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CONSTRUCTION OF INDISTINGUISHABLE CONDUCTIVITY
PERTURBATIONS FOR THE POINT ELECTRODE MODEL

IN ELECTRICAL IMPEDANCE TOMOGRAPHY∗

LUCAS CHESNEL† , NUUTTI HYVÖNEN‡, AND STRATOS STABOULIS§

Abstract. We explain how to build indistinguishable isotropic conductivity perturbations of
the unit conductivity in the framework of the point electrode model for two-dimensional electri-
cal impedance tomography. The theoretical approach, based on solving a fixed point problem, is
constructive and allows the implementation of an algorithm for approximating the invisible pertur-
bations. The functionality of the method is demonstrated via numerical examples.
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current sources, elliptic boundary value problems, complete electrode model
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1. Introduction. Electrical impedance tomography (EIT) is a noninvasive imag-
ing technique with applications, e.g., in medical imaging, process tomography, and
nondestructive testing of materials [6, 9, 36]. The aim of EIT is to reconstruct the
conductivity distribution inside the examined physical body D ⊂ R

d, d ≥ 2, from
boundary measurements of current and potential. From the purely theoretical stand-
point, the inverse problem of EIT, also known as the inverse conductivity problem,
corresponds to determining the strictly positive conductivity σ : D → R in the elliptic
equation

(1.1) div(σ∇u) = 0 in D

from knowledge of the corresponding Neumann-to-Dirichlet (or Dirichlet-to-Neumann)
map at the object boundary ∂D. This formulation corresponds to the idealized con-
tinuum model (CM), which is mathematically attractive in its simplicity but lacks
a straightforward connection to practical EIT measurements that are always per-
formed with a finite number of contact electrodes. On the other hand, it is widely
acknowledged that the most accurate model for real-life EIT is the complete electrode
model (CEM), which takes into account electrode shapes and contact resistances at
electrode-object interfaces [10, 32].

Instead of the CM or the CEM, in this work we employ the point electrode model
(PEM) that treats the current-feeding electrodes of EIT as delta-like boundary cur-
rent sources and models the potential measurements as pointwise evaluations of the
corresponding solution to (1.1) at the electrode locations [13]. (To make such a model
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2094 L. CHESNEL, N. HYVÖNEN, AND S. STABOULIS

well defined, relative potential measurements need to be considered due to the sin-
gularities induced by the localized current inputs; see section 2 for the details.) The
PEM is a reasonably good model for practical EIT measurements—in particular, it
is superior to the CM (cf. [16])—if the electrodes are small compared to the size of
the imaged body: The discrepancy between the PEM and the CEM is of the order
O(h2), with h > 0 being the maximal diameter of the electrodes [13]. In this work
we develop a method, introduced by [4] in the context of acoustic waveguides (see
also [25] for the original idea), for building invisible perturbations of a given reference
conductivity for an arbitrary but fixed electrode configuration modeled by the PEM.

To put our work into perspective, let us briefly review the main results on the
unique solvability of the inverse conductivity problem, which was proposed to the
mathematical community by Calderón in [7]. For d ≥ 3, the global uniqueness for
C 2-conductivities was proved in [34]; an extension of this result to the case of Lip-
schitz conductivities can be found in [11]. The first global uniqueness proof in two
spatial dimensions was given by [24] for C 2-conductivities; subsequently, [2] proved
uniqueness for general L∞-conductivities. All these articles assume the Cauchy data
for (1.1) are known on all of ∂D, but the partial data problem of having access only
to some subset(s) of ∂D has also been tackled by many mathematicians; see, e.g.,
[19, 20] and the references therein. From our viewpoint, the most important unique-
ness results are presented in [17, 31], where it is shown that any two-dimensional
conductivity that equals a known constant in some interior neighborhood of ∂D is
uniquely determined by the PEM measurements with countably infinite number of
electrodes. This manuscript complements [17, 31] by constructively showing that for
an arbitrary, but fixed and finite, electrode configuration there exists a perturbation
of the unit conductivity that is invisible for the EIT measurements in the frame-
work of the PEM. For completeness, it should also be mentioned that recently the
nonuniqueness of the inverse conductivity problem has been studied for finite element
method (FEM) discretizations with piecewise linear basis functions [22]. (Take note
that we restrict our attention exclusively to isotropic conductivities because it is well
known that the inverse conductivity problem is not uniquely solvable for anisotropic
conductivities; see, e.g., [1, 33] and the references therein.)

Our constructive proof for the existence of “invisible conductivities” is based on
introducing a small perturbation of a given reference conductivity and applying a
suitable fixed point iteration. The general idea originates from [8, 25, 26, 27, 28,
29], where the authors develop a method for constructing small regular and singular
perturbations of a waveguide that preserve the multiplicity of the point spectrum
on a given interval of the continuous spectrum. Subsequently, the same approach
has been adapted in [4] (see also [5] for an application to a water wave problem) to
demonstrate the existence of regular perturbations of a waveguide allowing waves at
given frequencies to pass through without any distortion or with only a phase shift.
Recently, in [3] the methodology has also been used in inverse obstacle scattering
to construct defects in a reference medium which are invisible to a finite number of
far field measurements. Although our technique is, in principle, applicable in any
spatial dimension d ≥ 2 and for an arbitrary smooth enough reference conductivity, a
necessary intermediate result about linear independence of certain auxiliary functions
(cf. Lemma 3.4) is proved here only for d = 2 and the unit reference conductivity,
making the main theoretical result of this work two-dimensional. We implement the
constructive proof as a numerical algorithm that is capable of producing conductivities
that are indistinguishable from the unit conductivity for a given set of point electrodes.
We also numerically demonstrate that such conductivities are almost invisible for small
electrodes within the CEM as well.
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INVISIBLE CONDUCTIVITY PERTURBATIONS IN EIT 2095

