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AUDI: Towards Autonomous IoT Device-Type
Identification using Periodic Communication
Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi, N. Asokan

Abstract—IoT devices are being widely deployed. But the huge
variance among them in the level of security and requirements for
network resources makes it unfeasible to manage IoT networks
using a common generic policy. One solution to this challenge is
to define policies for classes of devices based on device type.

In this paper, we present AUDI, a system for quickly and
effectively identifying the type of a device in an IoT network
by analyzing their network communications. AUDI models the
periodic communication traffic of IoT devices using an unsu-
pervised learning method to perform identification. In contrast
to prior work, AUDI operates autonomously after initial setup,
learning, without human intervention nor labeled data, to identify
previously unseen device types. AUDI can identify the type of a
device in any mode of operation or stage of lifecycle of the device.
Via systematic experiments using 33 off-the-shelf IoT devices, we
show that AUDI is effective (98.2% accuracy).

Index Terms—Internet of Things, device-type identification,
autonomous IoT device identification, self-learning

I. INTRODUCTION

The growing popularity of the Internet-of-Things (IoT) has
led to widespread use of IoT devices, especially in Small Office
and Home (SOHO) settings where appliances and devices
are increasingly connected to the Internet. While IoT enables
useful functionality like remote monitoring and control, it
transforms the structure and nature of typical SOHO networks,
raising new challenges in network management.

IoT devices can be inherently mobile and hence dynamic.
They are also more heterogeneous compared to general-
purpose computing devices. Different IoT devices have dif-
ferent Quality of Service (QoS) requirements like network
bandwidth or tolerance to packet loss. For instance, a con-
nected camera requires higher bandwidth (when streaming
video) than a smart light bulb. A connected smoke detector
or a smart key lock requires more reliable communications in
contrast to a smart coffee maker. Failed message delivery can
endanger lives (in the case of the smoke detector) or threaten
security (key lock). Security of commodity IoT devices is
often dismal. Devices are routinely released to the market
with easily exploitable security vulnerabilities [1]–[3]. The
increased heterogenity and weak security significantly raise
the difficulty of managing IoT networks.

One way to make these challenges tractable stems from
the observation that QoS and security requirements of IoT
devices of the same type tend to be similar. For example,
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high end IP cameras from the same device manufacturer
are likely to have similar bandwidth requirements. Similarly,
devices from a given manufacturer running the same version
of firmware will have the same vulnerabilities (e.g., enabling
debug mode will open a backdoor [4]). QoS and security
policies can thus be made more manageable by specifying
them in terms of device types. Previous work used device
fingerprinting approaches to identify the device model [5]–
[7] and/or the specific hardware/software configuration of a
device [5], [8]–[11] by training classification models with
labeled data from specific known device types. Such training
data requires extensive human effort to generate and maintain
which is particularly difficult given the increasing number and
variety of IoT device manufacturers.

We take a different approach in this paper: the purpose of
device identification is to enable automated network manage-
ment. Hence, there is no need to identify the actual real-world
model of a device. It is sufficient to reliably map devices to
an abstract “device type” for which the system has learned
a specific set of policies (QoS or security). Therefore, such a
system can be trained without the need to manually label the
communication traces of predefined real-world device types.
Goals and Contributions. Our goal is to develop a technique
for quickly, accurately and autonomously identifying the type
of IoT devices connected to a SOHO network. Autonomy in
this context refers to minimizing reliance on human assistance
such as requiring substantial labeled ground truth data for
training. It must scale to the large number of IoT devices
already available on the market and quickly adapt to new IoT
devices appearing on the market. Furthermore, our solution
must be capable of detecting device types in any operational
mode (standby or user interaction) and at any stage of the
lifecycle of a device so that the solution can be introduced
into an existing IoT network. This is in contrast to previous
solutions that can only detect device type when a device is
first introduced to the network [5], or during active usage of
the device [5]–[7]. Major IoT device vendors, including Cisco,
helped us formulate the setting for our solution and potential
usage scenarios.

We make the following contributions:
• AUDI, an autonomous, distributed system for learning

and identifying the type of an IoT device (Sect. II).
• a novel device-type identification method (Sect. IV) based

on passive fingerprinting of periodic communication traf-
fic of IoT devices (Sect. III). Unlike previous methods, it
requires no prior knowledge of device types nor labeled
training data and is effective at identifying the type of an
IoT device in any operation mode of a device.
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• experimental evaluation of AUDI using a large dataset
comprising 33 typical commercial IoT devices (Sect. V)
showing that AUDI achieves 98.2% accuracy. We will
make our datasets as well as the AUDI implementation
available for research use.

II. SYSTEM MODEL

A. Model and requirements

We target a system model (Fig. 1) of a typical SOHO
network where IoT devices connect to the Internet via an
access gateway. The primary goal of AUDI is to enable
the gateway to identify the type of devices connected to
it. The identification relies on passively monitoring network
communications from connected devices. AUDI must meet
the following requirements.
R1 Autonomy. Operate with limited human intervention,

without requiring labeled training data.
R2 Scalability. Be able to manage a large number of device

types and learn to identify new types as they emerge.
R3 Stability. Be able to function consistently effectively

(speed and accuracy) regardless of the lifecycle stage
(induction vs. normal operation) or operational mode
(standby or user interaction) of the target IoT device.

R4 Security. Be resilient to spoofing attacks by an adversary
modifying communications of a compromised device,
trying to masquerade as a different device type.

B. AUDI system design

AUDI consists of an IoT Cloud Service and several IoT
Gateways.
IoT Gateway acts as the local access gateway to the Internet.
IoT devices connect to it, e.g., over WiFi or ethernet. Apart
from acting as a gateway router for connected devices in
the local network, IoT Gateway hosts the AUDI Device
Fingerprinting component which monitors the communication
patterns of connected IoT devices to extract device fingerprints
(details in Sect. III and IV).
IoT Cloud Service is a cloud-based functionality hosting the
AUDI Device-Type Identification component which uses a
machine learning-based classifier for identifying the device
type of IoT devices based on device fingerprints provided
by IoT Gateway. IoT Cloud Service aggregates fingerprints
from several IoT Gateways to learn device-type identification
models (details in Sect. IV-B). Aggregation helps overall
accuracy because the amount of IoT communication observed
at any given IoT Gateway is likely to be small.

