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Recent advances in metasurfaces have shown the importance of controlling the bianisotropic response of
the constituent meta-atoms for maximum efficiency wave-front transformation. By carefully designing the
bianisotropic response of the metasurface, full control of the local transmission and reflection properties
is enabled, opening new design avenues for creating reciprocal metasurfaces. Despite recent advances
in the highly efficient transformation of both electromagnetic and acoustic plane waves, the importance
of bianisotropic metasurfaces for transforming cylindrical waves is still unexplored. Motivated by the
possibility of arbitrarily controlling the angular momentum of cylindrical waves, we develop a design
methodology of a bianisotropic cylindrical metasurface that enables transformation of cylindrical waves
for both acoustic and electromagnetic waves with theoretically 100% power efficiency. This formalism is
further validated in the acoustic scenario where an experimental demonstration of highly efficient angular
momentum transformation is shown.

DOI: 10.1103/PhysRevApplied.11.024016

I. INTRODUCTION

Metamaterials have been serving as a primary approach
to fully control the behavior of electromagnetic waves,
acoustic waves, and elastic waves in recent years [1,2],
and their study is at present a highly active research
area. Metasurfaces, as the two-dimensional (2D) version of
metamaterials, have opened up unprecedented possibilities
for controlling waves at will, offering a solution of mold-
ing wave propagation within a planar geometry [3,4]. By
engineering the local phase shift in the unit cells, various
functionalities have been achieved by metasurfaces, such
as focusing [5], wave redirection and retroreflection [6–8],
enhanced absorption [9], cloaking [10], and holographic
rendering [11,12], to name a few. However, the efficiency
of phase-gradient metasurfaces is fundamentally limited
by the impedance mismatch between incident field and
reflected or transmitted field, so that some of the energy
is scattered into unwanted higher- order diffracted modes,
which hinders their applicability in various scenarios.

Recent advances have demonstrated that for electro-
magnetic and acoustic waves, full control of refraction
or reflection can be achieved by carefully controlling the
bianisotropy [13–19], also called Willis coupling in elasto-
dynamics [20], in the unit cells. By tuning both transmitted
and reflected phase profiles, one can not only control
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the microscopic phase profile along the metasurface but
also achieve the overall macroscopic impedance match
between the incident and scattered fields. Such metasur-
faces, i.e., bianisotropic gradient metasurfaces, serve as the
second generation of metasurfaces for wave-front manip-
ulation [21]. In recent studies of wave deflection with
both electromagnetic and acoustic bianisotropic gradient
metasurfaces, it has been shown that the transmission
efficiency can be significantly improved, especially for
large deflection angles. Also, it has been demonstrated
that bianisotropic gradient metasurfaces offer scattering-
free wave manipulation even with a relatively coarse
piecewise approximation of the required impedance matrix
profile [19], which provides advantages in fabrication.
However, the concept of bianisotropic metasurfaces and
systematic design for scattering-free manipulation have
only been explored in flat interfaces. Cylindrical topolo-
gies are among the most commonly used structures in
electromagnetics, acoustics, and elastodynamics. The con-
cept and benefits of bianisotropic metasurfaces, however,
have not yet been extended to this field.

In analogy to anomalous refraction for flat metasurfaces,
one of the possibilities offered by cylindrical metasurfaces
is the transformation between different cylindrical waves.
This transformation was achieved by locally controlling
the phase profile along the surface, which contributes
to the generation of source illusion [22]. Generation
of angular-momentum waves using a single metasurface
layer designed with the generalized Snell’s law (GSL) will
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not only introduce a large impedance mismatch but will
also require a fine discretization of the surface, which is
not easily achievable by conventional cell architectures.
Therefore, generation of wave fields with a large angu-
lar momentum still remains challenging. The successful
realization of scattering-free bianisotropic planar metasur-
faces suggests that scattering-free cylindrical metasurfaces
might be possible.

There are numerous application possibilities offered by
angular-momentum-controlling metasurfaces beyond the
source illusion mentioned above. Recent research has also
demonstrated the manipulation of beams for particle trap-
ping [23,24] and boosting communication efficiency [25,
26] with acoustic angular momentum. Passive generation
of wave fields with nonzero angular momentum is typi-
cally implemented by aperture design, leaky wave anten-
nas, or metasurfaces based on GSL [22,27–29] for acoustic
waves and inhomogeneous anisotropic media [30], a spa-
tial light modulator, or spiral phase plates [31,32] for
electromagnetic waves. However, the recent advances in
metasurfaces for wave-front manipulation have shown that
when only the transmission phase profile is controlled,
parasitic scattering will inevitably appear, which reduces
the efficiency or even causes the structures to fail to real-
ize the desired functionalities, especially for large angular
momentum.

In this paper, we present a theoretical study, simula-
tion, and experimental demonstration of highly efficient
angular momentum generation by cylindrical bianisotropic
metasurfaces.

In particular, the work is focused on metasurfaces
for the manipulation of cylindrical acoustic waves (see
Appendix A for the electromagnetic counterpart). First, we
theoretically analyze the generation of angular momentum
showing that a bianisotropic response is required for wave-
front transformation with 100% power efficiency. Next, we
propose a possible realization of the required impedance
matrix profile. We take as an example the transforma-
tion between a point source (zero angular momentum) and
a field with an angular momentum n = 12, and confirm
in simulations that the desired field distribution is indeed
created without any reflection and scattering. Finally, a
realization in acoustics is verified by experiments.

