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Abstract
Our paper deals with inferring simulator-based statistical models given some observed data.
A simulator-based model is a parametrized mechanism which specifies how data are gener-
ated. It is thus also referred to as generative model. We assume that only a finite number
of parameters are of interest and allow the generative process to be very general; it may be
a noisy nonlinear dynamical system with an unrestricted number of hidden variables. This
weak assumption is useful for devising realistic models but it renders statistical inference
very difficult. The main challenge is the intractability of the likelihood function. Several
likelihood-free inference methods have been proposed which share the basic idea of iden-
tifying the parameters by finding values for which the discrepancy between simulated and
observed data is small. A major obstacle to using these methods is their computational
cost. The cost is largely due to the need to repeatedly simulate data sets and the lack
of knowledge about how the parameters affect the discrepancy. We propose a strategy
which combines probabilistic modeling of the discrepancy with optimization to facilitate
likelihood-free inference. The strategy is implemented using Bayesian optimization and is
shown to accelerate the inference through a reduction in the number of required simulations
by several orders of magnitude.
Keywords: intractable likelihood, latent variables, Bayesian inference, approximate Bayesian
computation, computational efficiency

1. Introduction

We consider the statistical inference of a finite number of parameters of interest θ ∈ Rd
of a simulator-based statistical model for observed data yo which consist of n possibly
dependent data points. A simulator-based statistical model is a parametrized stochastic
data generating mechanism. Formally, it is a family of probability density functions (pdfs)
{py|θ}θ of unknown analytical form which allow for exact sampling of data yθ ∼ py|θ. In
practical terms, it is a computer program which takes a value of θ and a state of the random
number generator as input and returns data yθ as output. Simulator-based models are also
called implicit models because the pdf of yθ is not specified explicitly (Diggle and Gratton,
1984), or generative models because they specify how data are generated.

c©2016 Michael U. Gutmann and Jukka Corander.
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Simulator-based models are useful because they interface easily with models typically
encountered in the natural sciences. In particular, hypotheses of how the observed data
yo were generated can be implemented without making excessive compromises in order to
have an analytically tractable model pdf py|θ.

Since the analytical form of py|θ is unknown, inference using the likelihood function
L(θ),

L(θ) = py|θ(yo|θ), (1)

is not possible. The likelihood function is also not available for a large class of other statis-
tical models which are known as unnormalized models. In these models, py|θ is only known
up to a normalizing scaling factor (the partition function) which guarantees that py|θ is a
valid pdf for all values of θ. Simulator-based models differ from unnormalized models in
that not only is the scaling factor unknown but also the shape of py|θ. Likelihood-free in-
ference methods developed for unnormalized models (for example Hinton, 2002; Hyvärinen,
2005; Pihlaja et al., 2010; Gutmann and Hirayama, 2011; Gutmann and Hyvärinen, 2012)
are thus not applicable to simulator-based models.

For simulator-based models, likelihood-free inference methods have emerged in multiple
disciplines. “Indirect inference” originated in economics (Gouriéroux et al., 1993), “approx-
imate Bayesian computation” (ABC) in genetics (Beaumont et al., 2002; Marjoram et al.,
2003; Sisson et al., 2007), or the “synthetic likelihood” approach in ecology (Wood, 2010),
for an overview, see, for example, the review by Hartig et al. (2011). The different meth-
ods share the basic idea to identify the model parameters by finding values which yield
simulated data that resemble the observed data.

The generality of simulator-based models comes with the expense of two major diffi-
culties in the inference. One difficulty is the assessment of the discrepancy between the
observed and simulated data (Joyce and Marjoram, 2008; Wegmann et al., 2009; Nunes
and Balding, 2010; Fearnhead and Prangle, 2012; Aeschbacher et al., 2012; Gutmann et al.,
2014). The other difficulty is that the inference methods tend to be slow due to the need to
simulate a large collection of data sets and due to the lack of knowledge about the relation
between the model parameters and the corresponding discrepancies.

In this paper, we address the computational difficulty of the likelihood-free inference
methods. We propose a strategy which combines probabilistic modeling of the discrepan-
cies with optimization to facilitate likelihood-free inference. The strategy is implemented
using Bayesian optimization (see, for example, Brochu et al., 2010). We show that us-
ing Bayesian optimization in likelihood-free inference (BOLFI) can reduce the number of
required simulations by several orders of magnitude, which accelerates the inference sub-
stantially.1

The rest of the paper is organized as follows: In Section 2, we present examples of
simulator-based statistical models to help clarify their properties. In Section 3, we provide
a unified review of existing inference methods for simulator-based models, and use the
examples to point out computational issues. The computational difficulties are summarized
in Section 4, and a framework to address them is outlined in Section 5. Section 6 implements

1. Preliminary results were presented at “Approximate Bayesian Computation in Rome”, 2013, and MCMCSki IV,
2014, as a poster “Bayesian optimization for efficient likelihood-free inference”, and at the NIPS workshop “ABC in
Montreal”, 2014, as part of an oral presentation.
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the framework using Bayesian optimization. Applications of the developed methodology are
given in Section 7, and Section 8 concludes the paper.

2. Examples of Simulator-Based Statistical Models

We present here three examples of simulator-based statistical models. The first example is
an artificial one, but useful because it allows us to illustrate the central concepts. The other
two are examples from real data analysis with intractable models (Wood, 2010; Numminen
et al., 2013). The examples will be used throughout the paper and the model details can
be looked up here when needed.
Example 1 (Normal distribution). A standard way to sample data yθ = (y(1)

θ , . . . , y
(n)
θ )

from a normal distribution with mean θ and variance one is to sample n standard normal
random variables ω = (ω(1), . . . , ω(n)) and to add θ to the obtained samples,

yθ = θ + ω, ω ∼ N (0, In). (2)

The symbol N (0, In) denotes a n-variate normal distribution with mean zero and identity
covariance matrix. After sampling of the random quantities ω, the observed data yθ are a
deterministic transformation of ω and the parameter θ. For more general simulators, the
same principle applies. In particular, the data yθ are a deterministic transformation of θ if
the random quantities are kept fixed, for example by fixing the seed of the random number
generator. N

Example 2 (Ricker model). In this example, the simulator consists of a latent stochastic
time series and an observation model. The latent time series is a stochastic version of the
Ricker map which is a classical model in ecology (Ricker, 1954). The stochastic version can
be described as a nonlinear autoregressive model,

logN (t) = log r + logN (t−1) −N (t−1) + σe(t), t = 1, . . . , n, N (0) = 0, (3)

where N (t) is the size of some animal population at time t and the e(t) are independent
standard normal random variables. The latent time series has two parameters: log r which
is related to the log growth rate and σ for the standard deviation of the innovations. A
Poisson observation model is assumed, such that given N (t), y(t)

θ is drawn from a Poisson
distribution with mean ϕN (t),

y
(t)
θ |N

(t), ϕ ∼ Poisson(ϕN (t)), (4)

where ϕ is a scaling parameter. The model is thus in total parametrized by θ = (log r, σ, ϕ).
Figure 1(a) shows example data generated from the model. Inference of θ is difficult because
the N (t) are not directly observed and because of the strong nonlinearity in the autoregres-
sive model. Wood (2010) used this example to illustrate his “synthetic likelihood” approach
to inference. N

Example 3 (Bacterial infections in day care centers). The data generating process is here
defined via a latent continuous-time Markov chain and an observation model. The model
was developed by Numminen et al. (2013) to infer the transmission dynamics of bacterial
infections in day care centers.
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Figure 1: Examples of simulator-based statistical models. (a) Data generated from the Ricker model
in Example 2 with n = 50 and θo = (log ro, σo, ϕo) = (3.8, 0.3, 10). (b) Data generated
from the model in Example 3 on bacterial infections in day care centers. There are 33
different strains of the bacterium in circulation and MDCC = 36 of the 53 attendees of
the day care center were sampled (Numminen et al., 2013). Each black square indicates
a sampled attendee who is infected with a particular strain. The data were generated with
θo = (βo,Λo, θo) = (3.6, 0.6, 0.1).

The variables of the latent Markov chain are the binary indicator variables Itis which
specify whether attendee i of a day care center is infected with the bacterial strain s at time
t (Itis = 1), or not (Itis = 0). Starting with zero infected individuals, I0

is = 0 for all i and s,
the states evolve in a stochastic manner according to the rate equations

P(It+his = 0|Itis = 1) = h+ o(h), (5)

P(It+his = 1|Itis′ = 0 ∀s′) = Rs(t)h+ o(h), (6)

P(It+his = 1|Itis = 0, ∃s′ : Itis′ = 1) = θRs(t)h+ o(h), (7)

where h is a small time interval and Rs(t) the rate of infection with strain s at time t. The
three equations model the probability to clear a strain s during time t and t+ h (Equation
5), the probability to be infected with a strain s if not colonized by other strains (Equation
6), and the probability to be infected if colonized with other strains (Equation 7). The
rate of infection is a weighted combination of the probability Ps for an infection happening
outside the day care center and the probability Es(t) for an infection from within,

Rs(t) = βEs(t) + ΛPs. (8)

We refer the reader to the original publication by Numminen et al. (2013) for more de-
tails and the expression for Es(t). The observation model was random sampling of MDCC
individuals without replacement from all the individuals attending a day care center at
some sufficiently large random time (endemic situation). The model has three parameters

4



BAYESIAN OPTIMIZATION FOR LIKELIHOOD-FREE INFERENCE

θ = (β,Λ, θ): the internal infection parameter β, the external infection parameter Λ, and
the co-infection parameter θ. Figure 1(b) shows an example of data generated from the
model.

Numminen et al. (2013) applied the model to data on colonizations with the bacterium
Streptococcus pneumoniae. The observed data yo were the states of the sampled attendees of
29 day care centers, that is, 29 binary matrices as in Figure 1(b) but with varying numbers
of sampled attendees per day care center. Inference of the parameters is difficult because
the data are a snapshot of the state of some of the attendees at a single time point only.
Since the process evolves in continuous-time, the modeled system involves infinitely many
correlated unobserved variables. N

3. Inference Methods for Simulator-Based Statistical Models

This section organizes the foundations and the previous work. We first point out proper-
ties common to all inference methods for simulator-based models, one being the general
manner of constructing approximate likelihood functions. We then explain parametric and
nonparametric approximations of the likelihood and discuss the relation between the two
approaches. This is followed by a summary of currently used posterior inference schemes.

3.1 General Properties of the Different Inference Methods

Inference of simulator-based statistical models is generally based on some measurement of
discrepancy ∆θ between the observed data yo and data yθ simulated with parameter value
θ. The discrepancy is used to define an approximation L̂(θ) of the likelihood L(θ). The
approximation happens on multiple levels.

On a statistical level, the approximation consists of reducing the observed data yo to
some features, or summary statistics Φo before performing inference. The purpose of the
summary statistics is to reduce the dimensionality and to filter out information which is not
deemed relevant for the inference of θ. That is, in this first approximation, the likelihood
L(θ) is replaced with L(θ),

L(θ) = pΦ|θ(Φo|θ), (9)

where pΦ|θ is the pdf of the summary statistics. The function L(θ) is a valid likelihood
function, but for the inference of θ given Φo, and not for the inference of θ given yo, in
contrast to L(θ), unless the chosen summary statistics happened to be sufficient in the
standard statistical sense.