AUDI automatically generates and assigns abstract labels to
represent individual device types. This is done by first building
fingerprints for the communication patterns of each IoT device.
Then, AUDI uses an unsupervised clustering algorithm to
autonomously group these fingerprints into clusters and create
an abstract label for each cluster (details in Sect. IV-B). The
whole process does not require any human intervention. It is
worth noting that AUDI starts operating with no device-type
identification model. It learns and improves the device-type
identification model as IoT Gateways aggregate more data.

IoT Cloud Service
Device-type 

Identification
Policy

Database

IoT deviceIoT deviceIoT deviceIoT device IoT device

Device 
Fingerprinting

Policy
Application

WiFi Ethernet

IoT deviceIoT device IoT device

Local SOHO network

IoT Gateway

Internet

Fig. 1: AUDI system model

C. Device-type-specific policies

Device type identification provided by AUDI can be used in
a variety of ways. We briefly outline the architectural approach
and some possible uses here but refer the reader to our concur-
rent work [12] for a detailed description. Figure 1 illustrates
the architecture to facilitate device-type-specific policies to
enhance IoT network management. First, we augment IoT
Cloud Service with a Policy Database that associates a set
of policies with each detected device type. When an IoT
Gateway detects a device of a certain type, it can retrieve the
corresponding policy from Policy Database . Policies can be
centrally formulated (e.g., by experts) and/or locally learned on
each IoT Gateway and aggregated in Policy Database . Some
example applications for device-type-specific policies are:

• Anomaly detection: By monitoring devices of a given
type, IoT Gateway can learn a profile for their normal
behavior. Behavior profiles learned locally can be aggre-
gated into a global device-type-specific anomaly detection
profile. When IoT Gateway detects a new device of a
certain type, it can retrieve the anomaly detection profile
for that type from IoT Cloud Service and use it right away
to detect any anomalous behavior involving that device.
This scenario is described in detail in [12].

• Network resource allocation: By monitoring the com-
munication of a specific device type over time, IoT
Gateway can learn its requirements in terms of, e.g.,
network bandwidth. Again, requirements learned from
different IoT Gateways can be aggregated so that a new
IoT Gateway can provision resources to a newly detected
device without delay.

• Identification and isolation of vulnerable IoT devices:
A device type can be linked to known vulnerabilities by
using vulnerability reports, as proposed in [5]. Once IoT
Gateway detects a device whose type is known to have
vulnerabilities, it can enforce a policy for constraining the
communications of the device [5] using Software-Defined
Networking techniques [13]. Such policies are specified
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Fig. 2: Overview of device-type identification.

in IoT Cloud Service Policy Database .

D. Device-type identification overview

Traditional device-type identification approaches [6], [7]
rely on aggregated statistics extracted from dense network
traffic. These are ineffective when applied to IoT devices due
to the scarcity of their communication. IoT devices generate
little dense traffic, typically only during rare and short user in-
teractions. Nevertheless, IoT devices also generate background
communication independent of user interactions. This traffic
is always present, relatively constant and periodic.

Thus, we introduce a novel technique for identifying the
type of IoT devices based on their periodic background net-
work traffic. In contrast to existing approaches, this technique
can identify the type of an IoT device in any state of a
device’s operation, including standby, with a constant time of
30 minutes. Our technique is composed of three steps relying
on passive monitoring of the network traffic at the network
gateway: step 1: inference of periodic flows, their period and
stability (Sect. III), step 2: extraction of a fingerprint character-
izing a device’s type based on its periodic flows (Sect. IV-A)
and step 3: use of this fingerprint in a classification system
that identifies device-types (Sect. IV-B). The overview of the
identification process is depicted in Fig. 2. Steps 1 and 2 are
implemented in IoT Gateway while step 3 is implemented in
IoT Cloud Service .

III. PERIODIC FLOW INFERENCE

Fourier transform and signal autocorrelation are effective
signal processing techniques for inferring periodicity. While
Fourier transform and signal autocorrelation can identify the
several distinct periods of a signal, ignoring most non-periodic
noise, these techniques are more accurate when applied to pure
single-periodic signals. As a result, we pre-process the network
traffic received at IoT Gateway and divide it into distinct
flows. We define a flow as a sequence of network packets sent

from a given source MAC address (IoT device) using a given
communication protocol (e.g., NTP, ARP, RTSP, etc.). The
rationale for flow division is that most periodic communication
uses dedicated protocols that are different from the ones used
for communication related to user interaction (non-periodic). If
periodic and non-periodic communication still coexist in a flow
(e.g., HTTP), Fourier Transform and signal autocorrelation can
cope better with this reduced non-periodic noise.

The flow of packets in a network capture must be converted
into a format suitable for signal processing. We discretize
each flow into a binary time series sampled at one value per
second, indicating whether the flow contained one or more
packets during the 1-second period (value 1) or not (value 0).
The computed time series is a discrete binary signal y(t) of
duration d seconds.

We first use the discrete Fourier transform (DFT) [14] to
identify candidate periods for a given flow. DFT converts a
discrete signal y(t) from the time domain to the frequency
domain: y(t) ⇒ Y ( f ). Y ( f ) provides amplitude values for
each frequency f ∈ [0; 1]. The frequency f i resulting in the
largest amplitude Y ( f i) = max(Y ( f )) gives the periodicity
Ti = d

fi
of the dominant period in y(t). Secondary periods Tj

of lower amplitude also exist. We select candidate periods Ti
having an amplitude Y ( d

Ti
) larger than 10% of the maximum

amplitude max(Y ( f )). We discard close candidate periods by
selecting only local maxima of Y . Y ( f ) is considered a local
maximum on Y if Y ( f − 1) < Y ( f ) > Y ( f + 1). The result of
this operation is a list of candidate periods for a flow.

