' Aalto University

Hyvonen, Nuutti; Seppanen, Aku; Staboulis, Stratos
Optimizing electrode positions in electrical impedance tomography

Published in:
SIAM Journal on Applied Mathematics

DOI:
10.1137/140966174

Published: 01/01/2014

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Hyvonen, N., Seppanen, A., & Staboulis, S. (2014). Optimizing electrode positions in electrical impedance
tomography. SIAM Journal on Applied Mathematics, 74(6), 1831-1851. https://doi.org/10.1137/140966174

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1137/140966174
https://doi.org/10.1137/140966174

Downloaded 02/19/19 to 130.233.216.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

SIAM J. APPL. MATH. (© 2014 Society for Industrial and Applied Mathematics
Vol. 74, No. 6, pp. 1831-1851

OPTIMIZING ELECTRODE POSITIONS IN ELECTRICAL
IMPEDANCE TOMOGRAPHY"*

NUUTTI HYVONENT, AKU SEPPANEN}, AND STRATOS STABOULIST

Abstract. Electrical impedance tomography is an imaging modality for recovering information
about the conductivity inside a physical body from boundary measurements of current and voltage.
In practice, such measurements are performed with a finite number of contact electrodes. This
work considers finding optimal positions for the electrodes within the Bayesian paradigm based
on available prior information on the conductivity; the aim is to place the electrodes so that the
posterior density of the (discretized) conductivity, i.e., the conditional density of the conductivity
given the measurements, is as localized as possible. To make such an approach computationally
feasible, the complete electrode forward model of impedance tomography is linearized around the
prior expectation of the conductivity, allowing explicit representation for the (approximate) posterior
covariance matrix. Two approaches are considered: minimizing the trace or the determinant of the
posterior covariance. The introduced optimization algorithm is of the steepest descent type, with the
needed gradients computed based on appropriate Fréchet derivatives of the complete electrode model.
The functionality of the methodology is demonstrated via two-dimensional numerical experiments.
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1. Introduction. FElectrical impedance tomography (EIT) is an imaging modal-
ity for recovering information about the electrical conductivity inside a physical body
from boundary measurements of current and potential. In practice, such measure-
ments are performed with a finite number of contact electrodes. The reconstruction
problem of EIT is a highly nonlinear and ill-posed inverse problem. For more infor-
mation on the theory and practice of EIT, we refer to the review articles [3, 5, 36]
and the references therein.

The research on optimal experiment design in EIT has mostly focused on determin-
ing optimal current injection patterns. The most well-known approach to optimizing
current injections is based on the distinguishability criterion [17], i.e., maximizing the
norm of the difference between the electrode potentials corresponding to the unknown
true conductivity and a known reference conductivity distribution. Several variants
of the distinguishability approach have been proposed; see, e.g., [24, 26] for versions
with constraints on the injected currents. The application of the method to planar
electrode arrays was considered in [22]. The distinguishability criterion leads to the
use of current patterns generated by exciting several electrodes simultaneously. For
other studies where the sensitivity of the EIT measurements is controlled by injecting
currents through several electrodes at a time, see [32, 39]. In geophysical applications
of EIT, the data are often collected using four-point measurements; choosing the op-
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timal ones for different electrode settings was studied in [1, 10, 34, 38]. In all the
above-cited works, the optimal experimental setup was considered in the determinis-
tic inversion framework. The Bayesian approach to selecting optimal current patterns
was studied in [19, 20]. In the Bayesian experiment design [2, 4], (statistical) prior
information on the unknown is taken into account in optimizing the measurements.

In addition to choosing the electrode currents, the sensitivity of EIT measure-
ments can also be controlled by varying the electrode configuration. For studies on
comparing different setups, see [11, 29, 30, 31, 35]. Optimizing the electrode locations
in EIT, however, has been studied only recently in [14]. In this study, a large set
of point electrodes was set in predefined locations, and an optimization method with
sparsity constraints for the current injections and potential measurements was applied
to select a feasible set of electrodes. The number of active electrodes was not fixed.
See also [23] for a study on the optimal placement of four electrodes in impedance
pneumography.

In the present paper, the problem of optimizing the electrode locations is con-
sidered in a more realistic setting than in [14]. We model the EIT measurements
with the complete electrode model (CEM) [6], which takes into account the electrode
shapes and the contact impedances at the electrode-boundary interfaces. We aim at
finding optimal locations for the finite-sized electrodes. Unlike in [14], the admissi-
ble electrode locations are not limited to a finite set of predefined points. On the
other hand, the number of electrodes is predefined. These attributes are appealing
from a practical point of view because in many laboratories/clinics/field surveys, the
number of electrodes is limited by the specifications of the measurement device, while
the possibilities of arranging the electrodes are almost unlimited. As in [19, 20], the
optimal experiments are considered in the Bayesian inversion framework to enable
the incorporation of prior information on the conductivity. Given a prior probability
density for the (discretized) conductivity, reflecting the knowledge about the interior
of the examined object before the measurements, the aim is to place the electrodes
so that the posterior density of the conductivity, i.e., the conditional density of the
conductivity given the measurements, is as localized as possible (when marginalized
over all possible measurements). To be more precise, the considered design criteria
are the A- and D-optimality (see, e.g., [2, 4]). Allowing simplifications, the former cor-
responds to the minimization of the trace of the posterior covariance and the latter to
the maximization of the information gain when the prior is replaced by the posterior.

To make our approach computationally feasible, we linearize the measurement
map of the CEM around the prior expectation of the conductivity, which allows an
explicit representation for the posterior covariance and thus also for the objective
functions corresponding to the A- and D-optimality criteria. Since the introduced op-
timization algorithm is of the steepest descent type, it requires numerical computation
of the derivatives for the linearized measurement map with respect to the electrode
locations, that is, of certain second order (shape) derivatives for the CEM. We per-
form the needed differentiations by resorting to the appropriate Fréchet derivatives of
the (nondiscretized) CEM (cf. [7, 8]); in addition to reducing the computational load,
this leads to higher stability compared to perturbation-based numerical differentiation
schemes.

The functionality of the chosen methodology is demonstrated via two-dimensional
numerical experiments. The conclusions of our tests are threefold: (i) The introduced
optimization algorithm seems functional, that is, it finds the electrode locations sat-
isfying the considered optimality criteria in settings where the global optimum can
be determined by testing all possible cases. (ii) The prior information on the conduc-
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tivity considerably affects the optimal electrode locations in many relevant settings.
Furthermore, the optimal electrode locations may be nonuniform even if the prior
information on the conductivity is homogeneous over the examined object. The ex-
tent of this latter effect depends heavily on the complexity of the object shape. (iii)
Choosing optimal electrode locations results in improved solutions to the (nonlinear)
inverse problem of EIT—at least, for our Bayesian reconstruction algorithm (see, e.g.,
[8]) and if the target conductivity is drawn from the assumed prior density.

