1.78 1.83 1.83 1.81
16 0.96 1.37 1.45 1.37 1.45
32 0.98 1.12 1.05 1.12 1.05
64 0.99 1.03 1.01 1.03 1.01
128 1.00 1.01 1.00 1.01 1.00
256 1.00 1.00 1.00 1.00 1.00

kS11
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.20 0.48 0.57 0.50 0.68
16 0.28 0.71 0.78 0.75 0.82
32 0.40 0.89 0.91 0.91 0.94
64 0.54 0.96 0.98 0.97 0.98
128 0.73 0.99 0.99 0.99 1.00
256 0.86 1.00 1.00 1.00 1.00

kS12
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.04 0.32 0.42 0.33 0.46
16 0.08 0.62 0.70 0.63 0.72
32 0.17 0.85 0.88 0.87 0.90
64 0.30 0.95 0.97 0.96 0.97
128 0.53 0.99 0.99 0.99 0.99
256 0.75 1.00 1.00 1.00 1.00

kS22
N DISP4 MITC4C MITC4S Stab. MITC4C Stab. MITC4S
8 0.01 0.34 0.41 0.69 0.78
16 0.02 0.70 0.76 0.77 0.84
32 0.06 0.88 0.90 0.91 0.94
64 0.16 0.96 0.97 0.97 0.98
128 0.37 0.99 0.99 0.99 0.99
256 0.64 1.00 1.00 1.00 1.00

These values are obtained by taking the aforementioned displacements Λ and Ψ as the
only degrees of freedom as in [28]. This corresponds to the kinematic assumption that
the ring cross-section deforms as a rigid body. The associated 2 × 2 stiffness matrix
is evaluated by using numerical integration up to the machine precision in cylindri-
cal coordinates over the exact pentagonal shape of the ring. The ring is assumed
weightless here as in the original treatment by Girkmann and in the contemporary
verification challenge.
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Fig. 4. Total displacement in meters in the membrane-dominated load Case 1. MITC4S (left)
versus MITC4C (right) on the frontal mesh with N = 32.

Fig. 5. Total displacement in meters in the membrane-dominated load Case 1. MITC4S (left)
versus MITC4C (right) on the regular mesh with N = 32.

Substitution of (4.4) and (4.3) into (4.2) yields the values of the unknown hori-
zontal section force and bending moment:

(4.5) R ≈ 1467N/m & M ≈ −37.36Nm/m.

Finally, the deformation of the stiffened dome can be computed by solving the shell
problem with the active loads as in

(Case 4) Gravity load, N according to (4.1), and R,M according to (4.5).

In order to demonstrate the influence of the stabilization technique (3.13), we
show in Figures 6–7 the distribution of the meridional bending moment as computed
with the different formulations along the left and right edges of the computational
domain. The postprocessing is carried out directly from the nodal rotations, and only
the range (20◦, 40◦) is shown here since the bending effects are confined to a narrow
region near the edge.

In this case, there is no visible difference between the MITC4S and MITC4C
formulations. For instance, on the frontal mesh with N = 32, both formulations
feature nonphysical oscillations but the stabilization technique (3.13) improves the
results as shown in Figures 6 and 7. On the other hand, a feasible solution is obtained
even without the stabilization when the mesh is regular as shown in Figure 8.

5. Conclusions. We have presented a finite element framework for analyzing the
structural response of thin elastic shells. The element stiffness matrices are computed
according to shell theory taking into account transverse shear deformations. The
framework enables explicit reduction of the membrane strains and the transverse
shear strains in order to resolve numerical locking problems.
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Fig. 6. Distribution of the meridional bending moment in the stiffened dome calculated along
the left and right edges of the computational domain, respectively. MITC4S formulation on the
frontal mesh with N = 32.

Fig. 7. Distribution of the meridional bending moment in the stiffened dome calculated along
the left and right edges of the computational domain, respectively. Stabilized MITC4S formulation
on the frontal mesh with N = 32.

Fig. 8. Distribution of the meridional bending moment in the stiffened dome calculated along
the left and right edges of the computational domain, respectively. MITC4S formulation on the
regular mesh with N = 32.

Different variants of quadrilateral elements have been examined in the Girkmann
problem, and a detailed verification study has been performed. We have demonstrated
that the MITC4S element with reduced membrane strains may feature numerical in-
stabilities in membrane-dominated situations if the mesh is irregular. The MITC4C
where only the transverse shear strains are reduced does not have this drawback.
On the other hand, the bending moment in the Girkmann problem can be calculated
accurately with both methods on regular meshes. On irregular meshes some nonphys-
ical oscillations occur, but these can be avoided by employing the transverse shear
balancing as a stabilization technique.

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

30
.2

33
.2

16
.2

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B456 ANTTI H. NIEMI

REFERENCES

[1] D. N. Arnold and F. Brezzi, Locking-free finite element methods for shells, Math. Comp.,
66 (1997), pp. 1–15.

[2] D. N. Arnold and A. Logg, Periodic table of the finite elements, SIAM News, 47 (2014).
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[11] V. Havu and J. Pitkäranta, Analysis of a bilinear finite element for shallow shells I: Ap-

proximation of inextensional deformations, Math. Comp., 71 (2001), pp. 923–943.
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[28] J. Pitkäranta, I. Babuška, and B. Szabó, The dome and the ring: Verification of an old
mathematical model for the design of a stiffened shell roof, Comput. Math. Appl., 64
(2012), pp. 48–72.D

ow
nl

oa
de

d 
02

/1
9/

19
 to

 1
30

.2
33

.2
16

.2
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BENCHMARK COMPUTATIONS OF STRESSES IN A DOME B457
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