Candidate periods found using DFT can be nonexistent or
inaccurate. To confirm and refine these periods, we compute
the discrete autocorrelation Ryy of y(t). Ryy denotes the
similarity of the signal y(t) with itself as a function of different
time offsets. If Ryy at offset l is large and reaches a local
maximum, it means that y(t) is likely periodic, with period
T = l and that this period occurs Ryy (l) times over y(t).
For each candidate period Ti obtained with DFT, we confirm
and refine it by analyzing the value of Ryy (li) on the range
of close offsets li ∈ [0.9 × Ti; 1.1 × Ti]. If it contains a
local maximum Ryy (li) = lmaxi , we confirm the existence
of a period that belongs to this range and update its value
to Ti = li . Ryy (li) is considered a local maximum on Ryy if
Ryy (li − 1) < Ryy (li) > Ryy (li + 1). For each resulting period
Ti we compute characteristic metrics ri and rni , defined as:

ri =
Ti × Ryy (Ti)

d
(1)

rni =
Ti × (Ryy (Ti − 1) + Ryy (Ti) + Ryy (Ti + 1))

d
(2)

ri computes the ratio of occurrences of period Ti over signal
y(t) of duration d seconds. An accurate and stable periodic
signal of period Ti renders ri = 1. However, a periodic signal
may be noisy (ri < 1) or have parallel periods with the same
periodicity. Periodic signals may also be unstable exhibiting
slight differences in their periodicity (ri < 1). This is the
rationale for computing rn where we sum the occurrences of
neighboring periods Ryy (Ti − 1), Ryy (Ti) and Ryy (Ti + 1). A
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Fig. 3: Four binary time series extracted from periodic flows
of a D-LinkCam DCS935L IP camera. The flows correspond
to ARP protocol, HTTPS (port 443), mDNS (port 5353) and
TCP port 62976. All flows are periodic.

stable signal of period Ti produces ri ≈ rni ≈ 1, while unstable
signals produce ri < 1 and ri � rni .

The final result of period inference for a flow is a
set of periods with the corresponding ratios ri and rni:
{(T1, r1, rn1), · · · , (Ti, ri, rni), · · · , (Tn, rn, rnn)}.
Example: Figure 3 shows the plot of binary time series
extracted from flows of a D-LinkCam DCS935L IP camera.
We see that all depicted flows are periodic. Applying DFT
and autocorrelation on these time series provides the following
results:

ARP: (period:55, r:0.735, rn:0.857)
HTTPS: (period:55, r:0.857, rn:1.102)
mDNS: (period:25, r:2.171, rn:4.399)
port 62976: (period:30, r:0.969, rn:0.969)

We see that our method is able to accurately infer all periods
observed in Fig. 3. The flow on TCP port 62976 has the most
stable period (30s.) as highlighted by the values r = rn ≈ 1.
ARP and HTTPS (port 443) have both a less stable period of
55s., as highlighted by lower r values and a larger difference
between r and rn. We also inferred the 25s. period of the
mDNS flow (port 5353). But as we can observe in Fig. 3, there
are three different signals having a 25s. periodicity on this
flow. This aspect is captured in period inference by rendering
high r and rn values, i.e. far larger than 1. These results show
that our method detects periodic flows, accurately infers their
period and characterizes them with r and rn metrics.

IV. DEVICE-TYPE IDENTIFICATION

We build a fingerprint for a device type by extracting
features from its periodic flows. These features are later used
with an unsupervised machine learning algorithm that creates
and assigns device-type labels to fingerprints.

A. Fingerprint extraction

We split a network traffic capture of x seconds into three
sub-captures [0; x

2 ], [ x4 ,
3x
4 ], [ x2 , x]. We apply periodic flow in-

ference (Sect. III) on each sub-capture and on the whole

capture [0; x]. We obtain four sets of periods with the metrics
r and rn for each flow. The goal of applying period inference
on smaller sub-captures is twofold. First, we obtain more
significant results by discarding periods that are inferred from
less than two sub-captures. Second, we can compute statistics
from metrics r and rn to measure their stability.

The results from period inference are grouped by source
MAC address, linked to a single device. This grouping defines
the granularity of feature extraction, i.e., one fingerprint is
extracted per source MAC address and capture. We introduce
33 features that compose our device-type fingerprint. These
features are manually designed to model a group of periodic
flows in a unique manner that enables to distinguish device
types. It is worth noting that all our features are computed from
the statistics obtained during periodic flow inference (Sect. III).
They do not use packet payload information nor packet header
information from protocols above the transport layer. Con-
sequently, AUDI can operate on any traffic encrypted above
the transport layer. There are four categories of features as
discussed below and in Tab. I.
Periodic flows (9 features). This feature category character-
izes the quantity and quality of periodic flows. It includes the
count of periodic flows (1), the layer of protocols that support
periodic flows (2), if flows are single- or multi-periodic (3-6),
if there is a change in the source port of periodic flows (7)
and the frequency of this change (8-9).
Period accuracy (3 features). These features measure the
accuracy of the inferred periods and characterises how noisy
the flows they were extracted from are. They consist of the
count of periods that were inferred from all sub-captures and
the whole capture (10), the mean (11) and standard deviation
(12) for the count of sub-captures from which each period was
inferred.
Period duration (4 features). These features (13-16) rep-
resent the number of periods that belong to four duration
ranges, e.g., [5s.; 29s.]. The ranges were manually chosen
in an attempt to segregate periods according to their relative
duration: [5s.; 29s.]; [30s.; 59s.]; [60s.; 119s.]; [120s.; 600s.].
Periods of less than 5 seconds or more than 10 minutes
are discarded. Identifying long periods requires long traffic
captures which slows down the fingerprint extraction.
Period stability (17 features). Features in this category
measure the stability of the inferred periods using r and rn
metrics, as discussed in Sect III. The mean and standard
deviation (SD) of r and rn metrics are computed for each flow
and period. Features 17-20, respectively 24-27, are calculated
by binning the values of Mean(r), respectively Mean(rn), into
four ranges and counting the number of values in each bin.
The bin ranges of mean r and rn values were selected to
distinguish noisy [0.2; 0.7[ from pure [0.7; 1[ single-period
flows as well as different multi-periodic flows [1; 2[, [2;+∞[.
Features 21-23, respectively 28-30, are calculated by binning
the values of SD(r), respectively SD(rn), into three ranges
and counting the number of values in each bin. These ranges
were selected to distinguish very stable [0; 0.02[ from stable
[0.02; 0.1[ and unstable [0.1;+∞[ periodic flows. Features 31-
33 are computed by binning the values of the difference rn−r
and into three ranges of values and counting the corresponding
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bin cardinalities. These ranges were selected to characterize
the differences between stable and unstable periods of flows.