This text is organized as follows. Section 2 recalls the CEM and introduces the
needed Fréchet derivatives. The principles of Bayesian inversion and optimal experi-
mental design are considered in section 3 and the implementation of the optimization
algorithm in section 4. Finally, the numerical results are presented in section 5 and
the conclusions listed in section 6.

2. Complete electrode model. We start by recalling the CEM of EIT. Sub-
sequently, we introduce the Fréchet derivatives of the (linearized) current-to-voltage
map of the CEM needed for optimizing the electrode locations in the following sec-
tions.

2.1. Forward problem. In practical EIT, M > 2 contact electrodes {FE,,}M_,
are attached to the exterior surface of a body €. A net current I, € C is driven
through each E,, and the resulting constant electrode potentials U = [Uy, ..., Un]" €
CM are measured. Because of charge conservation, any applicable current pattern
I =[I,...,Ip]" belongs to the subspace

(Ci‘/’:{Ve(CM

M
> Vi :0}.
m=1

The contact impedances at the electrode-object interfaces are modeled by a vector
z=[z1,...,2m]T € CM whose components are assumed to satisfy

(2.1) Re(zm) >¢, m=1,...,M,

for some constant ¢ > 0.

We assume that Q@ € R™, n = 2,3, is a bounded domain with a smooth bound-
ary. Moreover, the electrodes {E,,}M_, are identified with open, connected, smooth,
nonempty subsets of 9Q and assumed to be mutually well separated, i.e., Ex N E; = ()
for k£ # I. We denote £ = UE,,. The mathematical model that most accurately
predicts real-life EIT measurements is the CEM [6]: The electromagnetic potential u
inside € and the potentials on the electrodes U satisfy

V-oVu=0 in €,
v-oVu=0 on 90\ E,

(22) U+ 2V - oVu = U, on B, m=1,..., M,
/ v-oVudS = I, m=1,..., M,

m

interpreted in the weak sense. Here, v = v(z) denotes the exterior unit normal of
0f). Moreover, the (real) symmetric admittivity distribution o € L*°(£2, C**") that
characterizes the electric properties of the medium is assumed to satisfy

(2.3) Re(c€ - €) > c|¢), ¢ >0,
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for all £ € C™ almost everywhere in 2. A physical justification of (2.2) can be found
in [6].

Given an input current pattern I € CM | an admittivity o, and contact impedances
z with the properties (2.3) and (2.1), respectively, the potential pair (u,U) € H'(Q)®
CM is uniquely determined by (2.2) up to the ground level of potential. This can be
shown by considering the Hilbert space H! := (H!(Q) @ CM)/C with the norm

M 1/2
10, V) lgs = inf o= el + 3 Vin — €2
ceC ()

m=1

and the variational formulation of (2.2) given by [33]

(2.4) Bo((w,U),(v,V)) =1-V  forall (v,V)€H,
where
By ((u,U), (v, V) —/aVu-VidaH— i i/ (= Up)(5 — Vo) dS
g 9 ) ) - Q — Zm - m m .

Since B, : H! x H! is continuous and coercive [33, 15], it follows easily from the
Lax-Milgram theorem that (2.4) is uniquely solvable. Moreover, the solution pair
(u,U) € H! depends continuously on the data,

(2'5) H(U,U)H]Hp < C|I|7

where C = C(Q, E,0,z) > 0.
The measurement, or current-to-voltage map of the CEM is defined via

(2.6) R:I—U, Cc¥scM/cC.

Due to an obvious symmetry of (2.4), R can be represented as a symmetric complex
(M —1) x (M — 1) matrix (with respect to any chosen basis for CM ~ CM/C).

2.2. Linearization of the forward model. Next, we consider the linearization
of the map o — (u(c),U(0)) at a fixed current pattern I € CM. To this end, let us
define the set of admissible conductivities,

Y= {0 e L®(Q,C"") | ¢" = o and (2.3) holds with some constant ¢ > 0},
and the space of conductivity perturbations,
K :={reL®(Q,C"") | k" =k}.

It is well known that (u(o),U(c)) is Fréchet differentiable with respect to o: For a
fixed o € ¥ and any small enough « € K in the L*>-topology, it holds that (cf., e.g.,

[21])
2.7) |[(ulo+k), U(o+k)) = (u(0),U(0)) = (u'(03£), U (05 5)) [ g = O(IIKlI7 0 ()) 111,

where (u/(0; k), U’ (0;k)) € H! is the unique solution of the variational problem

(2.8) B, ((u,U"), (v,V)) = — /Q kVu(o)-Vodz  for all (v, V) € H.
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In other words, the Fréchet derivative of o + (u(c),U(c)) € H! at some o € ¥ is
the linear map K 3 k + (u/(0; k), U’(0;k)) € H!. Notice that the unique solvability
of (2.8) is a straightforward consequence of the Lax—Milgram theorem due to the
continuity and coercivity of B, .

If the support of the perturbation  is restricted to a compact subset of 2 and the
conductivity o exhibits some extra regularity in some neighborhood of 052, it can be
shown that the norm on the left-hand side of (2.7) may be replaced with a stronger
one. With this aim in mind, we define two new concepts: the space of admissible
conductivities with Holder boundary smoothness,

Sl = {0 e 2| olgna € CFP(GNQ) for some open G D 9N}, keNy, 0<3<1,
and the space of compactly supported conductivity perturbations,
K5 :={k € K | dist(supp k,00Q) > §},

where 6 > 0.
THEOREM 2.1. Let o € Eg’é and § > 0 be fized. Then, there exists a smooth
domain Qg € Q such that

|(w(o+k), Ulc+r))—(u(o),U(0)) = (v (0o k), U'(o;k))]

He (2\To) =O(||%]1 7)) 1]

for all small enough k € Ky in the topology of L°°(Q)) and any fixred s < 2. Here we
denote H*(Q\ Qo) = (H*(Q2\ Q) @ CM)/C.

Proof. Obviously, there exist smooth domains 2y and £2; such that ; € Qy € Q,
olona, € COY(Q\ Q1) and suppx C Q; for all k € K.