The likelihood function L(θ), however, is also not known, because the pdf pΦ|θ is of
unknown analytical form, which is a property inherited from py|θ. Thus, L(θ) needs to be
approximated by some method. We denote practical approximations obtained with finite
computational resources by L̂(θ). Limiting approximations if infinitely many computational
resources were available will be denoted by L̃(θ).

In the paper, we will encounter several methods to construct L̂(θ). They all base the
approximation on simulated summary statistics Φθ, generated with parameter value θ. The
simulation of summary statistics is generally done by simulating a data set yθ, followed by its
reduction to summary statistics. Table 1 provides an overview of the different “likelihoods”
appearing in the paper.

5
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Symbol Meaning Definition

L true likelihood based on observed data Eq (1)
L true likelihood based on summary statistics Eq (9)
L̃ approximation of L requiring infinite computing power Sec 3.1

L̃s(˜̀
s) parametric approx/synthetic (log) likelihood Eq (13)

L̃κ nonparametric approx with kernel κ Eq (22)
L̃u nonparametric approx with uniform kernel Eq (25)
L̂ computable approximation of L Sec 3.1

L̂Ns (ˆ̀N
s ) parametric approx/synthetic (log) likelihood with sample averages Eq (15)

L̂Nκ nonparametric approx with kernel κ and sample averages Eq (21)
L̂Nu nonparametric approx with uniform kernel and sample averages Eq (24)
L̂

(t)
s (ˆ̀(t)

s ) parametric approx/synthetic (log) likelihood with regression Sec 5.2

L̂
(t)
κ nonparametric approx with kernel κ and regression Sec 5.3

L̂
(t)
u nonparametric approx with uniform kernel and regression Sec 5.3

Table 1: The main (approximate) likelihood functions appearing in the paper. The superscript “N”
indicates that the sample average is computed using N simulated data sets per model
parameter θ. The superscript “(t)” indicates that regression is performed with a training
set containing t simulated data sets. The parametric approximations will be used together
with the Gaussian and the Ricker model, the nonparametric approximations together with
the Gaussian and the day care center model.

After construction of L̂, inference can be performed in the usual manner by replacing L
with L̂. Approximate posterior inference can be performed via Markov chain Monte Carlo
(MCMC) algorithms or via an importance sampling approach (see, for example, Robert and
Casella, 2004). The posterior expectation of a function g(θ) given yo can be computed via
importance sampling with auxiliary pdf q(θ),

E(g(θ)|yo) ≈
M∑
m=1

g(θ(m))w(m), w(m) =
L(θ(m))pθ(θ(m))

q(θ(m))∑M
i=1 L(θ(i))pθ(θ(i))

q(θ(i))

, θ(m) i.i.d.∼ q(θ), (10)

where pθ denotes the prior pdf. This approach also yields an estimate of the posterior
distribution via the “particles” θ(m) and the associated weights w(m). A computable version
is obtained by replacing L with L̂, giving E(g(θ)|yo) ≈ E(g(θ)|Φo),

E(g(θ)|Φo) ≈
M∑
m=1

g(θ(m))ŵ(m), ŵ(m) =
L̂(θ(m))pθ(θ(m))

q(θ(m))∑M
i=1 L̂(θ(i))pθ(θ(i))

q(θ(i))

, θ(m) i.i.d.∼ q(θ). (11)
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There is some flexibility in the choice of the auxiliary pdf q(θ) in Equations (10) and (11)
which enables iterative adaptive algorithms where the accepted θ(m) of one iteration are
used to define the auxiliary distribution q(θ) of the next iteration (population or sequential
Monte Carlo algorithms, Cappé et al., 2004; Del Moral et al., 2006).

3.2 Parametric Approximation of the Likelihood

The pdf pΦ|θ of the summary statistics is of unknown analytical form but it may be reason-
ably assumed that it belongs to a certain parametric family. For instance, if Φθ is obtained
via averaging, the central limit theorem suggests that the pdf may be well approximated
by a Gaussian distribution if the number of samples n is sufficiently large,

pΦ|θ(φ|θ) ≈ 1
(2π)p/2|det Σθ|1/2

exp
(
−1

2(φ− µθ)>Σ−1
θ (φ− µθ)

)
, (12)

where p is the dimension of Φθ. The corresponding likelihood function is L̃s = exp(˜̀
s),

˜̀
s(θ) = −p2 log(2π)− 1

2 log |det Σθ| −
1
2(Φo − µθ)>Σ−1

θ (Φo − µθ), (13)

which is an approximation of L(θ) unless the summary statistics are indeed Gaussian. The
mean µθ and the covariance matrix Σθ are generally not known. But the simulator can be
used to estimate them via a sample average EN over N independently generated summary
statistics,

µ̂θ = EN [Φθ] = 1
N

N∑
i=1

Φ(i)
θ , Φ(i)

θ
i.i.d.∼ pΦ|θ, Σ̂θ = EN

[
(Φθ − µ̂θ)(Φθ − µ̂θ)>

]
. (14)

A computable estimate L̂Ns of the likelihood function L(θ) is then given by L̂Ns = exp(ˆ̀N
s ),

ˆ̀N
s (θ) = −p2 log(2π)− 1

2 log |det Σ̂θ| −
1
2(Φo − µ̂θ)>Σ̂−1

θ (Φo − µ̂θ). (15)

This approximation was named synthetic likelihood (Wood, 2010), hence our subscript “s”.
Due to the approximation of the expectation with a sample average, ˆ̀N

s is a stochastic
process (a random function). We illustrate this in Example 4 below. We there also show
that the number of simulated summary statistics (data sets) N is a trade-off parameter: The
computational cost decreases as N decreases but the variability of the estimate increases
as a consequence. It further turns out that the sample curves of ˆ̀N

s may not be smooth for
finite N and that decreasing N may worsen their roughness. We illustrate this in Example
5 using the Ricker model.
Example 4 (Synthetic likelihood for the mean of a normal distribution). The sample
average is a sufficient statistic for the task of inferring the mean θ from a sample yo =
(y(1)
o , . . . , y

(n)
o ) of a normal distribution with assumed variance one. We thus reduce the

observed and simulated data yo and yθ to the empirical means Φo and Φθ, respectively,

Φo = 1
n

n∑
i=1

y(i)
o , Φθ = 1

n

n∑
i=1

y
(i)
θ . (16)
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Figure 2: Estimation of the mean of a Gaussian. (a) The figure shows the negative log synthetic
likelihood−ˆ̀N

s . It illustrates that ˆ̀N
s is a random function. (b) The randomness makes the

estimate θ̌ = argmaxθ ˆ̀N
s (θ) a random variable. Its variability increases as N decreases.

In this special case, no information is lost with the reduction to the summary statistic, that
is, L(θ) ∝ L(θ). Furthermore, the distribution of the summary statistic Φθ is here known,
Φθ ∼ N (θ, 1/n) so that the Gaussian model assumption holds and L̃s(θ) = L(θ).

Using for simplicity the true variance of Φθ, we have ˆ̀N
s (θ) = −1/2 log(2π/n)−n/2(Φo−

µ̂θ)2. Since µ̂θ is an average of N realizations of Φθ, µ̂θ ∼ N (θ, 1/(nN)), and we can write
ˆ̀N
s as a quadratic function subject to a random shift g,

ˆ̀N
s (θ) = −1

2 log
(2π
n

)
− n

2 (Φo − θ − g)2, g ∼ N
(

0, 1
nN

)
. (17)

Each realization of g yields a different mapping θ 7→ ˆ̀N
s which illustrates that the (log)

synthetic likelihood is a random function. Figure 2(a) shows the 0.1 and 0.9 quantiles of
−ˆ̀N

s for N = 2. The dashed curve visualizes θ 7→ −ˆ̀N
s for a fixed realization of g. The

circles show values of −ˆ̀N
s (θ) when g is not kept fixed as θ changes. The results are for

sample size n = 10.
The optimizer θ̌ of each realization of ˆ̀N

s depends on g, θ̌ = Φo − g. That is, θ̌ is a
random variable with distribution N (Φo, 1/(Nn)). In the limit of an infinite amount of
available computational resources, that is N →∞, g equals zero, and the distribution has
a point-mass at θ̂mle = Φo which is indicated with the black vertical line in Figure 2(b).
As N decreases, variance is added to the point-estimate θ̌. This added variability is due
to the use of finite computational resources; it does not reflect uncertainty about θ due to
the finite sample size n. The variability causes an inflation of the mean squared estimation
error by a factor of (1 + 1/N), E((θ̌ − θo)2) = 1/n(1 + 1/N). N

Example 5 (Synthetic likelihood for the Ricker model). Wood (2010) used the synthetic
likelihood to perform inference of the Ricker model and other simulator-based models with
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Figure 3: Using less computational resources may reduce the smoothness of the approximate likeli-
hood function. The figures show the negative log synthetic likelihood−ˆ̀N

s for the Ricker
model. Only the first parameter (log r) was varied, the others were kept fixed at the data
generating values. (a) The use of simulations makes the synthetic likelihood a stochastic
process. Realizations of −ˆ̀N

s for different N are shown together with the variability for
N = 50. (b) The curves become more and more smooth as the number N of simulated
data sets increases even though the curve for N = 50,000 is still rugged. It is reasonable
to assume though that the limit for N →∞ is smooth.

complex dynamics. Time series data yθ = (y(Tb+1)
θ , . . . , y

(Tb+n)
θ ) from the Ricker model after

some “burn-in” time Tb were summarized in the form of the coefficients of the autocorrelation
function and the coefficients of fitted nonlinear autoregressive models, thereby reducing the
data to fourteen summary statistics Φθ (see the supplementary material of Wood, 2010, for
their exact definition).

Figure 3 shows the negative log synthetic likelihood −ˆ̀N
s for the Ricker model as a

function of the log growth rate log r for yo in Figure 1(a). The parameters σ and ϕ were
kept fixed at the values σo = 0.3 and ϕo = 10 which we used to generate yo (log ro was 3.8).
The figures show that the realizations of the synthetic likelihood become less smooth as N
decreases.