TABLE I: 33 features (4 categories) used for device-type
identification. # represents a count, SD is the standard devi-
ation. Importance scores are computed using ReliefF feature
selection algorithm [15]. High scores (green) corresponds to
the most relevant features and low scores (red) to the least
relevant features.

Category f Description Importance
1 # periodic flows 0.440
2 # periodic flows (protocol ≤ layer 4) 0.465
3 Mean periods per flow 0.068

periodic
flows

4 SD periods per flow 0.037
5 # flows having only one period 0.429
6 # flows having multiple periods 0.176
7 # flows with static source port 0.533
8 Mean frequency source port change 0.310
9 SD frequency source port change 0.137

period
accuracy

10 # periods inferred in all sub-captures 0.329
11 Mean period inference success 0.037
12 SD period inference success 0.022
13 # periods ∈ [5s.; 29s.] 0.409

period 14 # periods ∈ [30s.; 59s.] 0.408
duration 15 # periods ∈ [60s.; 119s.] 0.467

16 # periods ∈ [120s.; 600s.] 0.419
17 # Mean(r ) ∈ [0.2; 0.7[ 0.386
18 # Mean(r ) ∈ [0.7; 1[ 0.436
19 # Mean(r ) ∈ [1; 2[ 0.239
20 # Mean(r ) ∈ [2;+∞[ 0.124
21 # SD(r ) ∈ [0; 0.02[ 0.185
22 # SD(r ) ∈ [0.02; 0.1[ 0.151
23 # SD(r ) ∈ [0.1;+∞[ 0.185
24 # Mean(rn) ∈ [0.2; 0.7[ 0.288

period 25 # Mean(rn) ∈ [0.7; 1[ 0.307
stability 26 # Mean(rn) ∈ [1; 2[ 0.313

27 # Mean(rn) ∈ [2;+∞[ 0.246
28 # SD(rn) ∈ [0; 0.02[ 0.217
29 # SD(rn) ∈ [0.02; 0.1[ 0.217
30 # SD(rn) ∈ [0.1;+∞[ 0.220
31 # Mean(rn)− Mean(r ) ∈ [0; 0.02[ 0.408
32 # Mean(rn)− Mean(r ) ∈ [0.02; 0.1[ 0.248
33 # Mean(rn)− Mean(r ) ∈ [0.1;+∞[ 0.482

B. Device-type fingerprint classification

Our device-type identification technique is designed to be
fully autonomous. It does not require human interaction nor
labeled data to operate. When an IoT device is associated
to an IoT Gateway , the latter monitors its network traffic
and extracts a fingerprint as described in Sect. IV-A. The
fingerprint is sent to the IoT Cloud Service , which attempts
to identify the type of the device having this fingerprint. If the
fingerprint has a match, the type of the device is identified and
the fingerprint is used to retrain and improve its identification
model. If no match is found, the IoT Cloud Service uses the
fingerprints to learn a model for this new device type.

AUDI starts operating with no identification model. As IoT
Cloud Service receives fingerprints from IoT Gateway , it cre-
ates type identifiers (e.g., type#12) and learns an identification
model for them. The longer the system runs and the more IoT
Gateways contribute to it, the more device types it is able to
identify and the better the accuracy of identification.

We implement automated device-type identification using
a supervised k-Nearest Neighbors (kNN) classifier [16]. kNN

is chosen because of its ability to deal with a large number
of classes and an imbalanced dataset. Each device type is
represented by one class and the training data available for
each class may be imbalanced (as IoT devices are differently
deployed). kNN forms small clusters of at least k neighbors to
represent a class. In a supervised mode, several clusters can
define a class, capturing its potential diversity. This allows
fingerprints collected from a device from which we already
know the type to form new clusters with the same type label.
When fingerprints for device types unknown to the model are
processed, they are detected as exceeding a threshold distance
to the nearest cluster of the classification model. A new class
can be added to the model to represent this yet unknown device
type.

Our features are processed and should not require complex
association to differentiate device types. Consequently, we use
the Euclidian distance as distance measure in kNN. All 33
features of our fingerprints are scaled on the range [0; 1] to
have an equal weight in the classification task. Fingerprints
are extracted from network traffic captures of 30 minutes. We
tested several capture durations: {5, 10, 20, 30, 60, 90} minutes.
A duration lower than 30 minutes missed flows of long period-
icity (10 minutes) and degraded the accuracy of identification.
A duration longer than 30 minutes did not improve accuracy
but increased the delay to identify a device. We set k = 5 to
meet a trade-off between representativeness of a learned class
and need for training data. A class for a new device-type can
be learned as soon as we get five fingerprints for it, i.e., after
2.5 hours of monitoring.