Let us denote

(u",U") = (u(o + k), U(c + &) — (u(0),U(0)) — (¢ (03 k), U’ (03 k) € H'.
It follows by a straightforward calculation from (2.4) and (2.8) that
(2.9) By ((u*,U"),(v,V)) = / kV (u(o) —u(o +k)) - Voda for all (v, V) € H'.
Q
For any compactly supported test function v € C§°(2\ @), the right-hand side of
(2.9) and the second term of B, ((v",U"), (v, V')) vanish, which means that
(2.10) V- (oVu®) =0 in Q\Q

in the sense of distributions.

Resorting to the same techniques as used in [33] when proving the equivalence of
(2.2) and (2.4), it follows easily from (2.9) that altogether (u”, U") satisfies in © \ Qo
the boundary value problem

V- (cVu") =0 in Q\ Qo,
v-oVu® =0 on 0N\ E,
(2.11) u”® + zpv - oVut = U on E,,, m=1,...,M,
v-oVu® = g® on 99,
/E v-oVu®dS =0, m=1,..., M,
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where g® € H~'/2(9) is the Neumann trace of u* € H'()/C, which is well
defined by virtue of (2.10) (cf. [27]). Since o is Lipschitz continuous in Q \ €,
the interior regularity theory for elliptic partial differential equations [12] yields that
u® € H*(G)/C for any (smooth) open domain G' € Q \ ; and, furthermore,

[l 7260y /e < Cllu®|l () /c
for any other (fixed) smooth domain Gy € G. Choosing G and Gy to be open
neighborhoods of 9€), the trace theorem finally gives the estimate
(212)  llg"lav2(o00) < Cllullm2(6o)e < Cllutllm@ye = O(IK ]| 7)) I,

where the last inequality is a weaker version of (2.7).
Let us then define f* to be the Neumann trace of u” on 9. Exactly as in [16,
proof of Lemma 2.1], we get

(2.13) £l z200) < Cl@", Ul < O£l o)) 1],

where the second step is just (2.7). In particular, the trace theorem and the continuous

dependence on the Neumann data for the first equation of (2.11) indicate that (cf. [12])
w1 00y s < Cllu" |l gaszongoy e < CULF N L200) + 1971 2000))

(2.14) < O([I6l17 o) 1,

where the last step is obtained by combining (2.12) and (2.13). Via a bootstrap-type

argument, we may now use the properties of zero continuation in Sobolev spaces [27]
and the third equation of (2.11) combined with (2.1) to deduce for any s < 2 that

" 1/2
1f* [ s-3/2(00) < Cllf*Nlm @) < C <Z Uy, — Uﬂ”%ﬂ(&;))

m=1

(2.15) < O(lI#l e () 11,

where the last inequality follows from (2.14) and (2.7) as in [13, proof of Lemma 3.1].
The (re)employment of the continuous dependence on the Neumann data for the first
equation of (2.11) shows that

[l s ngoy e < CUE N are=sr2000) + 19" a-3r2(000)) < O8] 7 () I

due to (2.15) and (2.12). Combining this with (2.7), the assertion easily follows. O
Remark 2.2. By the same argument, one can also easily prove that

I(u(e), U(a))]|

e (\80) < CH
and
(' (03 5),U" (0 8)) Il (o2 < CllAill o= (2) ]

for any s < 2 under the assumptions of Theorem 2.1.

It is obvious that the measurement map R of the CEM, originally defined by
(2.6), can be treated as an operator of two variables, the conductivity and the input
current, that is,

(2.16) R:(o,I) = U(o), T xCM -cCM/C.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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It follows trivially from (2.7) that R is Fréchet differentiable with respect to the
conductivity and the corresponding (bilinear) derivative

(2.17) dsR[o] : K xCM - cM/C
is defined by
o R[o](k, I) = U'(0; k),

where U’(c, k) is the second part of the solution to (2.8), with the underlying current
pattern I € CM.

2.3. Electrode shape derivatives. We start by recalling from [7] a general
way of perturbing the electrodes { E,, }»_; with the help of C* vector fields living on
OF. We denote

Ba = {a€ C'(OE,R") | |lallc1(op.rn) < d}

and let B(z,d) = {y € R" | |y — x| < d} be a standard open ball in R™. Notice that
in two spatial dimensions OF consists only of the end points of the electrodes; in this
degenerate case, we simply define C'(0FE,R?) to be the space of 2M-tuples of vectors
supported, respectively, at those end points, with the corresponding norm defined,
e.g., as the sum of the norms of the individual vectors. For small enough d > 0,

P, : B(z,d) — 09

denotes the (nonlinear) projection that maps y € B(z,d), which lies sufficiently close
to x € OF, in the direction of v(x) onto 9. To make this definition unambiguous,
it is also required that P,x = x and P, is continuous. It is rather obvious that P,
is well defined for some d = d(2) > 0 that can be chosen independently of = € OF
due to a compactness argument. For each a € By, we introduce a perturbed set of
“electrode boundaries,”

(2.18) OEsn = {z€ 00| z = Py(x + a(z)) for some = € OE,,}, m=1,...,M.

According to [7, Proposition 3.1], there exists d > 0 such that for any a € By, the
formula (2.18) defines a set of well separated, bounded, and connected electrodes
Ef,...,E$ C 0Q with C' boundaries.

As a consequence, the measurement map of CEM, introduced originally in (2.6)
and fine-tuned by (2.16), can be further extended to be an operator of three variables,

(2.19) R:(a,0,1) = U(a,0), ByixXxCM - cM/c,

where U(a, o) is the electrode potential component of the solution (u(a, o), U(a, o)) €
H! to (2.2) when the original electrodes {E,,}M_, are replaced by the perturbed ones

{En =1
By assuming some extra smoothness for the conductivity, i.e., interpreting

R:ByxIhyxCM 5 cMc,

it can be shown (cf. [7, Theorem 4.1]) that R is Fréchet differentiable with respect to
the first variable at the origin. The corresponding derivative

9.R[0] = 0,R : CY (OB, R™) x 255 x CM — cMc,

which is linear with respect to the first and the third variable, can be sampled as indi-
cated by the following proposition that is a slight generalization of [7, Corollary 4.2].
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PROPOSITION 2.3. Let (i, U) € H' be the solution of (2.2) for a given electrode
current pattern I € CM and a conductivity o € Eé’g. Then, for any a € C1(OE,R")
and I € CM it holds that

M ~
(2.20) OuR(a,0,1) - I = Z / (a-vog,,)Unm —u) (U, — @) ds,

where vag,, is the exterior unit normal of OE,, in the tangent bundle of 022 and
(u,U) € H! is the solution of (2.2) for I € CM and o.