The lack of smoothness makes the minimization of the different realizations of −ˆ̀N
s

difficult. A grid-search is feasible for very large N but this approach does not scale to
higher dimensions. Gradient-based optimization is tricky because the functional form of
ˆ̀N
s is unknown. Finite differences may not yield a reliable approximation of the gradient
because of the lack of smoothness. Instead of optimizing a single realization of the objective,
one could use an approximate stochastic gradient approach. That is, approximate gradients
are computed with different random seeds at different values of the parameter. For small
N , however, the gradients are unreliable so that the stepsize has to be very small, which
makes the optimization rather costly again. To resolve the issue, we suggest a more efficient
approach by combining probabilistic modeling with optimization. N
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3.3 Nonparametric Approximation of the Likelihood

An alternative to assuming a parametric model for the pdf pΦ|θ of the summary statistics is
to approximate it by a kernel density estimate (Rosenblatt, 1956; Parzen, 1962; Mack and
Rosenblatt, 1979; Wand and Jones, 1995),

pΦ|θ(φ|θ) ≈ EN [K(φ,Φθ)] , (18)

where K is a suitable kernel and EN denotes empirical expectation as before,

EN [K(φ,Φθ)] = 1
N

N∑
i=1

K(φ,Φ(i)
θ ), Φ(i)

θ
i.i.d.∼ pΦ|θ. (19)

An approximation of the likelihood function L(θ) is given by L̂NK(θ),

L̂NK(θ) = EN [K(Φo,Φθ)] . (20)

We may re-write K(Φo,Φ) in another form as κ(∆θ) where ∆θ ≥ 0 depends on Φo and
Φθ, and κ is a univariate non-negative function not depending on θ. The kernels K are
generally such that κ has a maximum at zero (the maximum may be not unique though).
Taking the empirical expectation in Equation (20) with respect to ∆θ instead of Φθ, we
have L̂NK(θ) = L̂Nκ (θ),

L̂Nκ (θ) = EN [κ (∆θ)] . (21)

As the number N grows, L̂Nκ converges to L̃κ,

L̃κ(θ) = E [κ(∆θ)] , (22)

which is L̂Nκ where the empirical average EN is replaced by the expectation E. The limiting
approximate likelihood L̃κ(θ) does not necessarily equal the likelihood L(θ) = pΦ|θ(Φo|θ).
For example, if κ(∆θ) is obtained from a translation invariant kernel K, that is, κ(∆θ) =
K(Φo−Φθ), L̃κ is the likelihood for a summary statistics whose pdf is obtained by convolving
pΦ|θ with K.

For convex functions κ, Jensen’s inequality yields a lower bound for L̂Nκ and its loga-
rithm,

L̂Nκ (θ) ≥ κ
(
ĴN (θ)

)
, log L̂Nκ (θ) ≥ log κ

(
ĴN (θ)

)
, ĴN (θ) = EN [∆θ] . (23)

Since κ is maximal at zero, the lower bound is maximized by minimizing the conditional
empirical expectation ĴN (θ). The advantage of the lower bound is that it can be maximized
irrespective of κ, which is often difficult to choose in practice.

A popular choice of κ for likelihood-free inference is the uniform kernel κ = κu which
yields the approximate likelihood L̂Nu ,

κu(u) = cχ[0,h)(u), L̂Nu (θ) = cPN (∆θ < h) , (24)

where the indicator function χ[0,h)(u) equals one if u ∈ [0, h) and zero otherwise. The
scaling parameter c does not depend on θ, and the positive scalar h is the bandwidth of
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the kernel and acts as acceptance/rejection threshold. The approximate likelihood L̂Nu is
proportional to the empirical probability that the discrepancy is below the threshold. The
limiting approximate likelihood is denoted by L̃u(θ),

L̃u(θ) = cP (∆θ < h) . (25)

The lower bound for convex κ is not applicable but we can obtain an equivalent bound by
Markov’s inequality,

L̂Nu (θ) = c
[
1− PN (∆u

θ ≥ h)
]
≥ c

[
1− 1

h
EN [∆θ]

]
. (26)

The lower bound of the approximate likelihood can be maximized by minimizing ĴN (θ) as
for convex κ.

We illustrate the approximation of the likelihood via L̂Nu in Example 6 below. It is
pointed out that good approximations are computationally very expensive because of the
very small probability for ∆θ to be below small thresholds h, or, in other words, because of
the large rejection probability. We then use the model for bacterial infections in day care
centers to show in Example 7 that the minimizer of ĴN (θ) can provide a good approximation
of the maximizer of L̂Nu (θ). This is important because ĴN does not require choosing the
bandwidth h or involve any rejections.
Example 6 (Approximate likelihood for the mean of a Gaussian). For the inference of
the mean of a Gaussian, we can use as discrepancy ∆θ the squared difference between the
empirical mean of the observed and simulated data yo and yθ, that is the squared difference
between the two summary statistics Φo and Φθ in Example 4: ∆θ = (Φo−Φθ)2. Because of
the use of simulated data, like the synthetic likelihood, the discrepancy ∆θ is a stochastic
process. We visualize its distribution in Figure 4(a). The observed data yo were the same
as in Example 4.

For this simple example, we can compute the limiting approximate likelihood L̃u in
Equation (25) in closed form,

L̃u(θ) ∝ F
(√

n(Φo − θ) +
√
nh
)
− F

(√
n(Φo − θ)−

√
nh
)
, (27)

where F (x) is the cumulative distribution function (cdf) of a standard normal random
variable,

F (x) =
∫ x

−∞

1√
2π

exp
(
−1

2u
2
)

du. (28)

For small nh, L̃u(θ) becomes proportional to the likelihood L(θ). This is visualized in
Figure 4(b).2 However, the probability to actually observe a realization of ∆θ which is
below the threshold h becomes vanishingly small. For realistic models, L̃u is not available
in closed form but needs to be estimated. The vanishingly small probability indicates that
the inference procedure will be computationally expensive when L̃u is estimated via the
sample average approximation L̂Nu . N

Example 7 (Approximate univariate likelihoods for the day care centers). In the model
for bacterial infections in day care centers, the observed data were converted to summary

2. Using h = 0.1 for illustrative purposes. For threshold choice in real applications, see Example 7 and Section 5.3.
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Figure 4: Nonparametric approximation of the likelihood to estimate the mean θ of a Gaussian. The
discrepancy ∆θ is the squared difference between the empirical means of the observed
and simulated data. (a) The discrepancy is a random function. (b) The probability that the
discrepancy is below some threshold h approximates the likelihood. Note the different
range of the axes.

statistics Φo by representing each day care center (binary matrix) with four statistics. This
gives 4 · 29 = 116 summary statistics in total (see Numminen et al., 2013, for details).

Since the day care centers can be considered to be independent, the 29 observations can
be used to estimate the distribution of the four statistics and their cdfs. Numminen et al.
(2013) assessed the difference between Φθ and Φo by the L1 distance between the estimated
cdfs. Each L1 distance had its own uniform kernel and corresponding bandwidth, which
means that a product kernel was used overall. We here work with a simplified discrepancy
measure: The different scales of the four statistics were normalized by letting the maximal
value of each of the four statistics be one for yo. The discrepancy ∆θ was then the L1 norm
between Φθ and Φo divided by their dimension, ∆θ = 1/116||Φθ − Φo||1.

Figure 5 shows the distributions of the discrepancies ∆θ if one of the three parameters
is varied at a time. The results are for the real data used by Numminen et al. (2013).
The parameters were varied on a grid around the (rounded) mean (3.6, 0.6, 0.1) which was
inferred by Numminen et al. (2013). The distributions were estimated using N = 300
realizations of ∆θ per parameter value. The red solid lines show the empirical average
ĴN . The black lines with circles show L̂Nu with bandwidths (thresholds) equal to the 0.1
quantile of the sampled discrepancies. While subjective, this is a customary choice (Marin
et al., 2012). The thresholds were hβ = 1.16, hΛ = 1.18, and hθ = 1.20, and are marked
with green lines. It can be seen that the optima of ĴN and L̂Nu are attained at about
the same parameter values which is advantageous because ĴN is independent of kernel and
bandwidth.

Since the functional form of ĴN and its gradients are, however, not known, the mini-
mization becomes a difficult problem in higher dimensions. We will show that the idea of
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Figure 5: Approximate likelihoods L̂Nu and distributions of the discrepancy ∆θ for the day care
center example. The green horizontal lines indicate the thresholds used. The optima
of the average discrepancies and the approximate likelihoods occur at about the same
parameter values.

combining probabilistic modeling with optimization, which we mentioned in Example 5 for
the log synthetic likelihood, is also helpful here. N

3.4 Relation between Nonparametric and Parametric Approximation

Kernel density estimation with Gaussian kernels is interesting for two reasons in the context
of likelihood-free inference. First, the Gaussian kernel is positive definite, so that the
estimated density is a member of a reproducing kernel Hilbert space. This means that more
robust approximations of pΦ|θ than the one in Equation (18) would exist (Kim and Scott,
2012), and that there might be connections to the inference approach of Fukumizu et al.
(2013). Second, it allows us to embed the synthetic likelihood approach of Section 3.2 into
the nonparametric approach of Section 3.3.

For the Gaussian kernel, we have that K(Φo,Φθ) = Kg(Φo − Φθ),

Kg(Φo − Φθ) = 1
(2π)p/2

1
| det Cθ|1/2

exp
(
−

(Φo − Φθ)>C−1
θ (Φo − Φθ)

2

)
, (29)

where Cθ is a positive definite bandwidth matrix possibly depending on θ. The kernel Kg

corresponds to κ = κg and ∆θ = ∆g
θ,

κg(u) = 1
(2π)p/2

exp
(
−u2

)
, ∆g

θ = log | det Cθ|+ (Φo − Φθ)>C−1
θ (Φo − Φθ). (30)

The function κg is convex so that Equation (23) yields a lower bound for L̂N (θ) = L̂Ng (θ)
and its logarithm,

log L̂Ng (θ) ≥ −p2 log(2π)− 1
2 Ĵ

N
g (θ), (31)

ĴNg (θ) = EN
[
log | det Cθ|+ (Φo − Φθ)>C−1

θ (Φo − Φθ)
]
. (32)
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We used the subscript “g” to highlight that ĴN in Equation (23) is computed for the
particular discrepancy ∆g

θ. The form of ĴNg is reminiscent of the log synthetic likelihood ˆ̀N
s

in Equation (15). The following proposition shows that there is indeed a connection.

Proposition 1 (Synthetic likelihood as lower bound). For Cθ = Σ̂θ,

ˆ̀N
s (θ) = p

2 −
p

2 log(2π)− 1
2 Ĵ

N
g (θ), (33)

log L̂Ng (θ) ≥ −p2 + ˆ̀N
s (θ) (34)

The proposition is proved in Appendix A. It shows that maximizing the synthetic log-
likelihood corresponds to maximizing a lower bound of a nonparametric approximation
of the log likelihood. The proposition embeds the parametric approach to likelihood ap-
proximation conceptually in the nonparametric one and shows furthermore that ˆ̀N

s can be
computed via an empirical expectation over ∆g

θ.

3.5 Posterior Inference using Sample Average Approximations of the Likelihood

Several computable approximations L̂ of the likelihood L were constructed in the previous
two sections. Table 1 provides an overview. Intractable expectations were replaced with
sample averages using N simulated data sets which we denoted by the superscript “N” in
the symbols for the approximations.