It should be emphasized that the existence of invisible conductivity perturbations
for a finite number of electrodes is not completely surprising: The space of admissible
conductivities is infinite dimensional, whereas EIT measurements with N + 1 elec-
trodes include only N(N + 1)/2 degrees of freedom. However, note that in a closely
related setting for inverse scattering by a penetrable object invisible perturbations of
the refractive index do not exist for certain finite-dimensional measurements involving
forward scatter [3, section 4.3]. Be that as it may, we are not aware of any previous
works providing examples on this nonuniqueness that is of importance in practical
EIT. In particular, our algorithm sheds light on the role of regularization, or employ-
ment of prior information, in EIT: If a number of conductivities produce the same
electrode data, the choice between them in a given reconstruction algorithm must be
based on some complementary information.

This text is organized as follows. Section 2 introduces the setting for our analysis
and a representation of the relative PEM measurements with respect to a certain sim-
ple basis of electrode current patterns. The general scheme for constructing invisible
conductivity perturbations is presented in section 3 and, subsequently, section 4 adds
the missing theoretical piece in two dimensions. The main result of the article is pre-
sented in Theorem 4.3. The algorithmic implementation of the constructive existence
proof is considered in section 5 and, finally, the numerical examples are presented in
section 6.

2. Setting. Let D ⊂ R
d, d ≥ 2, be a simply connected and bounded domain

with a C ∞-boundary. Introduce a real valued reference conductivity σ0 ∈ C∞(D)
such that σ0 ≥ c > 0 in D. (Throughout this text C, c > 0 denote generic constants
that may change from one occurrence to the next.) Consider the Neumann boundary
value problem

(2.1) div(σ0∇u0) = 0 in D, ν · σ0∇u0 = f on ∂D

for a current density f in

(2.2) Hs
�(∂D) := {g ∈ Hs(∂D) | 〈g, 1〉∂D = 0}

with some s ∈ R. Here and in what follows, ν denotes the unit normal vector of ∂D
orientated to the exterior of D. We observe that the dual of Hs�(∂D) is realized by

(2.3) H−s(∂D)/R := H−s(∂D)/span{1}, s ∈ R.

It follows from standard theory of elliptic boundary value problems that (2.1) has a
unique solution u0 ∈ Hs+3/2(D)/R, which is smooth away from ∂D due to the interior
regularity for elliptic equations. In particular, for any compactly embedded domain
Ω � D it holds that

(2.4) c‖u0‖H1(Ω)/R ≤ ‖u0‖Hs+3/2(D)/R ≤ C‖f‖Hs�(∂D),

where c = c(s,Ω) and C = C(s) [23]. Let us next consider a perturbed conductivity

(2.5) σε := σ0 + εκ,

where κ ∈ L∞(D) is compactly supported in D and ε > 0 is such that σε ≥ c > 0 in
D. The corresponding perturbed Neumann boundary value problem

(2.6) div(σε∇uε) = 0 in D, ν · σε∇uε = f on ∂D,
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2096 L. CHESNEL, N. HYVÖNEN, AND S. STABOULIS

with f ∈ Hs
�(∂D) for some s ∈ R, has a unique solution in (Hs+3/2(D)∩H1

loc(D))/R1

(cf., e.g., [23, 14]).
We note that the relative Neumann-to-Dirichlet map

Λε − Λ0 : f �→ (uε − u0)|∂D, D ′
�(∂D) → D(∂D)/R

is well-defined. Here, the mean-free distributions D ′
�(∂D) and the quotient space of

smooth boundary potentials D(∂D)/R are defined in accordance with (2.2) and (2.3).
This regularity result can be deduced from standard elliptic theory (cf., e.g., [23, 14])
and follows from the fact that Λε and Λ0 are pseudodifferential operators with the
same symbol on ∂D because σε − σ0 vanishes in some interior neighborhood of ∂D.
One can also prove the following symmetry property for the relative Neumann-to-
Dirichlet map (see, e.g., [31, Theorem 2.1]).

Proposition 2.1. For all ϕ, ϕ′ ∈ D ′
�(∂D), we have

〈ϕ, (Λε − Λ0)ϕ′〉∂D = 〈ϕ′, (Λε − Λ0)ϕ〉∂D =

∫
D

(σ0 − σε)∇uεϕ · ∇u0ϕ′ dx,

where uεϕ, u
0
ϕ′ denote respectively the solutions of (2.6), (2.1) with f equal to ϕ, ϕ′.

Now, consider an observer who can impose currents between pairs of (small)
electrodes located at x0, . . . , xN ∈ ∂D and measure the resulting voltages for both
conductivities σ0 and σε. According to the PEM [13], this corresponds to knowing
all elements in the matrix of relative measurements M (σε) ∈ R

N×N defined via

(2.7) Mij(σ
ε) = 〈δi − δ0, (Λ

ε − Λ0)(δj − δ0)〉∂D, i, j = 1, . . . , N,

where δn ∈ H−(d−1)/2−η(∂D), η > 0, stands for the Dirac delta distribution supported
at xn. It follows from Proposition 2.1 that M (σε) is symmetric and, furthermore,