Proof. The proof of the proposition is essentially the same as for [7, Corollary 4.2],
where o was assumed to be smooth. However, it is straightforward to check that C!
regularity close to 0f is actually sufficient. O

In the following section, we need to linearize the measurement map with respect
to ¢ in order to obtain a computationally feasible measure for the optimality of the
electrode locations in the Bayesian framework. For this reason, we would like to
find a formula for the Fréchet derivative of 0, R defined in (2.17) with respect to a
electrode perturbation field a € C*(9FE,R™). To avoid further technicalities, we settle
for computing the derivatives in the reverse order without proving symmetry of second
derivatives.

THEOREM 2.4. The operator ,R : C*(OE,R™) x Zé’g x CM — CM /C is Fréchet
differentiable with respect to its second variable in the sense that

10aR(a, 0+ K, 1) = 0uR(a,0,1) — 0504 R[0](a, K, I)llcrv jc = O(||6 ]| 2w o)1 llall o1 o)

for all small enough r € Ks with 6 > 0 fixed. The (tri)linear second derivative
0s0.R[0] : C*(OE,R") x K5 x CM¥ — cM/C

at o € 2(13’8 is defined as follows: For any a € C*(OE,R"), k € Ks, and I € CM,

0,0, R[o](a, k,I) Z Zm/a (a-vom,, (U;n —u’)(Um —a)

m=1 E7n

(2.21) + (U, —u)(U}, —@'))ds,

where (u(o),U(0)), (@(o),U(c)) € H' are the solutions of (2.2) for I,I € CM
spectively, and (u'(o; k), U’ (05 K)), (@ (0; k), U (0;K)) € H' are those of (2.8).

Proof. To begin with, we note that (2.21) is a proper definition of a (bounded,
trilinear) operator from C*(0E,R™) x K5 x CM to CM /C since CM /C is finite dimen-
sional and its dual is realized by C}. (Notice also that the right-hand side of (2.21)
is well defined and depends boundedly on a, x, and I by virtue of Remark 2.2, the
trace theorem, and the Schwarz inequality; cf. the estimates below.)

By the triangle inequality it holds for any ¢ € C that

2. 22)
H (04 k) —u(o+ K)) — (Um(a) — u(o)) — (Ufn(o; k) — u'(o; /i))HLz
< HUm 0+ K) = Un(o) = Uy, (055) — ¢ o + ||u(o + k) —u(o) — /(05 k) — ]| .,

where the L?-norms are taken over dF,,, for an arbitrary m = 1, ..., M. Furthermore,
two applications of the trace theorem induce the estimate

(2.23) ||u(o+k)—u(o)—u'(co; k) cHLz(aE)<C||u(U+f$) u(o)— u'(a;fi)—cHHHn(G),
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where 7 > 0, the subset G C € is an arbitrary interior neighborhood of 92, and C =
C(n,G,E) > 0. Since k € K5 and o € 25’8 satisfy the assumptions of Theorem 2.1,
combining (2.22) with (2.23) and taking the infimum over ¢ € C yields

(2.24)
| (Uni(o8)—ulo+8)) — (Un(0) () — (U5 1)~ (1)) || 12 < O (]2 )1,

where the L2?-norm is once again taken over dF,,. Obviously, an analogous estimate
is valid when I is replaced by I and the potentials, together with their derivatives,
are changed accordingly.

Using the sampling formulas (2.20) and (2.21) together with (2.24) and the
Schwarz inequality, it can easily be deduced that

|(uR(a,0 + k. 1) = 0.R (a,0,1) — 0,0, R'[0)(a, &, 1)) - I| < O(8l|3 () 111l o

for all I € CM. Since CM is the dual of CM /C, this completes the proof. [

3. Bayesian inversion and optimal electrode positions. In the Bayesian
approach [21] to inverse problems all parameters that exhibit uncertainty are modelled
as random variables. Each quantity of interest is given a prior probability distribution
which reflects (a part of) the available information about it before the measurement.
The measurement itself is modelled as a realization of a compound random variable
depending on, e.g., model parameters and noise. Under suitable assumptions, by using
the Bayes’ formula for conditional probability, one obtains the posterior probability
density in which the updated information about the parameters of interest is encoded.
The practical problem is to develop numerical methods for exploring the posterior
distribution. In this section we revisit these concepts in the framework of the CEM,
the aim being to derive the desired posterior covariance related optimality criteria for
the electrode positions.

By means of discretization, let us model the conductivity by a finite-dimensional
real-valued random variable and denote its generic realization by ¢ € R™. Since
in most applications it is reasonable to inject several linearly independent electrode
currents {I (j)}évzl C RM into 2 and measure the resulting (noisy) electrode voltages

{VW}, c RM, we employ the shorthand notations
= [, (@), )T v = (v ()T (V) TTE
for the total current injection and electrode potential patterns, respectively. Here the

measurement V is modelled as a realization of a random variable that takes values in
RMN and depends intimately on the forward solution

U(o) = R(0,T) = [R(o, I'N)T R(o, INHT, ... R(o, IN")T]T,

where the current-to-voltage map R(:,) is defined as in (2.16). Since we are interested
in considering the electrode configuration as a variable, we denote an admissible set
of electrodes by & = {E1, Es, ..., En}.

Suppose that our prior information on the conductivity is encoded in the prob-
ability density ppr(0) and the likelihood density p(V|o;Z,E) is known. According to
the Bayes’ formula, the posterior density for o is given by

p(V|cr;I, 5) ppr(g)
pV;ZL,E)

(3.1) p(eV;1,8) =
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where the density of V is obtained via marginalization:

p(V;I,g):/p(o,V;I,E)da:/p(V|0;I,5)ppr(U)dU.

In particular, the posterior density can be used to define different point estimates
such as the (possibly nonunique) mazimum a posteriori (MAP) estimate

(3.2) omap(V;Z,E) = argmax p(o|V;Z,€E)
and the conditional mean (CM) estimate
sou(ViL.E) = [ aplolViT.&)do

Often, these (and other) point estimates cannot be obtained as closed form solutions
to some deterministic problems, but instead, they require implementation of, e.g.,
Monte Carlo (MC) type sampling methods or high-dimensional numerical optimiza-
tion schemes [18, 21].