Wood (2010) used the synthetic likelihood L̂Ns together with a Metropolis MCMC al-
gorithm for posterior computations. We here focus on posterior inference via importance
sampling. Using L̂Nu as L̂ in Equation (11), we have

E(g(θ)|Φo) ≈
M∑
m=1

g(θ(m))ŵ(m)
u , ŵ(m)

u =

∑N
j=1 χ[0,h)(∆

(jm)
θ )pθ(θ(m))

q(θ(m))∑M
i=1

∑N
j=1 χ[0,h)(∆

(ji)
θ )pθ(θ(i))

q(θ(i))

, (35)

where χ[0,h) is the indicator function of the interval [0, h) as before, and the ∆(jm)
θ , j =

1, . . . , N, are the observed discrepancies for the sampled parameter θ(m) ∼ q(θ). Instead of
sampling several discrepancies for the same θ(m), sampling M ′ pairs (∆(i)

θ ,θ
(i)) with N = 1

is also possible and corresponds to an asymptotically equivalent solution. With q = pθ, the
approximation is a Nadaraya–Watson kernel estimate of the conditional expectation (see,
for example, Wasserman, 2004, Chapter 21).

Approximate Bayesian computation (ABC) is intrinsically linked to kernel density es-
timation and kernel regression (Blum, 2010). A basic ABC rejection sampler (Pritchard
et al., 1999; Marin et al., 2012, Algorithm 2) is obtained from Equation (35) with N = 1,
q = pθ, and ∆θ = ||Φo − Φθ|| where ||.|| is some norm. Approximate samples from the
posterior pdf of θ given Φo can thus be obtained by retaining those θ(m) for which the Φ(m)

θ

are within distance h from Φo. In an iterative approach, the accepted particles can be used
to define the auxiliary pdf q(θ) of the next iteration by letting it be a mixture of Gaussians
with weights ŵ(m)

u , center points θ(m), and a covariance determined by the θ(m) (Beaumont
et al., 2009). This gives the population Monte Carlo (PMC) ABC algorithm (Marin et al.,
2012, Algorithm 4). Related sequential Monte Carlo (SMC) ABC algorithms were proposed
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by Sisson et al. (2007) and Toni et al. (2009). Working with q = pθ, Beaumont et al. (2002)
introduced ABC with more general kernels, which corresponds to using L̂Nκ instead of L̂Nu .

Example 6 showed that approximating the likelihood via sample averages is computa-
tionally expensive because of the required small thresholds. The auxiliary pdf q(θ) specifies
where in the parameter space the likelihood is predominantly evaluated. The following ex-
ample shows that avoiding regions in the parameter space where the likelihood is vanishingly
small allows for considerable computational savings.
Example 8 (Univariate approximate posteriors for the day care centers). For the inference
of the model of bacterial infections in day care centers, Numminen et al. (2013) used uniform
priors for the parameters β ∈ (0, 11), Λ ∈ (0, 2), and θ ∈ (0, 1). The likelihoods L̂Nu shown
in Figure 5 are thus proportional to the posterior pdfs. The posterior pdfs of the univariate
unknowns are conditional on the remaining fixed parameters. For example, the posterior
pdf for β is conditional on (Λ, θ) = (Λo, θo) = (0.6, 0.1). In Section 7, we consider inference
of all three parameters at the same time.

In Figure 5, each parameter is evaluated on a sub-interval of the domain of the prior. The
sub-intervals were chosen such that the far tails of the likelihoods were excluded. Parameter
β, for example, was evaluated on the interval (1.5, 5.5) only. Evaluating the discrepancy
∆θ on the complete interval (0, 11) is not very meaningful since the probability that it is
above the chosen threshold is vanishingly small outside the interval (1.5, 5.5). In fact, out
of M = 5,000 discrepancies ∆θ which we simulated for β uniformly on (0, 11), not a single
one was accepted for β /∈ (1.5, 5.5). Hence, taking for instance a uniform distribution on
(1.5, 5.5) instead of the prior as auxiliary distribution leads to considerable computational
savings. Motivated by this, we propose a method which automatically avoids regions in the
parameter space where the likelihood is vanishingly small. N

4. Computational Difficulties in the Standard Inference Approach

We have seen that the approximate likelihood functions L̂(θ) which are used to infer
simulator-based statistical models are stochastic processes indexed by the model param-
eters θ. Their properties, in particular their functional form and gradients, are generally
not known; they behave like stochastic black-box functions. The stochasticity is due to
the use of simulations to approximate intractable expectations. In the standard approach
presented in the previous section, the expectations are approximated by sample averages so
that a single evaluation of L̂ requires the simulation of N data sets. The standard approach
makes minimal assumptions but suffers from a couple of limiting factors.

1. There is an inherent trade-off between computational and statistical efficiency: Re-
ducing N reduces the computational cost of the inference methods, but it can also
decrease the accuracy of the estimates (Figure 2).

2. For finite N , the approximate likelihoods may not be smooth (Figure 3).

3. SimulatingN data sets uniformly in the parameter space is an inefficient use of compu-
tational resources and particularly costly if simulating a single data set already takes
a long time. In some regions in the parameter space, far fewer simulations suffice to
conclude that it is very unlikely for the approximate likelihood to take a significant
value (Figures 2 to 5).
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5. Framework to Increase the Computationally Efficiency

We present a framework which combines optimization with probabilistic modeling in order
to increase the efficiency of likelihood-free inference of simulator-based statistical models.

5.1 From Sample Average to Regression Based Approximations

The standard approach to obtain a computable approximate likelihood function L̂ relies
on sample averages, yielding the parametric approximation L̂Ns = exp(ˆ̀N

s ) in Equation
(15) or the nonparametric approximation L̂Nκ in Equation (21). The approximations are
computable versions of L̃s = exp(˜̀

s) in Equation (13) and L̃κ in Equation (22), which both
involve intractable expectations. But sample averages are not the only way to approximate
the intractable expectations. We here consider approximations based on regression.

Equation (22) shows that L̃κ(θ) has a natural interpretation as a regression function
where the model parameters θ are the covariates (the independent variables) and κ(∆θ) is
the response variable. The expectation can thus also be approximated by solving a regression
problem. Further, ĴN in Equation (23) can be seen as the sample average approximation
of the regression function J(θ),

J(θ) = E [∆θ] , (36)

where the discrepancy ∆θ is the response variable. The arguments which we used to show
that ĴN provides a lower bound for L̂Nκ carry directly over to J and L̃κ: J provides a lower
bound for L̃κ if κ is convex or the uniform kernel.

Proposition 1 establishes a relation between the sample average quantities ĴNg in Equa-
tion (32) and ˆ̀N

s in Equation (15). In the proof of the proposition in Appendix A, we show
that the relation extends to the limiting quantities Jg(θ) = E

[
∆g
θ

]
and ˜̀

s in Equation (13).
Thus, for Cθ = Σθ and up to constants and the sign, ˜̀

s(θ) can be seen as a regression
function with the particular discrepancy ∆g

θ as the response variable.
We next discuss the general strategy to infer the regression functions while avoiding

unnecessary computations. For nonparametric approximations to the likelihood, inferring
J is simpler than inferring L̃κ since the function κ and its corresponding bandwidth do
not need to be chosen. We thus propose to first infer the regression function J of the
discrepancies and then, in a second step, to leverage the obtained solution to infer L̃κ. For
the parametric approximation to the likelihood, this extra step is not needed since Jg is a
special instance of the regression function J .

5.2 Inferring the Regression Function of the Discrepancies

Inferring J(θ) via regression requires training data in the form of tuples (θ(i),∆(i)
θ ). Since

we are mostly interested in the region of the parameter space where ∆θ tends to be small,
we propose to actively construct the training data such that they are more densely clustered
around the minimizer of J(θ). As J(θ) is unknown in the first place, our proposal amounts
to performing regression and optimization at the same time: Given an initial guess that the
minimizer is in some bounded subset of the parameter space, we can sample some evidence
E(t) of the relation between θ and ∆θ,

E(t) =
{

(θ(1),∆(1)
θ ), . . . , (θ(t),∆(t)

θ )
}
, (37)
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and use this evidence to obtain an estimate Ĵ (t) of J via regression. The estimated Ĵ (t) and
some measurement of uncertainty about it can then be used to produce a new guess about
the potential location of the minimizer, from where the process re-starts. In some cases, it
may be advantageous to include the prior pdf of the parameters in the process. We explore
this topic in Appendix B.

The evidence set E(t) grows at every iteration and we may stop at t = T . The value of
T can be chosen based on computational considerations, by checking whether the learned
model predicts the acquired points reasonably well, or by monitoring the change in the
minimizer θ̂(t)

J of Ĵ (t) as the evidence set grows,

θ̂
(t)
J = argminθ Ĵ (t)(θ). (38)

Given our examples so far, it is further reasonable to assume that J is a smooth func-
tion. Even for the Ricker model, the mean objective was smooth although the individual
realizations were not (Figure 3). The smoothness assumption about J can be used in the
regression and enables its efficient minimization.

For the special case where ˜̀
s is the target, several observed values of ∆θ = ∆g

θ may
be available for any given θ(i). This is because the covariance matrix Σθ may be still
estimated as a sample average so that multiple simulated summary statistics, and hence
discrepancies, are available per θ(i). They can be used as discussed above with the only
minor modification that the training data are updated with several tuples at a time. But it
is also possible to only use the average value of the observed discrepancies, which amounts to
using the observed values of ˆ̀N

s for training. The estimated regression function Ĵ (t) provides
an estimate for ˜̀

s in either case. We denote the estimate by ˆ̀(t)
s and the corresponding

estimate of L̃s by L̂(t)
s .

Combining nonlinear regression with the acquisition of new evidence in order to optimize
a black-box function is known as Bayesian optimization (see, for example, Brochu et al.,
2010). We can thus leverage results from Bayesian optimization to implement the proposed
approach, which we will do in Section 6.

5.3 Inferring the Regression Function for Nonparametric Likelihood Approximation

The evidence set E(t) can be used in two possible ways in the nonparametric setting: The
first possibility is to compute for each ∆(i)

θ in E(t) the value κ(i) = κ(∆(i)
θ ) and to thereby

produce a new evidence set which can be used to approximate L̃κ by fitting a regression
function. The second possibility is to estimate a probabilistic model of ∆θ from the evidence
E(t). The estimated model can be used to approximate L̃κ by replacing the expectation in
Equation (22) with the expectation under the model. We denote either approximation by
L̂

(t)
κ where the superscript “(t)” indicates that the approximation was obtained via regression

with t training points. Since E(t) is such that the approximation of the regression function
is accurate where it takes small values, the approximation of L̃κ will be accurate where it
takes large values, that is, in the modal areas.

For nonparametric likelihood approximation, kernels and bandwidths need to be selected
(see Section 3.3). The choice of the kernel is generally thought to be less critical than
the choice of the bandwidth (Wand and Jones, 1995). Bandwidth selection has received
considerable attention in the literature on kernel density estimation (for an introduction,
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see, for example, Wand and Jones, 1995). The results from that literature are, however,
not straightforwardly applicable to our work: We may only be given a certain discrepancy
measure ∆θ without underlying summary statistics Φθ (Gutmann et al., 2014). And even
if the discrepancy ∆θ is constructed via summary statistics, the kernel density estimate is
only evaluated at Φo which is kept fixed while θ is varied. Furthermore, we usually only
have very few observations available for any given θ which is generally not the case in kernel
density estimation. These differences warrant further investigations into which extent the
bandwidth selection methods from the kernel density estimation literature are applicable
to likelihood-free inference. We focus in this paper on the uniform kernel and generally
choose h via the quantiles of the ∆(i)

θ , which is common practice in approximate Bayesian
computation (see, for example, Marin et al., 2012). The approximate likelihood function
for the uniform kernel will be denoted by L̂(t)

u .