(2.8) Mij(σ
ε) =

∫
D

(σ0 − σε)∇uεi · ∇u0j dx,

where u0n, u
ε
n ∈ (H−(d−4)/2−η(D) ∩ H1

loc(D))/R, η > 0, are the solutions of the Neu-
mann problems

(2.9) div(σ0∇u0) = 0 in D, ν · σ0∇u0 = δn − δ0 on ∂D

and

(2.10) div(σε∇uε) = 0 in D, ν · σε∇uε = δn − δ0 on ∂D,

respectively. The goal of this work is to find σε ≡ σ0 such that M (σε) vanishes.
Remark 2.2. In the framework of the PEM, the relative EIT measurements cor-

responding to the electrode locations x0, . . . , xN ∈ ∂D are, arguably, more intuitively
described by the measurement map

(2.11) M(σε) : I �→ [
(uεI − u0I)(xn)

]N
n=0

, R
N+1
� → R

N+1/R � R
N+1
� ,

where RN+1� denotes the mean-free subspace of RN+1, and uεI and uεI are the solutions
of (2.1) and (2.6), respectively, for the boundary current density

f =

N∑
n=0

Inδn ∈ H
−(d−1)/2−η
� (∂D), η > 0.

1Here, H1
loc(D) stands for the space of distributions v ∈ D ′(D) verifying v|ω ∈ H1(ω) for all

domains ω � D.
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INVISIBLE CONDUCTIVITY PERTURBATIONS IN EIT 2097

In other words, M(σε)I ∈ R
N+1/R contains the relative potentials at the electrodes

(uniquely defined up to the ground level of potential) when the net currents I ∈ R
N+1�

are driven through the boundary points x0, . . . , xN ∈ ∂D. It is easy to see that the
matrix M (σε) ∈ R

N×N is the representation of M(σε) : RN+1� → R
N+1� with respect

to the basis

en − e0, n = 1, . . . , N,

where en denotes the nth Cartesian basis vector of RN+1. In particular, M (σε) is the
null matrix if and only if M(σε) is the null operator, that is, if and only if σε cannot
be distinguished from σ0 by PEM measurements.

3. General scheme. Let Ω � D ⊂ R
d be a nonempty Lipschitz domain. We

recall the decomposition σε = σ0+εκ and require that κ ∈ L∞(D) satisfies supp(κ) ⊂
Ω. Our leading idea, originating from [3, 4, 25], is to consider a small enough ε > 0
so that we can compute an asymptotic expansion for M (σε). To this end, let us first
write

(3.1) uεn = u0n + εũεn,

where uεn, u
0
n ∈ (H−(d−4)/2−η(D)∩H1

loc(D))/R are defined by (2.10) and (2.9), respec-
tively. Plugging (3.1) in (2.10), we see that ũεn must satisfy the Neumann problem

(3.2) div(σε∇ũεn) = −div(κ∇u0n) in D, ν · σ0∇ũεn = 0 on ∂D.

Since div(κ∇u0n) defines a compactly supported source in H−1(D), by applying the
Lax–Milgram lemma to the variational formulation of (3.2), we see that (3.2) has a
unique solution, i.e., ũεn, in H1(D)/R.2 Moreover, the Lax–Milgram lemma and (2.4)
also imply that

(3.3)
‖ũεn‖H1(D)/R ≤ C‖(σε)−1‖L∞(D)‖κ‖L∞(Ω)‖u0n‖H1(Ω)/R ≤ C‖(σε)−1‖L∞(D)‖κ‖L∞(Ω),

where the latter C > 0 depends on Ω.
Inserting (3.1) in (2.8), we deduce that

(3.4) Mij(σ
ε) = −ε

∫
D

κ∇u0i · ∇u0j dx− ε2
∫
D

κ∇ũεi · ∇u0j dx.

The representation (3.4) demonstrates that M (σε) is of the order ε, which was to
be expected as M (σ0) is the null matrix and σε − σ0 = εκ. More interestingly, the
first term in the asymptotic expansion of M (σε) has a simple linear dependence on κ,
which makes it relatively easy to find a nontrivial κ such that M (σε) is of the order
ε2. Unfortunately, the higher order terms in ε depend less explicitly on κ. To cope
with this difficulty, we will next introduce a suitable fixed point problem.

We redecompose κ in the form

(3.5) κ = κ0 +

N∑
j=1

j∑
i=1

τij κij ,

2Note that ‖∇ · ‖L2(D) is equivalent to the standard quotient norm of H1(D)/R by the Poincaré
inequality.
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where τij ∈ R are free parameters. Moreover, κ0, κij ∈ L∞(D) are fixed functions
that are supported in Ω and assumed to satisfy the conditions

(3.6)

∫
D

κ0 ∇u0i′ · ∇u0j′ dx = 0 for 1 ≤ i′ ≤ j′ ≤ N

and

(3.7)

∫
D

κij ∇u0i′ · ∇u0j′ dx =
1 if (i, j) = (i′, j′) or (j, i) = (i′, j′),
0 else.

The construction of such κij will be considered in Lemma 3.4 and section 4 below,
but meanwhile we just assume they exist. We remark that it seems reasonable to
assume that the N(N + 1)/2 free parameters τij in the perturbation κ are enough to
cancel out the symmetric matrix M (σε) ∈ R

N×N (cf. Proposition 2.1). Substituting
(3.5) in (3.4) and using (3.6)–(3.7), we obtain the expansion

(3.8) M (σε) = −ε τ − ε2 M̃ ε(τ),

where

(3.9) M̃ ε
ij(τ) = M̃ ε

ji(τ) =

∫
D

κ∇ũεi · ∇u0j dx, 1 ≤ i ≤ j ≤ N,

and τ ∈ R
N×N is the symmetric matrix defined by the parameters τij .