The design of our fingerprint classification approach does
not require any labeled data to operate. It allows AUDI to
learn and label device types without human intervention by
clustering fingerprints and generating labels for clusters. Four
parameters need to be tuned and defined prior to deployment
of AUDI: the traffic capture duration, the sampling period
of the flows, k and the threshold distance for kNN. Optimal
values for these parameters can be determined in a lab setup
using a small set of IoT devices. After that, AUDI can run
in a fully autonomous manner, without human intervention.
Optimal parameter values inferred from a constrained lab setup
may not generalize well to larger deployments. These can
be later adjusted in real-time by trying to re-identify already
identified IoT device types as if they were unknown devices
(in a supervised learning fashion). Several parameter values
can then be tested automatically using a grid search strategy
or Bayesian optimization [17]. The set of parameter values
achieving the best accuracy and speed of identification can
be selected and applied to AUDI. Consequently, AUDI meets
the autonomy requirement R1 by design. Our approach allows
AUDI to manage a large number of device types since these
are represented as clusters in a high dimensional space (33
dimensions). A multitude of non overlapping clusters can be
created in this space. The addition of new device types to the
system is an automatic process of creating new clusters in this
space. As a result we can conclude that AUDI also meets R2.
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TABLE II: 33 IoT devices used in the background and activity datasets and their connectivity technologies + Affectation of
these devices to 23 AUDI device types during evaluation.

Device-type Identifier Device model W
iF

i
Et

he
rn

et
O

th
er

Ba
ck

gr
ou

nd
A

ct
iv

ity

type#01 ApexisCam Apexis IP Camera APM-J011 • • ◦ • •
type#02 CamHi Cooau Megapixel IP Camera • • ◦ • •
type#03 D-LinkCamDCH935L D-Link HD IP Camera DCH-935L • ◦ ◦ • •

type#04 D-LinkCamDCS930L D-Link WiFi Day Camera DCS-930L • • ◦ • ◦

D-LinkCamDCS932L D-Link WiFi Camera DCS-932L • • ◦ • ◦

D-LinkDoorSensor D-Link Door & Window sensor ◦ ◦ • • •
D-LinkSensor D-Link WiFi Motion sensor DCH-S150 • ◦ ◦ • •

type#05 D-LinkSiren D-Link Siren DCH-S220 • ◦ ◦ • •
D-LinkSwitch D-Link Smart plug DSP-W215 • ◦ ◦ • •
D-LinkWaterSensor D-Link Water sensor DCH-S160 • ◦ ◦ • •

type#06 EdimaxCamIC3115 Edimax IC-3115W Smart HD WiFi Network Camera • • ◦ • •
EdimaxCamIC3115(2) Edimax IC-3115W Smart HD WiFi Network Camera • • ◦ • •

type#07 EdimaxPlug1101W Edimax SP-1101W Smart Plug Switch • ◦ ◦ • •
EdimaxPlug2101W Edimax SP-2101W Smart Plug Switch • ◦ ◦ • •

type#08 EdnetCam Ednet Wireless indoor IP camera Cube • • ◦ • •
type#09 EdnetGateway Ednet.living Starter kit power Gateway • ◦ • • •
type#10 HomeMaticPlug Homematic pluggable switch HMIP-PS ◦ ◦ • • •
type#11 Lightify Osram Lightify Gateway • ◦ • • •
type#12 SmcRouter SMC router SMCWBR14S-N4 EU • • ◦ • •

type#13 TP-LinkPlugHS100 TP-Link WiFi Smart plug HS100 • ◦ ◦ • •
TP-LinkPlugHS110 TP-Link WiFi Smart plug HS110 • ◦ ◦ • •

type#14 UbnTAirRouter Ubnt airRouter HP • • ◦ • •
type#15 WansviewCam Wansview 720p HD Wireless IP Camera K2 • ◦ ◦ • •
type#16 WeMoLink WeMo Link Lighting Bridge model F7C031vf • ◦ • • •

type#17 WeMoInsightSwitch WeMo Insight Switch model F7C029de • ◦ ◦ • •
WeMoSwitch WeMo Switch model F7C027de • ◦ ◦ • •

type#18 HueSwitch Philips Hue Light Switch PTM 215Z ◦ ◦ • • •
type#19 AmazonEcho Amazon Echo • ◦ ◦ ◦ •
type#20 AmazonEchoDot Amazon Echo Dot • ◦ ◦ ◦ •
type#21 GoogleHome Google Home • ◦ ◦ • ◦

type#22 Netatmo Netatmo weather station with wind gauge • ◦ • • ◦

type#23 iKettle2 Smarter iKettle 2.0 water kettle SMK20-EU • ◦ ◦ • •
SmarterCoffee Smarter SmarterCoffee coffee machine SMC10-EU • ◦ ◦ • •

V. EVALUATION

A. Datasets

To evaluate AUDI, we collected extensive datasets of com-
munication traces of IoT devices in a laboratory setting which
consisted of 33 typical consumer IoT devices like IP cameras,
smart power plugs and light bulbs, sensors, etc. (See Tab. II
for the full list).

1) Description: Background dataset. Our first dataset is
representative of background traffic IoT devices generate when
no explicit user actions are involved . It captures communica-
tions resulting from standby mode operations such as heartbeat
messages, regular status updates or notifications.
Activity dataset. Our second dataset is representative of traffic
triggered by user activity. A key characteristic of IoT devices
is that they are typically single-purpose devices with inherently
less diverse behavior than general-purpose computing devices
like desktop computers, or smartphones. Most devices expose
only a few distinct actions to users, e.g., ON, OFF, ADJUST,
etc. This dataset encompasses all such actions being invoked
on the respective IoT devices, thus capturing the full diversity
of behavior related to user activity,.

2) Data Collection: Our data collection setup in the labo-
ratory network is shown in Fig. 4. We used hostapd on a
laptop running Kali Linux to create an IoT Gateway acting as
an access point with WiFi and Ethernet interfaces to which

all IoT devices were connected. On the IoT Gateway we used
tcpdump to collect network traffic packets, filtering out packets
not related to a given device based on the device’s MAC
address. Most of the devices used either WiFi or Ethernet.
Some devices like smart light bulbs or sensors, used low-
energy protocols like ZigBee, Z-Wave or Bluetooth Low
Energy (BLE) to connect to a hub device which was then
connected over WiFi or ethernet to the network. For these
devices, we therefore monitored indirect traffic between the
hub device and our IoT Gateway.

Background dataset. Background traffic was collected con-
figuring the devices to the laboratory network, verifying the
correctness of the setup and then leaving the devices on their
own for a period of at least 24 hours. During this time, no
user interactions with the devices were done.