5.4 Benefits and Limitations of the Proposed Approach

The difference between the proposed approach and the standard approach to likelihood-
free inference of simulator-based statistical models lies in the way the intractable J and
L̃ are approximated. We use regression with actively acquired training data while the
standard approach relies on computing sample averages. Our approach allows to incorporate
a smoothness assumption about J and L̃ in the region of their optima. The smoothness
assumption allows to “share” observed ∆θ among multiple θ which suggests that fewer
∆(i)
θ , that is, fewer simulated data sets y(i)

θ , are needed to reach a certain level of accuracy.
A second benefit of the proposed approach is that it directly targets the region in the
parameter space where the discrepancy ∆θ tends to be small, which is very important if
simulating data sets is time consuming.

Regression and deciding on the training data are not free of computational cost. While
the additional expense is often justified by the net savings made, it goes without saying that
if simulating the model is very cheap, methods for regression and decision making need to be
used which are not disproportionately costly. Furthermore, prioritizing the low-discrepancy
areas of the parameter space is often meaningful, but it also implies that the tails of the
likelihood (posterior) will not be as well approximated as the modal areas. The proposed
approach thus had to be modified if the computation of small probability events was of
primary interest.

Section 4 lists three computational difficulties occurring in the standard approach. Our
approach addresses the smoothness issues via smooth regression. The inefficient use of
resources is addressed by focusing on regions in the parameter space where ∆θ tends to be
small. The trade-off between computational and statistical performance is still present but
in modified form: The trade-off is the size of the training set E(t) used in the regression.
The regression functions can be estimated more accurately as the size of the training set
grows but this also requires more computation. The size of the training set as trade-off
parameter has the advantage that we are free to choose in which areas of the parameter
space we would like to approximate the regression function more accurately and in which
areas an accurate approximation is not needed. This is in contrast to the standard approach
where a computational cost of N simulated data sets needs to be paid per θ irrespective of
its value.
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6. Implementing the Framework with Bayesian Optimization

We start with introducing Bayesian optimization and then use it to implement our frame-
work. This is followed by a discussion of possible extensions.

6.1 Brief Introduction to Bayesian Optimization

We briefly introduce the elements of Bayesian optimization which are needed in the paper. A
more thorough introduction can be found in the review articles by Jones (2001) and Brochu
et al. (2010). While the presented version of Bayesian optimization is rather straightforward
and textbook-like, our framework can also be implemented with more advanced versions,
see Section 6.4.

Bayesian optimization comprises a set of methods to minimize black-box functions f(θ).
With a black-box function, we mean a function which we can evaluate but whose form and
gradients are unknown. The basic idea in Bayesian optimization is to use a probabilistic
model of f to select points where the objective is evaluated, and to use the obtained values
to update the model by Bayes’ theorem.

The objective f is often modeled as a Gaussian process which is also done in this paper:
We assume that f is a Gaussian process with prior mean function m(θ) and covariance
function k(θ,θ′) subject to additive Gaussian observation noise with variance σ2

n. The joint
distribution of f at any t points θ(1), . . . ,θ(t) is thus assumed Gaussian with mean mt and
covariance Kt, (

f (1), . . . , f (t))> ∼ N (mt,Kt), (39)

mt =


m(θ(1))

...
m(θ(t))

 , Kt =


k(θ(1),θ(1)) . . . k(θ(1),θ(t))

...
...

k(θ(t),θ(1)) . . . k(θ(t),θ(t))

+ σ2
nIt. (40)

We used f (i) to denote f(θ(i)) and It is the t × t identity matrix. While other choices are
possible, we assume that m(θ) is either a constant or a sum of convex quadratic polyno-
mials in the elements θj of θ, cross-terms were not included, and that k(θ,θ′) is a squared
exponential covariance function,

m(θ) =
∑
j

ajθ
2
j + bjθj + c, k(θ,θ′) = σ2

f exp

∑
j

1
λ2
j

(θj − θ′j)2

 . (41)

These are standard choices (see, for example, Rasmussen and Williams, 2006, Chapter
2). Since we are interested in minimization, we constrain the aj to be non-negative. In
the last equation, θj and θ′j are the elements of θ and θ′, respectively, σ2

f is the signal
variance, and the λj are the characteristic length scales. The length scales control the
amount of correlation between f(θ) and f(θ′), in other words, they control the wiggliness
of the realizations of the Gaussian process. The signal variance is the marginal variance of
f at a point θ if the observation noise was zero.

The quantities aj , bj , c, σ2
f , λj , and σ2

n are hyperparameters. For the results in this
paper, they were learned by maximizing the leave-one-out log predictive probability (a form
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of cross-validation, see Rasmussen and Williams, 2006, Section 5.4.2). The hyperparameters
were slowly updated as new data were acquired, as done in previous work, for example by
Wang et al. (2013). This yielded satisfactory results but there are several alternatives,
including Bayesian methods to learn the hyperparameters (for an overview, see Rasmussen
and Williams, 2006, Chapter 5), and we did not perform any systematic comparison.

Given evidence E(t)
f = {(θ(1), f (1)), . . . , (θ(t), f (t))}, the posterior pdf of f at a point θ

is Gaussian with posterior mean µt(θ) and posterior variance vt(θ) + σ2
n,

f(θ)|E(t)
f ∼ N (µt(θ), vt(θ) + σ2

n), (42)

where (see, for example, Rasmussen and Williams, 2006, Section 2.7),

µt(θ) = m(θ) + kt(θ)>K−1
t (ft −mt), vt(θ) = k(θ,θ)− kt(θ)>K−1

t kt(θ), (43)

ft =
(
f (1), . . . , f (t))>, kt(θ) =

(
k(θ,θ(1)), . . . , k(θ,θ(t))

)>
. (44)

The posterior mean µt emulates f and can be minimized with powerful gradient-based
optimization methods.

The evidence set can be augmented by selecting a new point θ(t+1) where f is next
evaluated. The point is chosen based on the posterior distribution of f given E(t)

f . While
other choices are equally possible, we use the acquisition function At(θ) to select the next
point,

At(θ) = µt(θ)−
√
η2
t vt(θ), (45)

where η2
t = 2 log[td/2+2π2/(3εη)] with εη being a small constant (we used εη = 0.1). This ac-

quisition function is known as the lower confidence bound selection criterion (Cox and John,
1992, 1997; Srinivas et al., 2010, 2012).3 Classically, θ(t+1) is chosen deterministically as the
minimizer of At(θ). The minimization of At(θ) yields a compromise between exploration
and exploitation: Minimization of the posterior mean µt(θ) corresponds to exploitation of
the current belief and ignores its uncertainty. Minimization of −

√
vt(θ), on the other hand,

corresponds to exploration where we seek a point where we are uncertain about f . The
coefficient ηt implements the trade-off between these two desiderata.

There is usually no restriction that θ(t+1) must be different from previously acquired
θ(t). We found, however, that this may result in a poor exploration of the parameter space
(see Figure 7 and Example 10 below). Employing a stochastic acquisition rule avoids getting
stuck at one point. We used the simple heuristic that θ(t+1) is sampled from a Gaussian with
diagonal covariance matrix and mean equal to the minimizer of the acquisition function.
The standard deviations were determined by finding the end-points of the interval where the
acquisition function was within a certain (relative) tolerance. Other stochastic acquisition
rules, like for example Thompson sampling (Thompson, 1933; Chapelle and Li, 2011; Russo
and Van Roy, 2014), could alternatively be used.

The algorithm was initialized with an evidence set E(t0)
f where the parameters θ(1), . . . ,θ(t0)

were chosen as a Sobol quasi-random sequence (see, for example, Niederreiter, 1988). Com-
pared to uniformly distributed (pseudo) random numbers, the Sobol sequence covers the

3. In the literature, maximization instead of minimization problems are often considered. For maximization problems,
the acquisition function becomes µt(θ) +

√
η2

t vt(θ) and needs to be maximized. The formula for η2
t is used in the

review by Brochu et al. (2010) and is part of Theorem 2 of Srinivas et al. (2010).
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parameter space in a more even fashion. This kind of initialization is, however, not critical
to our approach, and only few initial points were used in our simulations.

6.2 Inferring the Regression Function of the Discrepancies

Letting f(θ) = ∆θ, Bayesian optimization yields immediately an estimate of J(θ) in Equa-
tion (36). Since ∆θ is non-negative, working with f = log ∆θ seems to be theoretically
more sound. In practice, however, both approaches were found to work well, albeit we do
not aim at any systematic comparison here. If f = ∆θ, the estimate Ĵ (t) of J is given by
the posterior mean µt, and if f = log ∆θ, the estimate is given by the mean of a log-normal
random variable,

Ĵ (t)(θ) =

µt(θ) iff(θ) = ∆θ,

exp
(
µt(θ) + 1

2(vt(θ) + σ2
n)
)

iff(θ) = log ∆θ.
(46)

As discussed in Section 5.2, in the parametric approach to likelihood approximation, Ĵ (t)

equals the computable approximation ˆ̀(t)
s of ˜̀

s.
We illustrate the basic principles of Bayesian optimization in Example 9 below. In

Example 10, we illustrate log-Gaussian modeling and the stochastic acquisition rule.