From (3.8) it is obvious that imposing M (σε) = 0 in the chosen setting is equiv-
alent to solving the following fixed point problem:

(3.10) Find τ ∈ SN such that τ = F ε(τ),

where SN denotes the space of symmetric N × N matrices and F ε : SN → SN is
defined by

(3.11) F ε(τ) = −ε M̃ ε(τ).

Lemma 3.3 below ensures that for any fixed parameter γ > 0 and a small enough
ε > 0, the map F ε has the invariant set

(3.12) Bγ := {τ ∈ SN
∣∣ |τ | ≤ γ}

on which it is a contraction. In (3.12), | · | denotes an arbitrary norm of SN . In
consequence, the Banach fixed point theorem guarantees the existence of ε0 = ε0(γ) >
0 such that for all ε ∈ (0; ε0], the fixed point problem (3.10) has a unique solution in
Bγ , enabling the construction of σε for which M (σε) = 0 via (3.5) and (2.5).

It is important to notice that the constructed κ defined by (3.5) verifies κ ≡ 0
whenever κ0 ≡ 0 by virtue of the orthogonality conditions (3.6)–(3.7). In other words,
if κ0 ≡ 0, then also σε ≡ σ0 as required. Moreover, for given σ0, κ0, κij , and γ > 0,
the upper bound ε0 > 0 can be tuned to ensure that the perturbed conductivity
corresponding to κ of (3.5) satisfies σε ≥ c > 0 for all ε ∈ [0; ε0] and τ ∈ Bγ , which
guarantees that all conductivities involved in the fixed point iteration are admissible.

In particular, we have proved the following result (modulo Lemma 3.3).
Proposition 3.1. Let Ω � D be a Lipschitz domain. Assume that there are

functions κ0, κij ∈ L∞(D) supported in Ω satisfying (3.6)–(3.7). Then, there exists a
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conductivity σε ∈ L∞(D), with σε ≥ c > 0, such that σε − σ0 ≡ 0, supp(σε −σ0) ⊂ Ω
and

Mij(σ
ε) = 〈δi − δ0, (Λ

ε − Λ0)(δj − δ0)〉∂D = 0

for all i, j = 1, . . . , N .
Remark 3.2. If κ0, κij supported in Ω and satisfying (3.6)–(3.7) exist, Propo-

sition 3.1 indicates that the conductivities σε and σ0 are indistinguishable by EIT
measurements with electrodes at x0, . . . , xN modeled by the PEM. In other words,
the relative PEM measurement map M(σε) defined by (2.11) satisfies

M(σε)I = 0

for all electrode current patterns I ∈ R
N+1� .

The following lemma shows that F ε is a contraction as required by the analysis
preceding Proposition 3.1.

Lemma 3.3. Let γ > 0 be a fixed parameter. Then, there exists ε0 > 0 such
that for all ε ∈ (0; ε0], the map F ε is a contraction on the invariant set Bγ defined by
(3.12).

Proof. Assume γ > 0 is given. Let τ, τ ′ ∈ Bγ be arbitrary, κ, κ′ ∈ L∞(Ω) be
the corresponding perturbations defined by (3.5), and ũεn, ũ

ε
n
′ ∈ H1(D)/R be the

associated solutions to (3.2), with σε = σ0 + εκ and σε = σ0 + εκ′, respectively. By
subtracting the equations defining ũεn and ũεn

′ and employing the shorthand notation
w = ũεn − ũεn

′, we have

(3.13) div
(
σε∇w) = −div

(
(κ−κ′)∇(u0n + εũεn

′)
)

in D, ν ·σ0∇w = 0 on ∂D.

From (2.4), (3.3), (2.5), and (3.5) it easily follows that

‖u0n + εũεn
′‖H1(Ω)/R ≤ C

uniformly for all ε ∈ [0; ε0] if ε0 > 0 is chosen small enough. Subsequently, an
application of the Lax–Milgram lemma to (3.13) results in the estimate

‖ũεn− ũεn′‖H1(Ω)/R ≤ C‖κ−κ′‖L∞(Ω)‖u0n+εũεn′‖H1(Ω)/R ≤ C‖κ−κ′‖L∞(Ω) ≤ C|τ−τ ′|,
where all occurrences of C > 0 are independent of ε ∈ [0; ε0].

In particular,

∣∣M̃ ε(τ)− M̃ ε(τ ′)
∣∣ ≤ C|τ − τ ′|

by virtue of (3.9), the Cauchy–Schwarz inequality, (2.4), and (3.3). The definition
(3.11) then implies that

(3.14) |F ε(τ)− F ε(τ ′)| ≤ C ε |τ − τ ′| for all τ, τ ′ ∈ Bγ ,

where C > 0 is independent of ε ∈ [0; ε0]. Moreover, noting that |F ε(0)| ≤ C ε due
to (3.9), (2.4), and (3.3), we deduce from (3.14) that also

(3.15) |F ε(τ)| ≤ C ε

for all τ ∈ Bγ . Reducing ε0 if necessary, (3.14) and (3.15) finally show that the map
F ε is a contraction on the invariant set Bγ for all ε ∈ [0; ε0].
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Let us denote by τ sol(ε) ∈ Bγ the unique solution of the problem (3.10). As a side
product, the previous proof ensures the existence of a constant C0 > 0 independent
of ε ∈ (0; ε0] such that

(3.16) |τ sol(ε)| = ∣∣F ε
(
τ sol(ε)

)∣∣ ≤ C0 ε for all ε ∈ (0; ε0].