Activity dataset. Activity data was collected by connecting
each IoT device to the laboratory network and repeatedly
performing actions shown in Tab. III with the devices. Each
action was repeated 20 times, while leaving short pauses of
random duration between individual actions. To also capture
less intensive usage patterns, the dataset was augmented with
longer measurements of two to three hours, during which
actions were triggered only occasionally. The activity dataset
contains data from 27 IoT devices, a subset of those used for
collecting the background dataset, as some devices like the
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Fig. 4: Lab network setup

TABLE III: Actions for different IoT device categories

Category (count) Typical actions
IP cameras (6) START / STOP video, adjust settings, reboot
Smart plugs (9) ON, OFF, meter reading
Sensors (3) trigger sensing action
Smart lights (4) turn ON, turn OFF, adjust brightness
Actuators (1) turn ON, turn OFF
Appliances (2) turn ON, turn OFF, adjust settings
Routers (2) browse amazon.com

above-mentioned hub devices for lighting or home automation
do not allow any meaningful user interaction.

Table III shows the typical actions invoked for different
types of IoT devices. Table IV summarizes the sizes and
numbers of distinct packets and packet flows contained in the
two datasets. While packet flows cannot be directly mapped
to distinct device actions, they do, however, provide a rough
estimate of the device’s overall activity.

B. Device-type identification: accuracy and speed

To evaluate the accuracy of our device-type identification
technique, we computed fingerprints (cf. Sect. IV-A) from
the background and activity traffic dataset. We obtained 6,224
fingerprints representing 33 IoT devices.

To assess the relevance of our automatically defined device
types, we trained a kNN model from the fingerprints, following
the method presented in Sect. IV-B. It defined 23 classes
(device types). 16 devices were each assigned its own separate
device type. The remaining 17 were aggregated into 7 device
types. The assignment of devices to automatically-defined
device types is summarized in Tab. II. Different devices
allotted to a given device type are always from the same
manufacturer and have the same or similar purpose (smart
plugs / IP cameras / smart switches / sensors). For example,

TABLE IV: Characteristics of used datasets

Dataset Size (MB) Flows Packets
Background 226 56,337 127,532
Activity 239 59,577 134,867
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Fig. 5: Precision, recall and f1-score for identification of 23
device types (e.g., type#01).

type#06 contains two instances of the same IP camera. It is
worth noting that several devices connected to IoT Gateway
through an intermediary gateway would be considered as a
single device and would be allotted a single device type.
Intermediary gateways are usually proprietary and connect
devices from a same manufacturer that have also the same
or similar purpose (e.g., light bulbs). We conclude that our
technique to automatically assign device types is relevant since
similar/same devices from the same manufacturers are likely
to have same QoS and security requirements. These can be
addressed with a same policy specific to our autonomously
defined device types.

We demonstrate the accuracy of device-type identification
using a 4-fold stratified cross-validation. We randomly split
our 6,224 fingerprints into four equal subsets while respecting
class (device type) distribution. We use three subsets for train-
ing our kNN identification model and test it on the remaining
subset. This process is repeated four times to test each of the
four subsets. We ran the cross-validation 10 times with random
seeds. Figure 5 presents the precision, recall and f1-score for
identifying each device type. All metrics reach over 0.95 for
most devices. The overall accuracy of identification across all
types is 0.982, showing its effectiveness. A confusion matrix
presents detailed results for this experiment in Tab. V.

We computed the time required for identifying the type of
a device. This process is divided into three stages. The first
stage consists of capturing the traffic generated by the device,
which lasts for a fixed duration of 30 minutes. The second
stage consists of pre-processing and extracting the fingerprint
from the traffic capture (steps 1+2 in Fig. 2), which lasts for
52.6 ms±36.5 on average. The third stage is the classification
of the fingerprint using kNN, which takes 0.1 ms on average.
The duration of device identification is largely dominated by
the time required for traffic capturing (30 minutes = 1,800,000
ms) that is 5 orders of magnitude longer than any of the
other stages. The duration of traffic capture is static regardless
of the number of devices to identify by IoT Gateway or
the number of device types (classes) in the kNN model.
Fingerprint extraction must be run for each device connected
to an IoT Gateway. Let us assume that the IoT Gateway needs
to be capable of identifying a few tens of IoT devices; running
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TABLE V: Confusion matrix for device-type identification. Obtained with 10 repetitions of 4-fold cross validation. Columns
represent predicted labels and rows actual labels.

#01 #02 #03 #04 #05 #06 #07 #08 #09 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23
type#01 480 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
type#02 24 1240 0 10 3 5 0 0 16 103 0 0 0 3 50 0 26 0 0 0 0 0 0
type#03 0 0 3736 0 0 10 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0
type#04 0 0 0 2775 4 39 0 0 1 42 0 14 5 0 0 0 0 0 0 0 0 0 0
type#05 0 0 0 2 8707 12 0 0 10 19 0 0 0 0 0 0 0 0 0 0 0 0 0
type#06 0 0 0 10 0 3756 0 0 6 0 0 0 0 0 0 0 0 0 0 8 0 0 0
type#07 0 10 0 0 0 2 394 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0
type#08 0 0 0 0 0 10 0 7390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
type#09 0 0 0 0 0 0 0 0 2619 21 0 0 0 0 0 0 0 0 0 0 0 0 0
type#10 0 0 0 0 0 0 0 0 2 7323 0 0 0 17 0 0 0 0 0 0 0 0 8
type#11 0 0 0 13 38 30 0 0 0 1 2581 4 0 0 0 3 0 0 0 0 0 0 0
type#12 0 0 0 10 0 35 0 0 0 0 0 1955 0 0 0 0 0 0 0 0 0 0 0
type#13 0 0 0 0 0 0 0 0 0 21 0 0 3470 14 0 0 5 0 0 0 0 0 20
type#14 0 3 0 9 0 0 0 0 0 39 0 0 11 350 0 0 0 0 0 10 0 0 28
type#15 0 4 0 20 2 0 0 0 0 17 0 0 0 10 1412 0 0 0 0 0 0 0 5
type#16 0 0 0 2 0 3 0 0 0 0 0 18 0 0 0 2437 0 0 0 0 0 0 0
type#17 0 20 0 0 0 0 0 0 0 6 0 0 10 0 0 0 3884 0 0 0 0 0 0
type#18 0 0 0 50 0 0 0 0 12 0 1 0 0 0 0 0 12 1715 0 0 0 0 0
type#19 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 870 0 0 0 0
type#20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 870 0 0 0
type#21 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 1710 0 17
type#22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 2 0 292 0
type#23 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10 0 1189