Example 9 (Bayesian optimization to infer the mean of a Gaussian). For inference of
the mean of a univariate Gaussian, the squared difference of the empirical means was used
as the discrepancy measure ∆θ, as in Example 6. We modeled the discrepancy ∆θ as a
Gaussian process with constant prior mean and performed Bayesian optimization with the
deterministic acquisition rule. Figure 6 shows the first iterations: When only a single obser-
vation of ∆θ is available, t = 1 and ∆θ is believed to be constant but there is considerable
uncertainty about it (upper-left panel). The posterior distribution of the Gaussian process
yields the acquisition function A1(θ) according to Equation (45) (curve in magenta). Its
minimization gives the value θ(2) where ∆θ is evaluated next (blue rectangle). After includ-
ing the observed value of ∆θ into the evidence set, t = 2 and the posterior distribution of
the Gaussian process is re-calculated using Equation (42), that is, the belief about ∆θ is
updated using Bayes’ theorem (upper-right panel). The updated belief becomes the cur-
rent belief and the process restarts. A movie showing the process over several iterations is
available at http://www.jmlr.org/papers/volume17/15-017/supplementary/Gauss.avi. N

Example 10 (Bayesian optimization to infer the growth rate in the Ricker model). Exam-
ple 5 introduced the synthetic likelihood for the Ricker model. We have seen that individual
realizations of ˆ̀N

s are rather noisy, in particular for N = 50, but that their average, which
represents an estimate of ˜̀

s, is smooth with its optimum in the right region (Figure 3). We
here obtain estimates ˆ̀(t)

s of ˜̀
s with Bayesian optimization. The maximal training data are

T = 150 tuples (log r, ˆ̀N
s ), where the first nine are from the initialization. The log synthetic

likelihood was computed using code of Wood (2010) which only returned ˆ̀N
s and not the

multiple discrepancies prior to averaging.
Figures 7(a) and (b) show −ˆ̀(t)

s after initialization without and with log-transformation,
respectively (black solid lines). In both cases, we used a quadratic prior mean function. The
estimated limiting negative log synthetic likelihood −˜̀

s from Figure 3 is shown in red for
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Acquisition function

Belief based on 1 data point

Start: 1 data point

Where to evaluate next

2 data points

Updated belief

Exploration vs exploitation

Bayes’ theorem

3 data points

Acquisition function

Where to evaluate next

Where to evaluate next

Updated belief

Target

Updated belief

Current belief

Figure 6: The first iterations of Bayesian optimization to estimate the mean of a Gaussian. The
distribution of ∆θ and its regression function J(θ) are reproduced from Figure 4 for ref-
erence (labeled “Target”). Bayesian optimization consists in acquiring new data based
on the current belief, followed by an update of the belief by Bayes’ theorem. The ac-
quisition of new data is based on an acquisition function which implements a trade-off
between exploration and exploitation. Exploitation after two data points would consist in
evaluating the objective again at θ = 5. Exploration would consist in evaluating it where
the posterior variance is large, that is, somewhere between minus five and zero. The point
selected (blue rectangle) strikes a compromise between the two extremes.

reference. Figure 7(c) shows that the deterministic decision rule can lead to acquisitions
with very little spatial exploration. The reason for the poor exploration is presumably the
rather large variance of ˆ̀N

s for N = 50. Working with a log-Gaussian process leads to
a better exploration and also to a better approximation (Figure 7(d)). The acquisitions
happen, however, still in a cluster-like manner, which can also be seen in Figure 14 in
Appendix C where we provide a more detailed analysis. Working with a stochastic decision
rule leads to acquired points which are spread out more evenly in the area of interest. This
results in both more stable and more accurate approximations (Figures 7(e–f) and Figure
15 in Appendix C). N
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(b) log-Gaussian process model, initial
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(c) GP, deterministic decision
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(d) log GP, deterministic decision
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(e) GP, stochastic decision
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(f) log GP, stochastic decision

Figure 7: Approximation of the limiting negative log synthetic likelihood −˜̀
s for the Ricker ex-

ample. The approximations are shown as black solid curves. The black dashed curves
indicate the variability of −ˆ̀N

s , and the red curves show −˜̀
s from Figure 3 for refer-

ence. (a–b) The approximation after initialization with 9 data points. The green vertical
lines indicate the minimizer of the acquisition function. The dashed vertical lines show
the mean plus-or-minus one standard deviation in the stochastic decision rule. (c–f) The
approximations are based on 150 data points (blue circles).
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6.3 Model-Based Nonparametric Likelihood Approximation

Bayesian optimization yields a probabilistic model for the discrepancy ∆θ. As discussed in
Section 5.3, we can use this model to obtain the computable likelihood approximation L̂(t)

u ,

L̂(t)
u (θ) ∝


F

(
h−µt(θ)√
vt(θ)+σ2

n

)
iff(θ) = ∆θ,

F

(
log h−µt(θ)√
vt(θ)+σ2

n

)
iff(θ) = log ∆θ,

(47)

where h is the bandwidth (threshold). The function F (x) was defined in Equation (28) and
denotes the cdf of a standard normal random variable, and µt and vt +σ2

n are the posterior
mean and variance of the Gaussian process.

Both L̂(t)
u in the nonparametric approach and L̂(t)

s = exp(ˆ̀(t)
s ) in the parametric approach

are computable approximations L̂ of the likelihood L. Evaluating them is cheap since no
further runs of the simulator are needed. Derivatives can also be computed since the
derivatives of the posterior mean and variance are tractable for Gaussian processes. A
given approximate likelihood function can thus be used in various ways for inference: We
can maximize it and compute its curvature (Hessian matrix) to obtain error bars, we can
perform inference with a hybrid Monte Carlo algorithm in a MCMC framework, or use it
according to Equation (11) in an importance sampling approach.

For the results in this paper, we used iterative importance sampling where in each
iteration, the auxiliary pdf q was a mixture of Gaussians as in Section 3.5. The initial
auxiliary pdf was defined as a mixture of Gaussians in the same manner by associating
uniform weights with the θ(i) acquired in the Bayesian optimization step. Samples from the
prior pdf pθ are not needed in such an approach, which can be advantageous if obtaining
them is expensive.

We next illustrate model-based likelihood approximation using the example about bac-
terial infections in day care centers.

Example 11 (Model-based approximate univariate likelihoods for the day care centers). We
inferred the likelihood function via Bayesian optimization using a Gaussian process model
with quadratic prior mean and T = 50 data points (10 initial points and 40 acquisitions).
The bandwidths and general setup were as in Example 7. The left column of Figure 8 shows
the estimated models of the discrepancies for the different parameters and compares them
with the empirical distributions reported in Figure 5. The right column of Figure 8 shows
the estimated likelihood functions L̂(t)

u , t = 50 (blue solid curves), and compares them with
the sample average based approximations L̂Nu from Figure 5 (black, dots). For Bayesian
optimization, the computational cost for an entire likelihood curve was 50 simulations. This
is in stark contrast to the computational cost of N = 300 simulations for a single evaluation
of L̂Nu in the sample-based approach. Since L̂Nu was evaluated on a grid of 50 points, the
model-based results required 300 times fewer simulations. The computational savings were
achieved through the use of smooth regression and the active construction of the training
data in Bayesian optimization. N
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Figure 8: Distributions of the discrepancies and approximate likelihoods for the day care center
example. For reference, the sample average results are reproduced from Figure 5. In
the standard sample average approach, each likelihood curve required 15,000 simulations
(right column, black lines with markers). In the proposed model-based approach, each
likelihood curve required 50 simulations (right column, blue solid lines). This yields a
factor of 300 in computational savings.
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6.4 Possible Extensions

We use in this paper a basic version of Bayesian optimization to do likelihood-free inference.
But more advanced versions exist which opens up a range of possible extensions.

6.4.1 SCALABILITY WITH THE NUMBER OF ACQUISITIONS

The straightforward approach of Section 6.1 to Bayesian optimization with a Gaussian
process model requires the inversion of the t × t matrix Kt. The inversion has complexity
O(t3) which limits the number of acquisitions to a few thousands. For the applications in
this paper, this has not been an issue but we would like to be able to acquire more than a
few thousand points if necessary.

Research on Gaussian processes has produced numerous methods to deal with the inver-
sion of Kt (for an overview, see Rasmussen and Williams, 2006, Chapter 8). Importantly,
we can directly use any of these methods for the purpose of likelihood-free inference. For ex-
ample, sparse Gaussian process regression employs m < t “inducing variables” to reduce the
complexity from O(t3) to O(tm2) (see, for example, Quiñonero-Candela and Rasmussen,
2005). The inducing variables and the hyperparameters of the Gaussian process can be
optimized using variational learning (Titsias, 2009), which is also amenable to stochastic
optimization to further reduce the computational cost (Hensman et al., 2013).

An alternative approach to Gaussian process regression is Bayesian linear regression
with a set of m < t suitably chosen basis functions. The two approaches are closely related
(see, for example, Rasmussen and Williams, 2006, Chapter 2), but instead of a t× t matrix,
a m × m matrix needs to be inverted. This reduces the computational complexity again
to O(tm2). In order to keep the number of required basis functions small, adaptive basis
regression with deep neural networks has been employed to perform Bayesian optimization
(Snoek et al., 2015).

6.4.2 HIGH-DIMENSIONAL INFERENCE

Likelihood-free inference is in general very difficult when the dimensionality d of the pa-
rameter space is large. This difficulty manifests itself in our approach in the form of a
nonlinear regression problem which needs to be solved. While we are only interested in
accurate regression results in the areas of the parameter space where the discrepancy is
small, discovering these areas becomes more difficult as the dimension increases.

In general, more training data are needed with increasing dimensions so that a method
which can handle a large number of acquisitions is likely required (see above). Furthermore,
the optimization of acquisition functions is also more difficult in higher dimensions.

Bayesian optimization in high dimensions typically relies on structural assumptions
about the objective function. In recent work, it was assumed that the objective varies
along a low dimensional subspace only (Chen et al., 2012; Wang et al., 2013; Djolonga
et al., 2013), or that it takes the form of an additive model (Kandasamy et al., 2015). This
work and further developments in high-dimensional Bayesian optimization can be leveraged
for the challenging problem of high-dimensional likelihood-free inference.
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6.4.3 PARALLELIZATION AND ACQUISITION RULES

Bayesian optimization lends itself to parallelization. In particular the acquisition of new
data points can be performed in parallel. While several well-known acquisition rules are
sequential, they can also be parallelized. Our stochastic acquisition rule provides an easy
mechanism by using a sequential rule to define a probability distribution for the location of
the next acquisition. Several points can then be drawn in parallel from that distribution.
We employ the lower confidence bound selection criterion in Equation (45) to drive the
stochastic acquisitions, but alternative rules, for example the maximization of expected
improvement, can be used in an analogous way. Other stochastic acquisition rules, like for
instance Thompson sampling (Thompson, 1933; Chapelle and Li, 2011; Russo and Van Roy,
2014), enable similarly the concurrent acquisition of multiple data points.

A more elaborate way to parallelize a sequential acquisition rule is to design the joint
acquisitions such that the resulting algorithm behaves as if the points are chosen sequentially
(Azimi et al., 2010), or to integrate out the possible outcomes of the pending function
evaluations (Snoek et al., 2012). Moreover, parallel versions of the lower/upper confidence
bound criterion have been proposed by Contal et al. (2013) and Desautels et al. (2014).

In most theoretical studies on acquisition rules, the objective function in Bayesian op-
timization is modeled as a Gaussian process with uncorrelated Gaussian observation noise.
The distribution of the (log) discrepancy, however, may not follow this assumption. This
implies on the one hand that the probabilistic modeling of the discrepancy could be im-
proved (see below). On the other hand, it also means that further research would be needed
about optimal acquisition rules in the context of likelihood-free inference.

6.4.4 PROBABILISTIC MODEL

We modeled the discrepancy ∆θ as a Gaussian or log Gaussian process using a squared
exponential covariance function and uncorrelated Gaussian observation noise. While simple
and often used, we are not limited to these choices. The literature on Gaussian process
regression and Bayesian optimization provides several alternatives and extensions (for an
overview, see Rasmussen and Williams, 2006). Modeling of ∆θ is important because the
model affects the inferences made.