Combined with (3.5), this tells us that κ is equal to κ0 at the first order.
At this stage, the remaining job consists in showing that there are functions κ0,

κij supported in Ω satisfying (3.6)–(3.7). The following lemma is a classical result on
dual basis (see, e.g., [21, Lemma 4.14]); we present its proof here because it will be
utilized in the algorithm of section 5.

Lemma 3.4. There are functions κ0, κij ∈ L∞(D) supported in Ω and satisfying
(3.6)–(3.7) if and only if {∇u0i · ∇u0j}1≤i≤j≤N is a family of linearly independent
functions on Ω.

Proof. Assume there are functions κij verifying (3.7). If αij are real coefficients
such that

N∑
j=1

j∑
i=1

αij ∇u0i · ∇u0j = 0 in Ω,

then multiplying by κi′j′ and integrating over D, we find that αi′j′ = 0. This allows
us to show that αij = 0 for all 1 ≤ i ≤ j ≤ N and proves that the family {∇u0i ·
∇u0j}1≤i≤j≤N is linearly independent.

Now, assume that {∇u0i · ∇u0j}1≤i≤j≤N is a family of linearly independent func-
tions on Ω. To simplify the notation, we introduce the auxiliary functions ψk ∈
L2
loc(D), k = 1, . . . ,K = N(N + 1)/2, such that

ψ1 = ∇u01 · ∇u01,
ψ2 = ∇u02 · ∇u01, ψ3 = ∇u02 · ∇u02,
ψ4 = ∇u03 · ∇u01, ψ5 = ∇u03 · ∇u02, . . . ,

as well as the symmetric matrix A ∈ R
K×K given elementwise by

Akk′ =

∫
Ω

ψk ψk′ dx, k, k′ = 1, . . . ,K.

If a = (α1, . . . , αK)� ∈ kerA, defining v =
∑K

k=1 αk ψk, we find that∫
Ω

v2 dx = a�A a = 0.

We deduce that v = 0 in Ω, and thus α1 = · · · = αK = 0 because, by assumption, the
family {ψk}1≤k≤K is linearly independent. As a consequence, A is invertible.

Consider the functions κ̃1, . . . , κ̃K defined via

(3.17) κ̃k =

K∑
k′=1

A
−1
kk′ ψk′ |Ω in Ω and κ̃k = 0 in D \ Ω.

In particular, κ̃k ∈ L∞(D) because ψk′ are smooth in a neighborhood of Ω. We have

∫
D

κ̃k ψl dx =
K∑

k′=1

A
−1
kk′Ak′l =

1 if k = l,
0 else.
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By renumbering κ̃k, this proves the existence of functions κij verifying the conditions
(3.7). Finally, we construct κ0 ≡ 0 that satisfies (3.6):

(3.18) κ0 = κ#0 −
N∑
j=1

j∑
i=1

(∫
D

κ#0 κij dx

)
κij ,

where κ#0 is an arbitrary L∞-function such that supp(κ#0 ) ⊂ Ω and κ#0 /∈ span
{κij}.

4. Construction of invisible conductivities in two dimensions. In this
section, we study the two-dimensional case with

σ0 ≡ 1.

In order to complement Proposition 3.1, our goal is to demonstrate that there ex-
ist functions κ0, κij ∈ L∞(D) supported in a given Lipschitz domain Ω � D and
satisfying (3.6)–(3.7). According to Lemma 3.4, this is equivalent to showing that
{∇u0i · ∇u0j}1≤i≤j≤N is a family of linearly independent functions on Ω. Before set-

ting to work, we remind the reader that the definition of u0n can be found in (2.9)
and that x0, . . . , xN are N + 1 distinct points located on ∂D and corresponding to
the positions of the electrodes.

4.1. The case of disk.
Proposition 4.1. Assume that σ0 ≡ 1 and let D ⊂ R

2 be the open unit
disk. Then, {∇u0i · ∇u0j}1≤i≤j≤N is a family of linearly independent functions on
any nonempty Lipschitz domain Ω � D.

Proof. In this simple geometry, it is known that (see, e.g., [12])

(4.1) u0n(x) = vn(x) − v0(x), x ∈ D, n = 1, . . . , N,

where vn is defined by

(4.2) vn(x) = − 1

π
ln |x− xn|, x ∈ D.

Let αij ∈ R be such that

(4.3)

N∑
j=1

j∑
i=1

αij ∇u0i · ∇u0j = 0 in Ω,

which can be written out explicitly:

(4.4)

N∑
j=1

j∑
i=1

αij

(
x− xi
|x− xi|2 − x− x0

|x− x0|2
)
·
(

x− xj
|x− xj |2 − x− x0

|x− x0|2
)

= 0 in Ω.

By analyticity, (4.4) holds in fact in all of R2 \ E , where E := ∪N
n=0{xn}. Multiplying

(4.4) by |x − xj |2 and letting x tend to xj , we see that αjj = 0 for all j = 1, . . . , N .
Moreover, multiplying by |x− x0|2 and letting x go to x0, we obtain the relation

(4.5)

N∑
j=2

j−1∑
i=1

αij = 0.
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Let us now introduce

(4.6) w :=

N∑
j=2

j−1∑
i=1

αij u
0
i u

0
j =

N∑
j=2

j−1∑
i=1

αij (vi vj − v0 (vi + vj)) in R
2 \ E ,

where the second equality is a consequence of (4.1) and (4.5). Using (4.3) and the
fact that vn defined in (4.2) is harmonic in R

2 \ {xn}, we find that Δw = 0 in R
2 \ E .