Next we move on to consider criteria for optimal experimental design. Our general
approach is to form a suitable functional reflecting the feasibility of £ and define its
minimizer/maximizer to be the optimal electrode positions. From the point estimate
perspective, the most intuitive choice for the to-be-minimized functional is, arguably,
of the mean-square-error-type [19, 20],

(3.3)
v (Z,E) >—>/ (/ |A(c — 6(V;Z,8))|*p(o|V; T, €) da) p(V;Z,E)dV

<//A s(ViZL,£))(o a—(v;I,5))TATp(o,v;I,5)dadv>,

where A is the chosen weight matrix and ¢ is the point estimate of interest. (Although
the numerical experiments in section 5 only consider optimization of the electrode
locations, in this section ¢ is interpreted as a function of both Z and £, which reflects
the fact that the applied current patterns and the electrode positions could in principle
be optimized simultaneously.) In optimal experimental design [2, 4], the minimization
of the functional (3.3) is often called the A-optimality criterion; intuitively, the A-
optimal design minimizes the variation of ¢ around the considered point estimate &
in the (semi)norm induced by the positive (semi)definite matrix AT A.

Another approach is to compare the prior and posterior distributions directly
without committing oneself to a specific point estimate. As an example, the maxi-
mization of the information gain when the prior is replaced with the posterior leads
to the Kullback—Leibler divergence of the prior from the posterior,

(3.4) :(Z,€) >—>/(/ ( jz(z)£)>p(a|v;1,5)da> p(V;Z,E)dV

In optimal experimental design the maximization of the functional (3.4) is known as
the D-optimality [2, 4]. Note that by Fubini’s theorem and the Bayes’ formula we
have

/log(ppr(a)) (0, V;Z,8)dodV = /(/ V|o;Z,E) dV) log(ppr(0)) ppe(0) do
(3.5) — [ 10800 () () o
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which is independent of the pair (Z,&). In consequence, pp:(0) can be dropped from
the denominator in (3.4) without affecting the maximizer with respect to (Z, €).

If the measurement is of the form V = ¢(U(0),e), where € models the noise and
o is differentiable, then the results of section 2 could in principle be used to build a
gradient-based optimization algorithm for minimizing (3.3) or maximizing (3.4). In
particular, the most commonly used additive noise models fall into this framework.
However, such an approach could easily end up being extremely expensive compu-
tationally due to the extensive MC sampling required for evaluating the feasibility
functional as well as its derivatives. For this reason, we move on to derive closed form
expressions for (3.3) and (3.4) in case the prior and the noise process are Gaussian,
and the current-to-potential map is linearized with respect to the conductivity.

3.1. Gaussian models with linearization. For both clarity and simplicity, we
omit writing the (Z, £)-dependence explicitly in the following. We choose an additive
noise model

(3.6) V=U(o) +¢,

where ¢ € RMY is a realization of a zero mean Gaussian random variable with the
covariance matrix I'hpise. Assuming that the prior is also Gaussian with the mean o,
and the covariance matrix I'p,, it follows from (3.1) that the posterior density satisfies

B1) oY) o exp (5 U(0) = VITh () V) = 5o = o TMo — ).

where the constant of proportionality is independent of o but depends in general on
V, Z, and £. We also assume that both of the needed inverse covariance matrices
exist.

In order to evaluate the integrals in (3.3) and (3.4) explicitly, we linearize the
current-to-voltage map centered at the prior mean, i.e., we apply

(3.8) U(o) ~U(0) + Tl — 04),

where J. := J(0.) is the matrix representation of k +— U'(0.;k) = 9, R[o+](k,T)
(cf. (2.17)). As a result, we obtain an approximate posterior density
(3.9)

1 1
pelolV) scexp (~5(20 ~ V)T (T~ V) = (o - o) T - ).

where V. :=V —U(0,) + J.o.. Notice that p.(-|V) is a product of two multivariate
normal densities and thus a multivariate Gaussian itself. By completing the squares
with respect to o, the covariance matrix and the mean of p, (- |V) can be written as [21]

(3.10)  T.=(JL 2 +T50) 70 and 6. =LAV

noise ” *»
respectively. In particular, this means that we altogether have

_;X _10'—6'T_10'—(5’
(o) = e p( 37— 8T *)>

due to the normalization requirement of probability densities.
Let us choose 6(V) = 6. as our point estimate of interest. Replacing p(c|V) by
p«(c]V) and p(V) by the density of V corresponding to the linearized model, say, p.(V)
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n (3.3), we get a new, simpler, feasibility functional

Vi (Z,E) — tr (/ (/ A(o —6.)(0 —6.) A p.(0]V) da) p«(V) dV)
(3.11) = tr (/ AT ATp. (V) dv) = tr(Ar, A7),

where we used the independence of I'y from V. Take note that the right-hand side of
(3.11) can be evaluated with a reasonable computational effort. Performing the same
simplifications in (3.4), we get another computationally attractive functional

(Z,€) |—>/ (/ ( ppr(W))) p*(cr|V)da> p(V)dV

-/ ( [0 <p*<a|v>>p*<a|v>da) po(V)dV +C
_ / tog (/@re)™ det(T)) pu (V) dV + €

1
(3.12) =3 log det(T,) + C’,

where the first step follows from the logic (3.5) and the second one from the known
form of the differential entropy for a multivariate Gaussian (cf. [25]). Furthermore,
C and C’ are scalars that are independent of the current pattern and the electrodes.
Hence, for the linearized model, maximizing the information gain is equivalent to
minimizing log det(T',).

4. Algorithmic implementation. In this section we introduce our electrode
position optimization algorithm in two spatial dimensions. To this end, suppose that
Q) is star-shaped and can thus be parametrized by a 27-periodic simple closed curve
~v: R — R? with respect to the polar angle. Each electrode in the configuration
E ={F1,Es,...,Ep} is composed of an open arc segment on J{), meaning that E,,
is determined by the pair of its extremal polar angles 0., < ;. We denote the full
angular parameter by 0 = [07,07]T € R?M where * = [9%,6‘%, .. .,HE]T. Given
that a particular § defines an admissible electrode configuration, we may denote the
dependence of any function on the electrodes via this parameter.