In the employed model, a stationary prior distribution is assumed. However, depending
on the simulator, the discrepancy may behave differently in different parameter regions.
In particular its variance may be input dependent (heteroscedasticity). Such cases can be
handled by non-stationary covariance functions or by using different stationary processes in
different regions of the parameter space (see, for example, Rasmussen and Williams, 2006,
Chapters 6 and 9).

Equation (42) shows that for the Gaussian process model, the posterior variance does
not depend on the observed function values but only on the acquisition locations. As
more points are acquired in a neighborhood of a point, the posterior variance may shrink
even if the observed function values have a larger than expected spread. A dependency
on the observed values can be obtained indirectly by updating the hyperparameters of the
covariance function. But a more direct dependency may be preferable. An option is to use
Student’s t processes instead where the posterior variance depends on the observed function
values through a global scaling factor (Shah et al., 2014).
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7. Applications

We here apply the developed methodology to infer the complete Ricker model and the
complete model of bacterial infections in day care centers. As in the previous section, using
Bayesian optimization in likelihood-free inference (BOLFI) reduces the amount of required
simulations by several orders of magnitude.

7.1 Ricker Model

We introduced the Ricker model in Example 2. It has three parameters: log r, σ, and φ.
The difficulty in the inference stems from the dynamics of the latent time series and the
unobserved variables. We inferred the parameters using the synthetic likelihood of Wood
(2010) from the data shown in Figure 1(a) which were generated with θo = (3.8, 0.3, 10).

Wood (2010) inferred the model with a random walk Markov chain Monte Carlo algo-
rithm using ˆ̀N

s (θ) with N = 500. The random walk was defined on the log-parameters
due to their positivity. In a baseline study with the computer code made publicly available
by Wood (2010), we were not able to infer the parameters with the settings in the orig-
inal publication (Wood, 2010, Section 1.1 in the supplementary material). Reducing the
proposal standard deviation for σ by a factor of ten enabled inference even though differ-
ent Markov chains still led to rather different marginal posterior pdfs for σ. These issues
were observed for N ∈ {500, 1000, 5000} and for Markov chains run twice as long as in the
original publication (100,000 versus 50,000 iterations). In addition to the usual random
effects in MCMC, the variability in the outcomes of the different chains may be due to his
approach of working on a single realization of the random log synthetic likelihood function
(see Figure 3 for example realizations when only log r is varied). The results of our baseline
study are reported in Appendix D. Given the nature of the baseline results, we should not
expect that the results from our method match them exactly.

For BOLFI, we modeled the random log synthetic likelihood ˆ̀N
s as a log-Gaussian pro-

cess with a quadratic prior mean function (using N = 500 as Wood, 2010). Bayesian
optimization was performed with the stochastic acquisition rule and 20 initial data points.
Figure 9 shows −ˆ̀(t)

s for t ∈ {50, 150, 500}. The results for t = 50 and t = 500 differ more in
the shape of the estimated regression functions than in the location of the optima. As the
evidence set grows, the algorithm learns that the log synthetic likelihood is less confined
along σ and that the curvature along the other dimensions should be larger. The plot also
shows that there is a negative correlation between log r and φ (conditional on σ). This
is reasonable since a larger growth rate r can be compensated with a smaller value of the
observation scalar φ and vice versa.

The approximation ˆ̀(t)
s was used to perform posterior inference of the parameters via

the iterative importance sampling scheme of Section 6.3 (using three iterations with 25,000
samples each). This sampling is purely model-based and does not require further runs of the
simulator. The computed marginal posterior pdfs are shown in Figure 10 (curves in gray)
together with a MCMC solution for reference (blue dashed). It can be seen that already
after t = 150 acquired data points, we obtain a solution which matches the MCMC solution
well at a fraction of the computational cost. About 600 times fewer calls to the simulator
were needed.
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Figure 9: Isocontours of the estimated negative log synthetic likelihood function for the Ricker
model. Each panel shows slices of −ˆ̀(t)

s with argmax ˆ̀(t)
s as center point when two of

the three variables are varied at a time. The center points are marked with a red cross.
The dots mark the location of the acquired parameters θ(i) (projected onto the plane).
The intensity map is the same in all figures; white corresponds to the smallest value.

The largest differences between the model-based and the MCMC solution occur for
parameter σ (Figure 10(b)). But we have seen that this is a difficult parameter to infer and
that the MCMC solution may actually not correspond to ground truth. The two posteriors
inferred by MCMC have, for instance, posterior means (blue diamonds) which are further
from the data generating parameter σo = 0.3 (green circle) than our model-based solution
(black square). For the other parameters, the posterior means of the model-based solution
are also closer to ground truth than the posterior means of the MCMC solution.
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Figure 10: Marginal posterior pdfs for the Ricker model. The model-based solutions are shown in
gray, the blue dashed curves are the MCMC solution. The green circles on the x-axes
mark the location of θo = (3.8, 0.3, 10). The blue diamonds mark the value of the
posterior mean for the MCMC solution while the black squares indicate the posterior
means of the model-based solution. For the MCMC solution, 100,000 simulated data
sets are needed. Bayesian optimization yields informative solutions using 150 simulated
data sets only, which corresponds to 667 times fewer simulations than with MCMC.

7.2 Bacterial Infections in Day Care Centers

The model for bacterial infections in day care centers was described in Example 3. It
has three parameters of interest: β, Λ, and θ. The likelihood function is intractable due
to the infinitely many unobserved correlated variables. We inferred the model using the
discrepancy ∆θ described in Example 7 from the same real data as Numminen et al. (2013).

For BOLFI, we modeled the discrepancy ∆θ as a Gaussian process with a quadratic
prior mean function and used the stochastic acquisition rule. The algorithm was initial-
ized with 20 data points. Figure 11 shows the estimated regression functions Ĵ (t) for
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t ∈ {50, 100, 150, 500}. For t = 50, the optimal co-infection parameter θ is at a bound-
ary of the parameter space. As more training data are acquired, the shape of the estimated
regression function changes. The algorithm learns that the optimal θ is located away from
the boundary, and the isocontours become oblique which indicates a negative (conditional)
correlation between all three parameters. A negative correlation between β and Λ given the
estimate of θ is reasonable because an increase in transmissions inside the day care centers
(increase of β) can be compensated with a decrease of transmissions from an outside source
(decrease of Λ). The co-infection parameter θ is negatively correlated with β given the
estimate of Λ because a decrease in the tendency to be infected by multiple strains of the
bacterium (decrease of θ) can be offset by an increase of the transmission rate (increase of
β). The same reasoning applies to Λ given a fixed value of β.

We used the Gaussian process model of the discrepancy to compute the model-based
likelihood L̂(t)

u . The threshold h was chosen as the 0.05 quantile of the modeled discrepancy
at the minimizer of the estimated regression function. Model-based posterior inference was
then performed via iterative importance sampling as described in Section 6.3 (using three
iterations with 25,000 samples each). Figure 12 (left column) shows the inferred marginal
posterior pdfs. They stabilize quickly as the amount of acquired data increases.

The right column in Figure 12 compares our model-based results with the solution
by Numminen et al. (2013) (blue horizontal lines with triangles) and with results by the
population Monte Carlo (PMC) ABC algorithm of Section 3.5 (black curves with diamonds).
Numminen et al. (2013) used a PMC-ABC algorithm as well but with a slightly different
discrepancy measure (see Example 7). Both PMC results were obtained using 10,000 initial
simulations to set the initial threshold, followed by four more iterations with shrinking
thresholds where in each iteration, data sets were simulated till 10,000 accepted parameters
were obtained. It can be seen that the posterior mean and the credibility intervals of the
two PMC results match in the fourth generation, which indicates that our modification of
the discrepancy measurement had a negligible influence. For the PCM results shown in
black, iteration one to four required 121,374; 277,997; 572,007; and 1,218,382 simulations
each, giving a total computational cost of 2,199,760 simulations for the results of iteration
four. In terms of computing time, the PMC computations took about 4.5 days on a cluster
with 200 cores. Our model-based results for t = 1,000 were obtained with one tenth of the
initial simulations of the reference methods and took only about 1.5 hours on a desktop
computer.4 Out of the computing time, 93% were spent on simulating the day care centers,
and 7% on regression and optimization of the acquisition function.

The posterior means of our model-based approach match quickly the reference results
(red curves with circles versus blue curves with triangles). The focus on the modal re-
gion yields, however, broader credibility intervals. The broader model-based posterior pdfs
suggest that they could be used as auxiliary pdf for PMC-ABC or other iterative ABC
algorithms which are based on importance sampling. Moreover, one could evaluate the
discrepancy at the sampled points to obtain additional training data in order to refine the
model.

4. The simulation of the 29 day care centers in the model was partly parallelized by means of seven cores.
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Figure 11: Isocontours of the estimated regression function Ĵ (t) for the day care center model.
Visualization is as in Figure 9.
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Figure 12: Marginal posterior results for the day care center model. The left column shows the
obtained model-based posterior pdfs. The right column compares the posterior mean
and the 95% credibility interval with results from PMC-ABC algorithms. We obtain
conservative estimates of the model parameters at a fraction of the computational cost.
Posterior means are shown as solid lines with markers, credibility intervals as shaded
areas or dashed lines.
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8. Conclusions

Our paper dealt with inferring the parameters of simulator-based (generative) statistical
models. Inference is difficult for such models because of the intractability of the likelihood
function. While it is an open question whether variational principles are also applicable,
the parameters of simulator-based statistical models are typically inferred by finding values
for which the discrepancy between simulated and observed data tends to be small. We
have seen that such an approach is computationally costly. The high cost is largely due to
a lack of knowledge about the functional relation between the model parameters and the
discrepancies. We proposed to use regression to infer the relation using training data which
are actively acquired. The acquisition is performed such that the focus in the regression is
on regions in the parameter space where the discrepancy tends to be small. We implemented
the proposed strategy using Bayesian optimization where the discrepancy is modeled with a
Gaussian process. The posterior distribution of the Gaussian process was used to construct a
model-based approximation of the intractable likelihood. This combination of probabilistic
modeling and optimization reduced the number of simulated data sets by several orders
of magnitude in our applications. The reduction in the number of required simulations
accelerated the inference substantially.

Our approach is related to the work by Rasmussen (2003) and the two recent papers by
Wilkinson (2014) and Meeds and Welling (2014) (which became only available after we first
proposed our approach at “ABC in Rome” in 2013): Rasmussen (2003) used a Gaussian
process to model the logarithm of the target pdf in a hybrid Monte Carlo algorithm. There
are two main differences to our work. First, a scenario was considered where the target can
be evaluated exactly at a finite computational cost, even though the cost might be high. In
our case, exact evaluation of the likelihood function is not assumed possible at finite cost.
This difference is important because approximate likelihood evaluations might be rather
noisy. The second difference is that we used Bayesian optimization to focus on the modal
areas of the target.