Observing that vn is a multiple of the fundamental solution for the Laplacian centered
at xn, a standard computation then yields

Δw = −2

N∑
j=2

j−1∑
i=1

αij

(
(vj(xi)− v0(xi)) δi+(vi(xj)− v0(xj)) δj − (vi(x0)+ vj(x0)) δ0

)

in R
2. Motivated by this expression, we introduce another auxiliary function, namely,

(4.7) w̃ =

N∑
j=2

j−1∑
i=1

αij

(
(vj(xi)−v0(xi)) vi+(vi(xj)−v0(xj)) vj−(vi(x0)+vj(x0)) v0

)
,

which obviously satisfies Δw̃ = Δw in R
2. Since vn belongs to C∞(R2 \ {xn}), it is

clear that w − w̃ ∈ H1−η
loc (R2) for all η > 0. Furthermore, at infinity, it holds that

w − w̃ = o(|x|). This allows us to prove that w − w̃ is a tempered distribution (see,
e.g., [15, Chapter VII]) on R

2.
A classical extension of the Liouville theorem for harmonic functions [35, Chap-

ter 3, Proposition 4.6] indicates that the only harmonic tempered distributions in R
d

are the harmonic polynomials; in particular, any harmonic tempered distribution that
behaves as o(|x|) at infinity is a constant. This implies that w − w̃ = C in R

2 for
some C ∈ R. On the other hand, reordering the terms in (4.6) and (4.7), we obtain
the representation

w − w̃ = vN

N−1∑
i=1

αiN

(
(vi − vi(xN ))− (v0 − v0(xN ))

)
+ ŵN ,

where ŵN is a function that is analytic in a neighborhood of xN . We conclude that

vN

N−1∑
i=1

αiN

(
(vi − vi(xN ))− (v0 − v0(xN ))

)

must also be analytic near xN . Because vN admits a logarithmic singularity at xN ,
this is possible if and only if

(4.8)

N−1∑
i=1

αiN

(
(vi − vi(xN ))− (v0 − v0(xN ))

)
= 0

in a neighborhood of xN . By analytic continuation, (4.8) must hold on all of R2 \ E .
Due to the singular behavior of the function vi at xi, this means that αiN = 0 for all
i = 1, . . . , N − 1.

Studying the behavior of w − w̃ successively at xN−1, . . . , x2, one shows anal-
ogously that αij = 0 for all 1 ≤ i < j ≤ N − 2. As the diagonal elements
αjj , j = 1, . . . , N , were deduced to vanish already at the beginning of the proof,
this shows that {∇u0i · ∇u0j}1≤i≤j≤N is a family of linearly independent functions
on Ω.
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4.2. General case in two dimensions. With the help of conformal mappings,
Proposition 4.1 can be generalized to the case of arbitrary smooth two-dimensional
domains.

Proposition 4.2. Assume that σ0 ≡ 1. Let D ⊂ R
2 be a simply connected

and bounded domain with a C∞-boundary. Then, {∇u0i · ∇u0j}1≤i≤j≤N is a family of
linearly independent functions on any nonempty Lipschitz domain Ω � D.

Proof. Denote the open unit disk by B ⊂ R
2 and let Φ : D → B be a conformal

map of D onto B. As ∂D is smooth, Φ also defines a smooth diffeomorphism of ∂D
onto ∂B [30]. Let û0n ∈ H1−η(B)/R, η > 0, be the unique solution of

Δû0n = 0 in B, ν · ∇û0n = δ̂n − δ̂0 on ∂B,

where δ̂i ∈ H−1/2−η(∂B), i = 0, . . . , N , denotes the Dirac delta distribution supported
at Φ(xn) ∈ ∂B. According to [12, proof of Theorem 3.2], it holds that

(4.9) u0n = û0n ◦ Φ in D

for all n = 1, . . . , N .
Let αij ∈ R be such that

N∑
j=1

j∑
i=1

αij ∇u0i · ∇u0j = 0 in Ω.

Due to the harmonicity of u0n, n = 1, . . . , N , in D, we obtain

Δ
( N∑

j=1

j∑
i=1

αij

(
û0i û

0
j

) ◦ Φ) = Δ
( N∑

j=1

j∑
i=1

αij u
0
i u

0
j

)
= 0 in Ω.

Since a composition with the conformal map Φ−1 retains harmonicity, it holds that

2
N∑
j=1

j∑
i=1

αij ∇û0i · ∇û0j = Δ
( N∑

j=1

j∑
i=1

αij û
0
i û

0
j

)
= 0 in Φ(Ω).

Because the family {∇û0i · ∇û0j}1≤i≤j≤N is linearly independent on Φ(Ω) by Proposi-
tion 4.1, it follows that αij = 0 for all 1 ≤ i ≤ j ≤ N and the proof is
complete.

Combining Proposition 3.1, Lemma 3.4, and Proposition 4.2, we obtain the main
result of this article.

Theorem 4.3. Assume that σ0 ≡ 1. Let D ⊂ R
2 be a simply connected and

bounded domain with a C ∞-boundary. For any compactly embedded Lipschitz domain
Ω � D, there exists a conductivity σε ∈ L∞(D), with σε ≥ c > 0, such that σε −σ0 ≡
0, supp(σε − σ0) ⊂ Ω, and

(4.10) Mi,j(σ
ε) = 〈δi − δ0, (Λ

ε − Λ0)(δj − δ0)〉∂D = 0

for all i, j = 1, . . . , N . In other words,

M(σε)I = 0 for all I ∈ R
N+1
� ,

where M(σε) : RN+1
� → R

N+1/R is the relative PEM measurement map from (2.11)
corresponding to the electrode locations x0, . . . , xN ∈ ∂D.
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A conductivity σε ≡ 1 satisfying (4.10) can be stably constructed by a fixed point
iteration.