In order to build a gradient-based optimization algorithm for (3.11) or (3.12), we
(approximately) calculate the derivatives 0.7 /90 (cf. (3.8) and (3.10)) by applying
the reverse order second derivative formula (2. 21) in the form

- U L (OUS) N

_ - m_ U\ =G) _ ~0G)
L BorovE HFZ”O” |< Do aak)(U a?) .
(41) Jj=1 'Y(Gm)

ouy  ou
) _ ) m

:FZh/O'Y U u )(80'k aO'k) (Gi)a
Y(Um

where + is the derivative of 7. The pairs (u7), U(j)) and (a9, UW) are the solu-
tions to (2.2) for the jth current inputs V) and I) in the associated total cur-
rent vectors Z and Z, respectively. Furthermore, ((du?))/(doy), (0UD)) /(o)) and
((0u9))/(9ay), (5U(j))/(8ok)) are the corresponding solutions to (2.8) with the con-
ductivity perturbation x being the kth component of the discretized o. Notice that
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the integrals over the boundaries of the electrodes in (2.21) are reduced to point
evaluations at the electrode edges in (4.1), which is the correct interpretation in two
dimensions (cf. [7]), and the choice a - vgp, = %|¥ o~y !| results in the derivatives
with respect to the polar angles of the electrode end points.

In order to make use of the differentiation formula (4.1) in practice, we are forced
to carry out several technicalities. First of all, approximate solutions to (2.2) are
computed using piecewise linear finite elements (FE) in a polygonal domain Q01 ~ 2
with a triangulation 7. Since Q01y and especially 7 can vary significantly depending
on the electrode locations, we choose a fixed “background domain” D D 2, Q,01y with
a homogeneous triangulation to act as a storage for an “extended conductivity” ¢
which is parametrized using piecewise linear basis functions on D. The values of ¢ are
carried over to {01y by a projection matrix P, and the projected conductivity Pg is
used in the approximations of (u?)(¢), U (0)) and (2 (o), U (0)) with o = ¢|o;
for detailed instructions on the assembly of the FE scheme for the CEM, see, e.g., [37].
Second, we note that the FE approximations are also differentiable with respect to
the variable Pg, and the associated derivatives are determined by a formula analogous
to (2.8) with the variational space replaced by the FE space in question. Finally, we
employ the sampling formula (4.1) with the exact solutions on the right-hand side
replaced by their FE counterparts even though there exists no proof that such an
approximation converges to the desired quantity when the FE discretization gets finer
(cf. [9, Remark 2.4])—in fact, based on Proposition 2.3, we do not even know that the
continuum derivatives exist if the support of the conductivity perturbation touches
the boundary. However, these theoretical imperfections did not affect the stability
of the numerical experiments in section 5. To sum up, using the above scheme, we
obtain a numerical approximation for J as well as for 97 /90 (cf. (3.8)).

In the following we assume that the electrode widths are fixed. Extending the
proposed approach to the case where the electrode sizes are optimized instead of/in
addition to the electrode positions is a straightforward task. This assumption implies
a dependence 6}, = 61 (6, ). Differentiating the arc length formula, one obtains
) a5, _ 15(0,,)

dbm 365

which can be incorporated into all needed gradients via the chain rule. After this
observation, we are finally ready to introduce our numerical algorithm for optimizing
the feasibility functionals (3.11) and (3.12) with respect to the electrode positions.
ALGORITHM 1. A STEEPEST DESCENT ALGORITHM FOR FINDING THE OPTIMAL
ELECTRODE POSITIONS.
(0) Fix the initial set of constant parameters: z (contact impedances), Z (elec-
trode currents), D and Q (background domain and object), o, (prior mean),
I'pr (prior covariance), and I'yeise (noise covariance). Choose the starting
point for the iteration 6= = 6._;,.

(1) Select the desired cost functional; our choice is (cf. (3.11) and (3.12))

o M 1 tr(C.(607)), or
(4.3) wOT) =a), @) " {logdet(F*(G_)),

m=1

where o > 0 is a manually picked constant and g,, is the length of the gap
between the mth and (m + 1)th electrode (modulo M). The first term in
(4.3) is included to prevent the electrodes from getting too close together.
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(2) Evaluate ¥ (6~) and use the above numerical scheme (based on (4.1) and
(4.2)) to compute each 0.7/90;,. Subsequently, by applying well-known dif-
ferentiation formulas to (3.10) and (4.3), calculate each 0¢/d6,, and build
the gradient V(07 ). The new iterate is defined as

— gy VP(OT) o avemin o[- — ¢ YP0O7)

P = 07—t TGy i = A RR “’(9 t|vw<9)|)’
where the minimum is sought by a line search routine and A C [0, o) is cho-
sen so that the gaps between the electrodes remain positive. Take note that
within the line search, each evaluation of ¢ (cf. (4.3)) requires construction of
an FE mesh corresponding to the electrode positions specified by the input.

(3) Unless satisfactory convergence is observed, set 6~ = 0__,,, generate a corre-
sponding 01y, and repeat phase (2).

(4) Return 0, = 0,

In our numerical experiments, we set exclusively o = 10~4, but most of the results

would be qualitatively the same even if @« = 0. However, a positive « increases the

speed of convergence exhibited by Algorithm 1. We have chosen the weight matrix

A of the A-optimality condition to be the identity matrix in (4.3), which means that

all node values of the conductivity on the uniform triangulation of the background

domain D are considered equally important. Note also that in the floating point arith-
metic there is a problem of overflow /underflow when evaluating determinants of large
matrices. This can fortunately be circumvented by using the Cholesky decomposition

I, = LLT of the symmetric and positive definite posterior covariance matrix. Indeed,

logdet(T,) = 2logdet(L) = 2210g(ln-),

where [;; are the diagonal entries of the triangular Cholesky factor L. This trick
stabilizes the treatment of the second cost function in (4.3) considerably.

Let us conclude this section with a numerical motivation of the proposed (Fréchet)
differentiation technique for the posterior covariance related functionals in (4.3);
cf. Theorem 2.4. We claim that, besides clearly being computationally more effi-
cient, the Fréchet-derivative-based method is also likely to be more accurate than a
carelessly chosen perturbative numerical differentiation approach. In order to make a
single comparison, we choose the following attributes for the test object: Q@ = B(0, 1),
i.e., the unit disk, and o, = 1. We employ two electrodes of width 7/16 character-
ized by 6., = [0,7/2]T whence there is essentially only one current injection pattern
I =7 = [-1,1]T. The contact impedances are set to 21 = 25 = 1. The Gaussian
prior and the additive zero mean noise process have the covariances

Tor = 0.2°1,  Thoise = (1073|U1(04,67) — Us(,67)])° 1,

respectively, where 1 denotes an identity matrix of the appropriate size. Figure 1
illustrates the line search directions at the first step of Algorithm 1 obtained by the
Fréchet derivative and by a number of central difference formulas [28]. Depending on
the order of the employed difference rule and the size of the used perturbation for
the electrode locations, the search directions provided by the perturbative method
vary considerably. On the other hand, the directions given by the Fréchet derivative
technique seem to be in a relatively good agreement with the difference schemes
of the highest order with relatively small (but not too small) perturbation sizes,
which arguably indicates both computational efficiency and reliability of the Fréchet
derivatives.
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Fia. 1. Comparison of search directions for Algorithm 1 produced by different numerical meth-
ods. The vectors illustrate numerical approzimations of Vi (07) € R? (cf. (4.3)). The green one
(with a star marker) is the Fréchet derivative whereas the rest of the vectors are computed using
central difference formulas with different numbers of grid points and perturbation sizes. The color-
bar visualizes the magnitude of the perturbation in the electrode positions and the bigger the marker
size, the higher the order of the central difference (2,4,6, or 8). The left-hand image corresponds
to log det(I'sx) and the right-hand image to tr(I'x) (the plots are in different scales).