Related to the approach of Rasmussen (2003), Wilkinson (2014) modeled the log like-
lihood as a Gaussian process. This is different from our work where we model the dis-
crepancies. We believe that modeling the discrepancies is advantageous because it allows
to delay the selection of the kernel and bandwidth which are needed in the nonparametric
setting. This is important because it enables one to make use of all simulated data. In the
parametric setting, the two modeling strategies lead to identical solutions. We found fur-
ther that accurate point estimates can be obtained by modeling the discrepancies only. In
particular, minimizing their regression function corresponds to maximizing a lower bound
of the approximate nonparametric likelihood under mild conditions. As a second difference,
Wilkinson (2014) used space-filling points together with a plausibility criterion to obtain
the parameter values for the regression. This is in contrast to Bayesian optimization where
powerful optimization methods are employed to quickly identify the areas of interest.

Meeds and Welling (2014) proposed an alternative to the sample average approximation
of the (limiting) synthetic likelihood by modeling each element of the intractable mean
and covariance matrix of the summary statistics with a Gaussian process. The resulting
likelihood approximation was used together with a Markov chain Monte Carlo algorithm for

34



BAYESIAN OPTIMIZATION FOR LIKELIHOOD-FREE INFERENCE

posterior inference. The differences to our approach lie in the quantities modeled and in the
use Bayesian optimization to actively design the training data for the Gaussian processes.

There are also connections to the body of work on Bayesian analysis of computer codes
(for an introduction to this field of research, see for example the paper by O’Hagan, 2006):
Sacks et al. (1989) and Currin et al. (1991) modeled the outputs of general deterministic
computer codes as Gaussian processes. The computer codes were, for example, solving
complex partial differential equations, and the papers were about finding an emulator for
the heavy computations. Inference of unknown parameters of the computer codes given
observed data was only considered later by Cox et al. (2001) and Kennedy and O’Hagan
(2001). The observed and simulated data were modeled using Gaussian processes, and
space-filling points were used to choose the parameters for which the computer code was
run. The main differences to our approach are again the quantities modeled, and the use
of Bayesian optimization.

We employed a rather basic algorithm to perform Bayesian optimization. This does,
however, not mean that Bayesian optimization for likelihood-free inference is limited to
that particular algorithm. We discussed a number of alternatives, as well as more advanced
algorithms which could be used instead, and outlined a general framework for increasing
the computational efficiency of likelihood-free inference.

Our paper opens up a wide range of extensions and opportunities for future research.
One possibility is to use the tools provided by Bayesian optimization to tackle the chal-
lenging problem of likelihood-free inference in high dimensions. More foundational research
topics would revolve around the modeling of the discrepancies and the development of ac-
quisition rules which are tailored to the problem of likelihood-free inference. We focused on
approximating the modal areas of the intractable likelihoods more accurately than the tails.
It is an open question of how to best increase the accuracy in the tail areas. One possibility
is to use the samples from the approximate posterior to update the training data for the
regression, which would naturally lead to a recursion where the current method would only
provide the initial approximation.
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Appendix A. Proof of Proposition 1

We split the objective ĴNg , defined in Equation (32), into two terms,

ĴNg (θ) = T1(θ) + T2(θ), (48)

T1(θ) = log |det Cθ|, (49)

T2(θ) = EN
[
(Φo − Φθ)>C−1

θ (Φo − Φθ)
]
. (50)

Term T2 can be rewritten using the empirical mean µ̂θ and the covariance matrix Σ̂θ in
Equation (14),

T2(θ) = EN
[
(Φo − µ̂θ + µ̂θ − Φθ)>C−1

θ (Φo − µ̂θ + µ̂θ − Φθ)
]

(51)

= EN
[
(Φo − µ̂θ)>C−1

θ (Φo − µ̂θ) + (µ̂θ − Φθ)>C−1
θ (µ̂θ − Φθ)

+2(Φo − µ̂θ)>C−1
θ (µ̂θ − Φθ)

]
(52)

= (Φo − µ̂θ)>C−1
θ (Φo − µ̂θ) + tr

(
C−1
θ EN

[
(µ̂θ − Φθ)(µ̂θ − Φθ)>

])
(53)

= (Φo − µ̂θ)>C−1
θ (Φo − µ̂θ) + tr

(
C−1
θ Σ̂θ

)
, (54)

where we have used that EN [Φθ] = µ̂θ. For Cθ = Σ̂θ, we have

T2(θ) = (Φo − µ̂θ)>Σ̂−1
θ (Φo − µ̂θ) + p. (55)

Hence, for Cθ = Σ̂θ, ĴNg equals

ĴNg (θ) = log |det Σ̂θ|+ (Φo − µ̂θ)>Σ̂−1
θ (Φo − µ̂θ) + p. (56)

On the other hand, the log synthetic likelihood ˆ̀N
s is

ˆ̀N
s (θ) = −p2 log(2π)− 1

2 log |det Σ̂θ| −
1
2(Φo − µ̂θ)>Σ̂−1

θ (Φo − µ̂θ), (57)

so that
ĴNg (θ) = p− p log(2π)− 2ˆ̀N

s (θ). (58)

The claimed result follows now from Equation (31),

logLNg (θ) ≥ −p2 + ˆ̀N
s (θ). (59)

Replacing the empirical average EN with the expectation shows that the limiting quan-
tities ˜̀

s and Jg(θ),
Jg(θ) = E

[
∆g
θ

]
, (60)

are related by an analogous result. In more detail,

Jg(θ) = log | det Cθ|+ E
[
(Φo − Φθ)>C−1

θ (Φo − Φθ)
]

(61)

= log | det Cθ|+ (Φo − µθ)>C−1
θ (Φo − µθ) + tr

(
C−1
θ Σθ

)
, (62)
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where we used the same development which led to Equation (54) but with the expectation
instead of EN . Hence, for Cθ = Σθ, we have the analogous result by definition of ˜̀

s in
Equation (13),

Jg(θ) = p− p log(2π)− 2˜̀
s(θ). (63)

It follows by definition of Jg that ˜̀
s can be seen as a regression function where θ is the

vector of covariates and ∆g
θ is, up to constants and the sign, the response variable.

Appendix B. Using the Prior Distribution of the Parameters in Bayesian
Optimization

In the main text, we focused on acquiring training data in regions in the parameter space
where the discrepancy ∆θ tends to be small, which corresponds to the modal regions of the
approximate likelihoods. For highly informative priors pθ with modal regions far away from
the peaks of the likelihood such an approach is suboptimal for posterior inference. Since
the prior is typically fairly broad and the likelihood peaked, this situation is not usual. But
if it happens, it is better to directly acquire the training data in the modal areas of the
posterior. For inference via the synthetic likelihood, this can be straightforwardly done by
approximating ˜̀

s + log pθ. In Bayesian optimization with ∆g
θ as the response variable, the

posterior mean µt in Equation (43) would then be replaced by µ̃t(θ) = µt(θ) − 2 log pθ.
For inference via an nonparametric approximation of the likelihood, the same approach
may also work but this warrants further investigations because the regression function J
provides only a lower bound for the likelihood. We also note that using the prior pθ can be
helpful if it is known that the parameters do not influence the model independently, causing
for instance the discrepancy to be nearly constant along certain directions in the parameter
space.

Figure 13 illustrates the basic idea using Example 1 and a prior pdf pθ (blue curve)
which has practically no overlap with the true likelihood L (green curve). The results are
for Bayesian optimization with 20 deterministic acquisitions and a Gaussian process model
with constant mean function.

Appendix C. Bayesian Optimization with a Deterministic versus a Stochastic
Acquisition Rule

Example 10 illustrated log-Gaussian modeling and the stochastic acquisition rule by means
of the Ricker model with the log growth rate log r as only unknown. We here show the
differences between stochastic and deterministic acquisitions in greater detail. The results
are for a log-Gaussian process model.

Figure 14 shows the estimated regression functions Ĵ (t) as obtained with a deterministic
acquisition rule like in Figure 7(d) for different t. The acquired data points are vertically
clustered because the acquisition rule often proposed nearly identical parameters. Figure
15 shows Ĵ (t) obtained with a stochastic acquisition rule as in Figure 7(f). While both
methods lead to a satisfactory approximation of the negative log synthetic likelihood around
its minimum, the result with the stochastic acquisition rule seems more stable because the
acquired training data are spread out more evenly in the interval of interest.
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(a) Bayesian optimization without using the prior pθ
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(b) Bayesian optimization with the prior pθ during the acquisitions

Figure 13: Using the prior density pθ in Bayesian optimization. (a) If pθ is not used (or if uniform),
the focus is on the modal region of the likelihood. If the prior is far from the mode
of the likelihood, the learned model is less accurate in the modal areas of the posterior
(black dashed versus red solid curve). (b) The prior pdf pθ was used to shift the data
acquisitions in Bayesian optimization to the modal area of the posterior (see the circles
in the figures on the right or on the x-axes on the left). This results in a more accurate
approximation of the posterior pdf but a less accurate approximation of the mode of the
likelihood (dashed magenta versus blue solid curve).
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(b) 30 data points
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(c) 40 data points
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(d) 70 data points
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(e) 80 data points
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(f) 100 data points

Figure 14: Log-Gaussian process model for the log synthetic likelihood of the Ricker model with
log r as only unknown. The results are for the deterministic acquisition rule consisting
of minimization of the acquisition function in Equation (45). Note the vertical clusters.
The visualization is as in Figure 7. The plot range was restricted to (3.2, 4.2) so that not
all acquisition may be shown.
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(a) 10 data points
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(b) 20 data points
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(f) 100 data points

Figure 15: Log-Gaussian process model for the log synthetic likelihood of the Ricker model
with log r as only unknown. The setup and visualization is as in Figure 14 but
the stochastic acquisition rule is used. A movie showing the acquisitions and the
updating of the model is available at http://www.jmlr.org/papers/volume17/15-
017/supplementary/Ricker1D.avi.
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Appendix D. Ricker Model Inferred with a Markov Chain Monte Carlo Algorithm

We here report the simulation results for the Ricker model inferred with the log synthetic
likelihood ˆ̀N

s and a random walk MCMC algorithm with the code made publicly available
by Wood (2010). We ran the algorithm for 100,000 iterations, starting at θo = (3.8, 0.3, 10).
The first 25,000 samples were discarded. In the work by Wood (2010), the proposal standard
deviation for σ was 0.1. Figure 16 shows that this choice led to a chain which got stuck close
to σ = 0 even when N = 5,000 (blue, squares). Reducing the proposal standard deviation
by a factor of 10 allowed us to obtain reasonable results (red, circles). The proposal standard
deviations for the remaining parameters were the same as in the original publication. We
then investigated the stability of the inferred posteriors when N is reduced from N = 5,000
to N = 500 and when the simulator is run with different realizations of the random log
synthetic likelihood. Figure 17 shows that the posteriors are stable for log r and φ but that
there is some variation for σ.
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Figure 16: Choice of the transition kernels for inference of the Ricker model via MCMC. We used
N = 5,000 which is ten times more than in the original work (Wood, 2010). The dashed
curves with markers are (rescaled) histograms, the solid curves kernel density estimates.
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Figure 17: Effect of the number of simulated data sets N (left column) and the seed of the random
number generator (right column) for the Ricker example when inferred with the method
by Wood (2010). Visualization is as in Figure 16.
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