Remark 4.4. In [17, 31] it has been shown that M (σε) = 0 if and only if σε =
σ0(≡ 1) when the number of electrodes is countably infinite in two dimensions. Here,
we have demonstrated that one can constructively find σε ≡ σ0 such that M (σε) = 0
in case the number of electrodes is finite.

5. Algorithmic implementation. For a given Lipschitz domain Ω such that
Ω ⊂ D, functions κ0, κij satisfying (3.6)–(3.7) can be constructed by following the line
of reasoning in the second part of the proof of Lemma 3.4, assuming the potentials u0n
verifying (2.9) are available. Notice that the bounded function κ#0 with supp(κ#0 ) ⊂
Ω appearing in (3.18) can be chosen arbitrarily as long as it does not belong to

span{κij}1≤i≤j≤N . As a consequence, finding κ#0 is almost trivial and allows a lot of
freedom.

We denote by τk, κk, uε,kn , ũε,kn the realizations of τ , κ, uεn, ũ
ε
n at iteration k ≥ 0 of

the algorithm; the aforementioned entities are introduced in (3.9), (3.5), (2.10), (3.1),
respectively. Moreover, we set σε,k = σ0 + εκk. Using formulas (3.9) and (3.11), we
recursively define

τk+1
ij = −ε

∫
D

κk ∇ũε,ki · ∇u0j dx, k ≥ 0, 1 ≤ i ≤ j ≤ N.

Since εũε,kn = uε,kn − u0n by (3.1), we obtain

(5.1) τk+1
ij = τkij −

∫
D

κk ∇uε,ki · ∇u0j dx, k ≥ 0, 1 ≤ i ≤ j ≤ N,

due to (3.6) and (3.7). In particular, note that |τk+1
ij −τkij | ≤ η implies Mij(σ

ε,k) ≤ ε η
for any η > 0 by virtue of (2.8). To sum up, our algorithm for computing invisible
conductivity perturbations is as follows.

Algorithm 5.1. Assume that the potentials u0n, n = 1, . . . , N , are available.

Construct {κij}1≤i≤j≤N , choose κ#0 /∈ span{κij}1≤i≤j≤N , and compute κ0. Select ε >
0 and τ0 ∈ SN . Run the fixed point iteration (5.1) until the desired stopping criterion
is met. Construct the invisible conductivity perturbation via (3.5). If divergent
behavior is observed, decrease ε.

6. Numerical experiments. In this section, we implement Algorithm 5.1 by
resorting to finite element (FE) approximations of the PEM. We are interested in
validating the convergence of the fixed point iteration (5.1) and visualizing the out-

put conductivity σε (cf. (2.5)) for different subdomains Ω, “initial guesses” κ#0 , and

(point) electrode configurations. It turns out that especially the choice of κ#0 has a
considerable effect on the output, which means that Algorithm 5.1 can straightfor-
wardly be used to construct several invisible conductivity perturbations for a given
measurement configuration and Ω. The degree of indistinguishability of the produced
σε compared to the background conductivity σ0 is also tested in the framework of the
more realistic CEM: According to our simulations, the relative CEM measurements
corresponding to smallish electrodes and the constructed conductivities fall below any
reasonable measurement noise level.

We only consider the homogeneous reference conductivity σ0 ≡ 1 and choose
D ⊂ R

2 to be the unit disk, meaning that the functions u0n satisfying (2.10) are
explicitly given by (4.1). Due to the Riemann mapping theorem, this geometric sim-
plification does not severely reduce the generality of our (two-dimensional) numerical

D
ow

nl
oa

de
d 

02
/1

9/
19

 to
 1

30
.2

33
.2

16
.2

33
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVISIBLE CONDUCTIVITY PERTURBATIONS IN EIT 2105

0.3

0.6

0.9

1.2

1.5

1.8

0 5 10 15 20 25 30

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

Iteration

E
rr

or

Fig. 1. Top row: Outputs σε of Algorithm 5.1 with different values of the perturbation size
parameter ε > 0. The point-like electrodes are located at the polar angles θ = 1◦, 91◦, 181◦, 271◦.
Bottom left: The discrepancy (6.1) between consecutive iterates of Algorithm 5.1. Bottom right: A
surface plot of σε corresponding to ε = 6.0.

experiments: In any smooth simply connected domain D ⊂ R
2 the potentials u0n em-

ployed in the construction of κij can be computed using (4.9) as long as a conformal
mapping sending D onto the unit disk is available.

The functions uε,kn needed when running Algorithm 5.1 are computed at each
iteration as follows. First, we (numerically) solve (3.2) with σε = σε,k = 1+ εκk and
κ = κk to obtain ũε,kn . We remind the reader that ũε,kn belongs to H1(D)/R so it can
be approximated using standard FE methods. Then, we set uε,kn = u0n + εũε,kn . When
computing ũε,kn , we employ piecewise quadratic polynomial FE basis (Lagrange P2);
the number of triangular elements is around 20,000 in all tests. The conductivity
perturbation “shape functions” κij are evaluated (and interpolated) on the FE mesh
with the help of (3.17) and (4.1). Without exception, we use the stopping rule

(6.1)

N∑
i=1

N∑
j=1

|τk+1
ij − τkij | < 10−8

for Algorithm 5.1, that is, the difference between consecutive iterates in the scheme
(5.1) is monitored. The choice of the threshold value 10−8 in (6.1) is a slight overkill
since for practical EIT the noise level in relative measurements is typically over 1%
[9], and (6.1) corresponds to a considerably smaller error for all (relative) PEM data
we have simulated. As the starting value for the iteration (5.1), we choose the null
matrix τ0 = 0 in all experiments. The numerical results are presented in Figures 1–4.