5. Numerical examples. In this section, as a proof of concept, we apply the
proposed algorithm to a few test cases. In all examples we choose, for simplicity, the
prior mean to be homogeneous, o, = 1, and fix all contact impedances to the unit
value regardless of the number of electrodes in use. Furthermore, we use the fixed, full
set of current input patterns Z = [e],el,...,el]T —[e3,ex,...,e1,]T € RMM-1)
where e,,, denotes the mth Cartesian basis vector. In other words, we compose a basis
of RM by fixing one feeding electrode and letting the current exit in turns from the
remaining ones. A bit surprisingly, the choice of the current patterns did not have a
notable effect on the optimal electrode positions in our numerical tests; according to
our experience, this would not necessarily be the case for considerably higher noise
levels. Note, however, that if a full set of M —1 independent current injections was not
available, the choice of current injection patterns would have an important role in the
optimal experimental design [19]. We restrict our attention to Gaussian smoothness
priors with covariance matrices I'p, = I'(A, ) of the form

() _ ()2 L
(5.1) Iy = n?j exp < - %), W 20) e D,

where £7; > 0 are the covariance factors between the node values of the conductivity
on the uniform triangulation of the background domain D, and A is the correlation
length that controls spatial smoothness. If k;; = & is constant, the prior is said to be
homogeneous. In particular, bear in mind that the prior mean is homogeneous in all
our experiments, and the term “inhomogeneous prior” reflects a property of the prior
covariance matrix.

In what follows, we consider three test cases. In the first one, we choose a sim-
ple inhomogeneous prior and use only four electrodes so that the optimized electrode
positions can be verified by brute force simulations; the motive is to validate the
functionality of Algorithm 1. The second example continues to use an intuitive in-
homogeneous prior but with twelve electrodes, making the brute force computations
practically infeasible; the idea is to demonstrate that the output of Algorithm 1 re-
mains as expected even for a higher dimensional setting. The last example considers
still twelve electrodes, but with three different object shapes and a homogeneous prior;
the aim is to indicate that the domain shape also has an effect on the optimal elec-
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trode locations. In all three tests, we assume a mean-free, additive white noise model
with the covariance matrix

2
T hoise = (103 H}Calx |Z/[k (0'*7 ei;lit) — Z/{l((f*, ei;lit7 )|) 1,

where U(o, 0;,,) refers to the (exact) total electrode potential vector corresponding
to the prior mean conductivity and the initial electrode configuration. In practice,
the noise might also depend on the electrode configuration, but we choose to ignore
this complication. (Note that I'ygise changes slightly from test to test as U(ow,0;;;)
does.)

Case 1. A circular subdomain with high prior variance. In the first test,
the object of interest €2 is a unit disk and the prior covariance is inhomogeneous: We
pick a smaller disk Q' C Q (cf. Figure 2) and choose I'p, = I'(0.5, k) with

04, 2z z0) ey,
(5.2) Kij =14 0.03, @ 20 ¢ Q' @ 20 e D,

0, @ e, ) ¢, or vice versa,
In other words, 2 consists of two uncorrelated parts, one of which is a relatively
small inclusion with a large variance, whereas the background conductivity values are
“almost known.” The four employed electrodes are depicted in Figure 2, with the
special, current-feeding electrode indicated by a longer “cord.”

9909
o909

0 0.02 0.04 0.06 008 0.1 0.12 0.14 0.16

Fic. 2. Comparison of the output of Algorithm 1 with the “brute force” minimizer in Case
1. The colormap corresponds to the point variances (diagonal of the covariance matriz) of the
distribution in question. Top left: the prior variance (5.2). Bottom left: the initial guess 6, with
the corresponding posterior variance. Center column: the global minimizer for tr(I'sx) (top) and
log det(T'sx) (bottom) in (4.3) with the corresponding posterior variances. Right column: the output
of Algorithm 1 for tr(I'x) (top) and logdet(I'x) (bottom) in (4.3) with the corresponding posterior
variances.
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Fic. 3. Illustration of the effect of k;; for z 20) ¢ O in (5.2) on the optimized electrode
positions in Case 1 with the A-optimality criterion, i.e., with tr(Ux) in (4.3). From left to right: the
optimized electrode positions corresponding to the values k;; = 0.05,0.1,0.15, and 0.2 for the “prior
background standard deviation” in (5.2). The colormap is as in Figure 2.

As we are primarily interested in whether Algorithm 1 finds the global minimum
of the functional ¢ from (4.3), we evaluate ¥ on a reasonably large set of angular
parameters 0~ € [0,27)* (so that the ordering of the electrodes does not change) and
eventually minimize over the evaluations. In Figure 2, the brute force based global
minimizers are compared to the outputs of Algorithm 1, with uniformly spaced elec-
trodes serving as the initial guess. At least with such a low number of electrodes, the
numerical results support the functionality of Algorithm 1, that is, for both alterna-
tive functionals in (4.3), the optimal configurations provided by Algorithm 1 and the
brute force computations approximately coincide. Moreover, the optimal positions
seem rather logical: Two of the four electrodes move close to the smaller disk that
carries most of the uncertainty, which clearly reduces the variance of the posterior, as
illustrated in Figure 2.

To demonstrate the nontrivial dependence of the optimal measurement configu-
ration on the prior knowledge about the conductivity, Figure 3 illustrates how the op-
timal electrode positions change when the covariance factor for 29, 2(9) ¢ Q' in (5.2)
varies in the interval x,;; € [0.05,0.2]. In other words, the images in Figure 3 cor-
respond to different ratios between the prior uncertainties in Q0 and Q \ Q. Here,
we employ the A-optimality criterion, i.e., tr(T's) in (4.3). Notice that with the two
highest values x;; = 0.15,0.2 for (9, 20) ¢ (/| the electrode positions presented in
Figure 3 are not symmetric with respect to ', meaning that there exist two optimal
configurations that are certain mirror images of one another.