this process in parallel would take less than 1 second. The time
for fingerprint classification using kNN increases linearly with
the number of training samples in the kNN model. Assuming
that the same number of instances is kept for every class in
the model, the time for fingerprint classification would increase
linearly with the number of classes (device types) in the kNN
model. Our model containing 23 device types takes 0.1 ms
to classify a fingerprint. Thus managing thousands of device
types would take less than 1 second and device identification
would still be largely dominated by the traffic capture which
takes 30 minutes.

These experiments show that AUDI has high accuracy
(98.2%) across all tested devices. All devices were identified
within a fixed time of 30 minutes regardless of their operation
mode and this time would remain the same even when
considering a much larger number of device types to identify.
AUDI meets the scalability requirement R2 and the stability
requirement R3.

C. Feature importance

We computed scores for feature importance to evaluate
the impact of our 33 features on device-type identification.
Since kNN does not provide information about features most
useful in classification, we used the ReliefF feature selection
algorithm [15] to compute these scores. While several methods
exist for computing feature importance, e.g., information gain,
PCA [18], we chose ReliefF because it is conceptually close
to kNN, since its feature scoring is based on the differences
in feature values between nearest neighbor instance pairs.

Table I presents the importance score for each feature. All
four period duration features have high scores, which shows
that IoT devices of different types have periodic flows with
very different durations. The counts of periodic flows (f1-f2)
are also highly relevant features meaning that IoT devices of

different types have different numbers of periodic flows. The
most relevant feature is the count of flows with a static source
port (f7). This means that IoT devices are heterogeneous in
the way they manage their periodic communications: some
keep an open connection over time while others periodically
re-initiate a new connection for the same flow. While some
features have a low importance (e.g., f3-f4-f11-f12), they
slightly improve the accuracy of device-type identification and
we decided to keep them in our set of features. A large set
of features (and some feature redundancy) also increases the
resilience of machine learning based systems to adversarial
machine learning attacks such as data poisoning [19].

D. Learning time

To show that our identification model can be quickly
learned, we evaluate its accuracy with a varying amount of
training data. As presented in Sect. IV-B, we selected k = 5
as minimum number of components for a class in kNN.
Figure 6 depicts the increase in precision, recall and f1-score
as we vary the size of the training set from 5 fingerprints per
device (2.5 hours monitoring) to 40 fingerprints per device
(20 hours monitoring). We see that the accuracy in all metrics
increases quickly from 0.87 to 0.95 but then stabilizes with
a small gradient. It shows that after a few (≈ 12) hours of
monitoring, more training data does not significantly increase
accuracy. This time is likely even shorter considering that
several IoT Gateways contribute training data (fingerprints)
for each device type in parallel. This shows that learning an
effective device identification model requires only a few hours
of traffic monitoring globally.

To summarize, we showed that our method for automatically
learning device type is relevant. We demonstrate that the
identification technique is effective and accurate, even when
using little training data, which makes it fast at identifying
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Fig. 6: Precision, recall and f1-score increase with respect to
training set size.

newly released IoT devices. AUDI meets a second aspect of
requirement R3: learning model for device types quickly.

VI. SECURITY ANALYSIS AND DISCUSSION

Spoofing device fingerprints. A compromised device can
attempt to modify its background traffic such that its finger-
print changes and it gets identified as another device type.
Fingerprinting can be implemented as a one-time operation
performed when a new IoT device is detected in the network.
It is reasonable to assume that brand new IoT devices are not
compromised when they are first added to a SOHO network.
AUDI requires only 30 minutes to accurately identify the
type of a device. Spoofing of a targeted device fingerprint
requires the attacker to generate new periodic communication
and to disable existing periodic communication. The latter
impacts the functionality of a device, which may be detected
as compromised by its user (e.g., missing periodic report) or
its cloud service provider (e.g., missing reception of periodic
heartbeat signal). In addition, spoofing a fingerprint essentially
results in the device being assigned a different policy than
the one it was supposed to get. Consequently, the device
will nevertheless be constrained by a policy enforced by IoT
Gateway. For example, when device identification is used for
anomaly detection [12], a device spoofing its fingerprint is
likely to be flagged by the anomaly detection component of
IoT Gateway since the communication profile of the device
(legitimate or otherwise) is unlikely to be included in the
anomaly detection profile of the (incorrect) device type.
Spoofing MAC address. Device identification is based on
monitoring layer-2 traffic involving a particular device, identi-
fied by its MAC address. An adversary who has compromised
a device can attempt to evade identification by spoofing its
MAC address in the packets it sends out. MAC address
spoofing can be mitigated using additional techniques for
fingerprinting hardware interfaces on wireless [8], [11] and
on wired connections [20]. These build a unique signature for
the packets sent by a device related to hardware characteristics.
Such fingerprints are difficult to spoof [21]. Alternatively, se-
cured association protocols like WiFi Protected Setup provided
by WPA2 [22] can be used to associate IoT devices to IoT

Gateway. Such association protocols require user involvement
(e.g., physically pushing a button on the gateway) to associate
a new device to the access point. The association results in a
device-specific shared key that can be subsequently used by
the gateway to authenticate the device. This prevents rogue
devices from connecting to the network by spoofing the MAC
address of a device already associated with IoT Gateway. We
conclude that AUDI meets the security requirement R4.
Generalizability of device fingerprinting. Features that com-
pose our device fingerprint have been defined to model peri-
odic flows and to differentiate IoT devices having different
periodic flows. This feature definition and the use of a spe-
cific classifier, kNN, was motivated in Sect. IV. As in any
machine learning application, the efficacy of a feature set and
a classifier can only be demonstrated for a specific task and a
specific dataset (no free lunch theorem [23]).