Figure 1 illustrates a first convergence test for Algorithm 5.1, investigating the
effect of the choice for the free parameter ε. There are four electrodes, and a concentric
disk of radius 1/2 serves as the inclusion Ω. The parameter κ#0 is set to κ#0 ≡ 1. The
convergence rate of the algorithm decreases as a function of ε, but the fixed point
scheme remains convergent for all ε in the interval (0, 6] (and beyond).
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Fig. 2. Outputs of Algorithm 5.1 for N = 5, 7, 9, 11 (recall that N + 1 is the number of

electrodes). The point-like electrodes are located at the polar angles θj = 1◦ + j
N+1

360◦, j =

0, 1, . . . , N . The values of ε used in the computations are 14, 12, 8 and 8, respectively.
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Fig. 3. (a)–(f) Perturbed conductivities produced by Algorithm 5.1 for the shown electrode
configurations. Bottom left: A surface plot of the conductivity (a).

Figure 2 illustrates that increasing the number of electrodes has a significant
impact on the output conductivity σε of Algorithm 5.1. In particular, the spatial
frequency of the angular oscillations in σε seems to be directly linked to the number
of electrodes. Moreover, at least with the chosen simple inclusion shape, the deviations
of σε from the unit background become less significant as the number of electrodes
increases even if ε stays the same.

The inclusion shape and the choice of the initial perturbation κ#0 have considerable
effects on the output of the algorithm, as shown in Figure 3. A large Ω lying close
to ∂D typically yields significant deviations from the unit background in σε, even
with a relatively high number of electrodes. Moreover, asymmetries in κ#0 lead to an
asymmetric σε even in a geometrically symmetric setting. The indistinguishability of
the output conductivities in Figure 3 from the unit background is evaluated using FE
approximations of the CEM [32, 37] with about 10,000 quadratic triangular elements,
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Table 1

The parameters ε and κ#
0 for Figure 3(a)–(c) together with the respective relative CEM dis-

crepancies Eε
CEM(I) defined by (6.2). The CEM potentials are simulated with the “trigonometric

current basis,” the universal electrode width π/32, and contact resistances of magnitude 0.01 [9, 32].

ε κ#
0 (x, y) Eε

CEM(I)
(a) 4.0 x+ y + 1 1.4× 10−4

(b) 2.0 exp(−(x+ 0.5)2 − y2) 1.1× 10−3

(c) 0.25 1 2.3× 10−4

(d) 6.0 1 1.1× 10−4

(e) 0.5 −y 8.4× 10−4

(f) 2.0 x 8.8× 10−4

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

-8.0

-5.2

-2.4

0.4

3.2

6.0

-3x 10

Fig. 4. An example of CEM potentials corresponding to σε of Figure 3(a); see [32]. Left:
The Dirichlet boundary value of the absolute CEM interior potential (black line), the absolute elec-
trode voltages (black squares), the Dirichlet boundary value of the relative CEM interior potential
(red dashed line), and the relative electrode potentials (red squares). The electrodewise net input
currents are also displayed (blue circles). The electrode width and contact resistances are as in
Figure 3. Right: The relative CEM interior potential. Equipotential lines and electric field arrows
are displayed.

a fixed electrode width of π/32, and an underlying contact resistance parameter equal
to 0.01 on all electrodes. As a measure of the relative discrepancy for simulated
(noiseless) CEM voltages, we employ

(6.2) Eε
CEM(I) =

∣∣Uε(I) − U0(I)∣∣∣∣U0(I)∣∣ .

Here, Uε(I),U0(I) ∈ R
N(N+1) consist of the (stacked) CEM electrode potentials

corresponding to the “trigonometric current basis” I = {I(j)}1≤j≤N ⊂ R
N+1� [9]

and σε, σ0, respectively; cf., e.g., [18]. In practice, the relative noise level in EIT
measurements is significantly above 0.1% (cf. [9]). Hence, Table 1 indicates that
all conductivities shown in Figure 3 are practically indistinguishable from the unit
background in the framework of the CEM with smallish electrodes at the depicted
locations (cf. [13]).

Finally, Figure 4 illustrates a single simulated relative CEM potential for the
conductivity σε in Figure 3(a)—to be precise, both the interior electric potential and
the electrode potentials are considered (cf. [32]). The electrode widths and contact
resistances are the same as in Figure 4. It is noteworthy that both the Dirichlet
boundary value of the relative interior electric potential and the relative electrode
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potentials do vanish according to a visual inspection, but the same does not hold for
the relative electric potential in the interior of D.

Remark 6.1. It is possible that the technique developed in this article could
also be adapted to construct invisible conductivities directly for the CEM. However,
instead of the functions u0n defined by (2.9), one would need to work with potentials
corresponding to unit net currents between electrodes of finite size modeled by the
CEM (cf. [32]). This would make proving the convergence of the fixed point iteration
as well as implementing the numerical algorithm more technical.

7. Concluding remarks. We have introduced a constructive and stable fixed
point scheme for computing invisible conductivity perturbations (of the two-dimen-
sional unit conductivity) for a given electrode configuration in the framework of the
PEM for EIT. Our numerical experiments demonstrate that the constructed conduc-
tivities are practically indistinguishable from the background also if the measurements
are modeled by the more realistic CEM. In particular, take note that the conductivities
shown in Figures 1–4 are as good solutions as the unit conductivity to the reconstruc-
tion problem of EIT with the considered sets of electrodes if no prior information on
the behavior of the conductivity is available.
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