Case 2. Semidisks with different prior variances. In this example, there
are twelve electrodes attached to the unit disk Q = B(0,1). The prior covariance is
of the form I'y, = I'(0.5, k), where

0.03, «$”,2Y >0,

(5.3) Kij = § 0.4, a:gi),a:éj) <0, 2@ 20 e D,
0, xg) >0, ﬂCéj) < 0, or vice versa,

that is, the upper and lower halves of € are uncorrelated, with the point variances
being considerably higher in the lower than in the upper half. The outputs of Al-
gorithm 1 for the two objective functionals in (4.3) are illustrated in Figure 4. We
observe that both optimization criteria yield qualitatively very similar results, which
is also intuitively acceptable: Almost all electrodes are moved around the lower half of
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Fic. 4. Output of Algorithm 1 with twelve electrodes in Case 2. The colormap corresponds
to the point variances of the distribution in question. From left to right: (i) The prior variance

(5.3). (ii) The initial guess 0, ;. with the corresponding posterior variance. (iii) & (iv) The out-

puts of Algorithm 1 with the corresponding posterior variances for logdet(I'sx) and tr(T'x) in (4.3),
respectively.

Q) where the uncertainty about the conductivity is the highest a priori. Take note that
the slight asymmetry in the optimal electrode configurations of Figure 4 is probably
due to the original/final position of the current-feeding electrode (with a longer cord);
the reached optimum is not necessarily the global one, albeit the corresponding value
of the objective functional is probably very close to optimal.

We proceed with an evaluation of the output of Algorithm 1. More precisely, we
compare the mean square error in the MAP reconstructions corresponding to the opti-
mized electrode positions with that for the initial equidistant electrode configuration.
The outline of the procedure is as follows: A number of Nyyayw conductivities ogray are
drawn from the prior NV(o., I'pr). For each 0graw, a datum Vi, is simulated by adding
artificial noise drawn from A (0, I'ypise) to the forward solution (computed on a denser
FE mesh than the one used for the reconstructions to avoid an inverse crime). Take
note that the chosen noise covariance is such that the expected [Vsim — R(0draw)Z|?
is about 0.0052|R(0.)Z|?, i.e., it roughly corresponds to 0.5% of relative error. Sub-
sequently, for each Vg, an (approximate) MAP estimate, determined by (3.2) where
the posterior density is the unlinearized one from (3.7), is computed by a variant of
the Gauss—Newton algorithm (see, e.g., [8]).

Assuming that the (pseudo)random draws are distributed as intended, it is easy
to deduce that each pair (Gdraw, Vsim) 18 a realization of a random variable with the
joint density p(o,V) = p(V|o)ppe(o) (cf. (3.7)). By the strong law of large numbers,
the average of the square errors |odraw — 0mapP (Vsim; 07 )|? thus tends almost surely
to (3.3) as Naraw goes to infinity, with A being the identity matrix in (3.3). The
numerical results with Ngpaw = 500 are visualized in Figure 5. In particular, we get
approximately 0.75 as the ratio between the averages of |ograw — omaP (Vsim; Ggpt)|2
and |odaraw — oMAP (Vsim; 9;it)|2, which demonstrates the superiority of the optimized
configuration.

Case 3. Objects with different boundary shapes. The final numerical test
considers finding the optimal locations of twelve electrodes around three different
objects: the ellipse-like shape, the peanut, and the complicated domain shown in
Figure 6. For all three objects, the conductivity prior is I'(0.5,0.4) and the initial
electrode positions for Algorithm 1 are presented in the top row of Figure 6. The
optimal electrode locations produced by Algorithm 1 (with the choice logdet(I',) in
the functional (4.3)) are illustrated on the bottom row of Figure 6. In the optimized

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/19/19 to 130.233.216.233. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

OPTIMIZING ELECTRODE POSITIONS IN EIT 1849

40
35w
30H
25/\*-—
20
% 10 200 300 400 500
B T
0 002 004 006 008 04 012 014 0.16 0 05 1 1.5 2

Fi1c. 5. An evaluation of the output of Algorithm 1 in Case 2. From left to right: (i) The average
of the pomthse squared errors (araw — OMAP Vsim; 07))? for an equidistant 6= = 0_... (ii) The
average of the pointwise squared errors (Tqraw — OMAP Vsim; 07))% for an optimized 6~ = = 0O5py with
tr(C'«(0)) in (4.3). (ili) The ratio of (ii) and (i). (iv) The value of (3.3) approzimated by tr(I'«(0))
(dashed horizontal line) and by the random draws (solid line as a function of the number of random
draws), respectively; the upper (red) and lower (blue) pairs of graphs correspond to 0, .. and 0
respectively.
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F1a. 6. Output of Algorithm 1 with different object shapes and a homogeneous Gaussian smooth-
ness prior in Case 3. The colormap corresponds to the point variances of the distribution in question.
Top row: the initial guesses 0, ;, with the corresponding posterior variances. Bottom row: outputs
of Algorithm 1 for logdet(I'sx) in (4.3) with the corresponding posterior variances.

configurations, the widest gaps end up over boundary segments with negative curva-
ture, but other general conclusions are difficult to draw based on Figure 6 only. As an
example, the optimal configuration for the ellipse seems to be almost equidistant. Be
that as it may, the values of the objective functional (4.3) are considerably lower for
the optimized electrode configurations compared to their unoptimized counterparts.

6. Conclusions. We have proposed a methodology for the optimization of the
electrode positions in EIT. The employed optimality criteria were derived from the
Bayesian approach to inverse problems, with the aim being to make the posterior
density of the conductivity as localized as possible. In order to lighten the computa-
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tional load, we approximated the posterior by linearizing the current-to-voltage map
of the CEM with respect to the conductivity around the prior mean, which allowed
closed form expressions for the to-be-minimized quantities: the trace and the deter-
minant of the posterior covariance matrix, which correspond to the so-called A- and
D-optimality criteria of experimental design, respectively.

The introduced optimization algorithm is of the steepest descent type; the needed
derivatives with respect to the electrode locations were computed based on appropri-
ate Fréchet derivatives of the CEM. Our numerical experiments demonstrate (i) the
functionality of the algorithm, (ii) that the optimal electrode configurations are non-
trivial even in relatively simple settings, and (iii) that the employment of the optimal
electrode locations improves the quality of EIT reconstructions.
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