To ensure generalizability, we defined fingerprint features
and selected a kNN classifier without prior knowledge about
communications of specific IoT devices. Consequently our
features are independent from any dataset and more specif-
ically from the data we later processed in experiments. Data-
independent features and the machine learning method choice
ensure generalizability of the fingerprinting technique [24].
Having assessed our technique on a large set of 33 IoT devices
(IP cameras, sensors, coffee machine, etc.) representative of
typical smart home IoT devices, we expect that the high
efficacy (98.2% accuracy) seen during our evaluation (cf.
Sect. V-B) is likely to be generalizable to other IoT devices.

Some IoT devices, especially those that operate on battery
power, may be kept turned off by default and activated only
on explicit user triggers. Such devices naturally will not have
periodic communications; consequently techniques like AUDI
are not effective in identifying such devices. We had two such
devices (out of 35) in our lab: two smart scales that we dis-
carded for experiments. These devices were normally powered
off and generated communication traffic only when activated
by a physical user interaction. No other action, e.g., incoming
communication from the cloud service, companion app, or
other local devices, could activate them otherwise. Physical
user interactions with these devices are typically infrequent,
which explains why they are designed to be battery powered.
Consequently, these devices are not critical from security or
network management perspectives. They only generate low
volume of communication on infrequent occasions. Also, they
are unlikely to be discovered by IoT malware scanning the
local network since they are turned off most of the time.

VII. RELATED WORK

Early work in wireless communication fingerprinting tar-
geted the identification of hardware- and driver-specific char-
acteristics [9], [10], [25]. IoT-oriented device identifica-
tion techniques leverage sensor-specific features [26]–[29] to
uniquely identify a device. Our identification technique is
positioned between the former and latter approaches, providing
the right granularity to passively identify device types.

Some solutions address device-type identification with the
same granularity as we do [7], [30]–[33], while considering
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different definitions of “type”. GTID [7] identifies the make
and model of a device by analyzing the inter-arrival time
of packets sent for a targeted type of traffic (e.g. Skype,
ICMP, etc.). GTID requires a lot of traffic over several hours
to identify a device’s type. Aksu et al. [32] also model the
inter-arrival time of Bluetooth packets to identify different
model of wearable devices from a smartphone. Maiti et al. [6]
introduced a device-type identification technique relying on
analysis of encrypted WiFi traffic. A Random Forest classifier
is trained with features extracted from a long sequence of
WiFi frames. The technique was evaluated on 10 IoT devices
and required at least 30,000 frames to be effective. In standby
mode an IoT device can take days to generate such volumes
of traffic. IoT Sentinel [5], [34] leverages the burst of network
traffic typical for the setup phase of an IoT device to identify
its type. While accurate and requiring only two minutes of
monitoring, IoT Sentinel only operates when a device is first
installed to a network. Meidan et al. [31] analyze TCP sessions
to identify generic types of IoT devices, i.e., smoke sensor,
baby monitor, etc. The observation of at least 20 TCP sessions
was required to reach acceptable accuracy for 17 devices. The
authors reported that 1/3 of their IoT devices did not produce
any TCP sessions without user interactions (i.e., in standby
mode), and for the remaining 2/3 the mean inter-arrival time
of TCP sessions was up to 5 minutes, requiring over one hour
and a half to be identified. Guo and Heidemann [33] use our
same intuition to identify IoT devices, namely that IoT devices
periodically connect to specific services on the Internet. They
identify the server names and IP addresses that a known IoT
device connects to on the Internet. This information is later
used to identify unknown devices if they connect to the same
IP addresses. A limitation of this approach is that different IoT
devices from a same manufacturer often connect to the same
servers which produces collisions between device types from
a same manufacturer. Also many IoT device manufacturers
leverage cloud services such as Amazon for hosting their
services [30], which can also produce collisions.

State-of-the-Art methods for device-type identification are
supervised and require labeled data to be trained. AUDI is
not restricted to a finite set of pre-learned device types. It
creates abstract device types, learns their fingerprints and
adapts autonomously when new types are discovered. AUDI
is also not restricted to a specific type of dense network traffic.
It is the first technique to identify IoT device types based on
their background periodic communication. Consequently and
in contrast to previous work, it identifies the type of an IoT
device under any state of operation.

Some security solutions for the IoT with a distributed design
close to AUDI have been proposed in commercial solutions,
e.g., IoT guardian from Zingbox [35]. While relying on an un-
supervised device identification technique, IoT guardian does
not propose any concrete implementation for it. Moreover,
IoT guardian relies on partial deep packet inspection, which
prevents it from being used on encrypted communications.
AUDI does not have such limitations.

VIII. CONCLUSION

Identification of devices that compose a network, or net-
work mapping, is the basis for many network management
applications ranging from network resource allocation and
network slicing to security management. In this paper we
introduced AUDI, a novel autonomous approach for identi-
fying the type of devices in IoT networks. AUDI generates
abstract device-type labels to be used as input for such self-
learning systems working without human supervision. We
have built an autonomous anomaly detection system based
on AUDI (described in the longer research report [12]). We
hope that AUDI can pave the way for other novel autonomous
approaches for managing IoT networks.

A future improvement to increase the autonomy of AUDI is
to make it self-parametrizable. The four clustering parameters
of AUDI can be self-defined and optimized in real-time by the
system rather than using, e.g., a training period in a lab setup.
This would remove any need for user involvement, even prior
to system deployment.

We introduced fingerprints for IoT device types that are
derived from their periodic communications. Future work can
focus on defining fingerprints that are specific and tied to the
envisioned network management application for device identi-
fication. Network management and security policies could be
automatically derived from such device fingerprints, e.g., as
a function of the fingerprint, rather than using our proposed
linkage between fingerprint and policy.
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