II. THEORETICAL FORMULATION

For acoustic waves in homogeneous media, the 2D wave
equation in the cylindrical coordinates is written as

∇2p = 1
r

∂

∂r

(
∂p
∂r

)
+ 1

r2

∂2p
∂ϕ2 = 1

c2
0

∂2p
∂t2

, (1)

where p is the acoustic pressure and c0 is the sound speed
in the background medium. Just like plane waves in Carte-
sian coordinates, Bessel-like spinning waves with different

FIG. 1. Illustration of the desired performance of a metasur-
face to convert the inner field to a prescribed outer field without
parasitic scattering.

angular momentum serve as the bases in cylindrical coor-
dinates. In the general case, the solution to this equation
can be written as

p =
∑

n

[
anH (1)

n (kr) + bnH (2)
n (kr)

]
ejnϕejωt, (2)

where H (1)
n denotes the Hankel function of the first kind

(waves converging to the center) and H (2)
n denotes the Han-

kel function of the second kind (waves diverging from
the center), index n represents the angular momentum, an
and bn are the amplitudes of the waves, and k = ω/c0 is
the wavenumber at the frequency of interest. The assumed
time dependence for the monochromatic wave is ejωt, and
it will be omitted throughout the paper for brevity.

In this section we will discuss the theoretical require-
ments for a metasurface to produce perfect transformation
between cylindrical waves with different angular momenta,
i.e., with different spinning characteristics, as is shown
in Fig. 1. The term perfect is in the sense of wave-front
transformation with 100% power efficiency. The deriva-
tion of the solution will be presented considering acoustic
waves; however, a similar formulation can be used for
electromagnetic waves (see Appendix A).

The formulation of the problem starts with the definition
of the fields inside and outside the volume bounded by
the metasurface. Let us consider the field in medium I
(inside the metasurface) and medium II (outside the vol-
ume bounded by the metasurface) as divergent waves with
the angular momentum n1 and n2 that can be expressed as

p I,II = p1,2H (2)
n1,2

(kr)ejn1,2ϕ , (3)

where p1,2 are the amplitudes for the incident and trans-
mitted waves. In general, both amplitudes are complex.
However, for arbitrarily given complex wave amplitudes,
we can always rotate the coordinate system and pick a
start time such that both complex amplitudes become real.
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Such an operation will simplify the derivation but will not
affect the generality, and it will not affect the final designed
structure as well. It is important to mention that we only
consider a divergent wave inside the metasurface because
the objective of the metasurface is to completely trans-
form the incident cylindrical wave without reflections. The
velocity vector can be calculated from the pressure field
[�v = (j/ωρ)∇p] as

�vI,II = p1,2

Z0

[
j∂rH (2)

n1,2
(kr)ρ̂ − n1,2

kr
H (2)

n1,2
(kr)ϕ̂

]
ejn1,2ϕ , (4)

where Z0 = ρc0 is the characteristic impedance of air and
∂r represents the partial derivative with respect to r.

We assume that the metasurface is a cylindrical tube
whose axis is located at the origin, with inner radius and
outer radius being r1 and r2, respectively. For lossless and
scattering-free metasurfaces, the energy conservation con-
dition shall be met. Denoting the time-averaged intensity
vector as

�I = 1
2

Re
{
p �v∗} = Irρ̂ + Iϕϕ̂, (5)

this condition can be expressed in terms of the radial com-
ponents of this vector at the two sides of the metasurface:

I I
r = p2

1

2Z0

[
Jn1(kr)∂rYn1(kr) − Yn1(kr)∂rJn1(kr)

] ∣∣r1 , (6)

I II
r = p2

2

2Z0

[
Jn2(kr)∂rYn2(kr) − Yn2(kr)∂rJn2(kr)

] ∣∣r2 , (7)

where Jα and Yα represent the Bessel functions of the first
and second kind, respectively. These expressions can be
simplified as

I I
r = p2

1

πZ0

1
r1

, (8)

I II
r = p2

2

πZ0

1
r2

. (9)

To ensure that all the energy of the incident wave is carried
away by the transmitted spinning wave, the normal compo-
nent of the intensity vector crossing a line segment of the
inner radius, S1 = r1dϕ, has to be equal to the one crossing
the corresponding line segment in the other radius, S2 =
r2dϕ. This condition can be written as I I

r S1 = I II
r S2, which

yields p2 = p1. If we define the macroscopic transmission
coefficient as

T = p II(r2)

p I(r1)
= H (2)

n2
(kr2)

H (2)
n1 (kr1)

ej (n2−n1)ϕ , (10)

it is possible to see that if |n2| > |n1|, the magnitude of
macroscopic transmission coefficient can be greater than

one when |H (2)
n2

(kr2)| > |H (2)
n1

(kr1)|, given the fact that
waves with larger angular momentum decay slower along
the radial direction. The feature of transmission coefficient
greater than one can never be realized by phase engineer-
ing only. It is noted here that this condition is analogous to
the plane-wave case described in [18,19].

The next step towards the realization of perfect trans-
formation between cylindrical waves is to determine the
required boundary conditions at both sides of the metasur-
face. At the inner and outer boundaries of the metasurface,
for each specific circumferential position, the impedance
matrix that models the metasurface is defined as

[
p I(r1, φ)

p II(r2, φ)

]
=

[
Z11 Z12
Z21 Z22

] [
S1n̂ · �vI(r1, φ)

−S2n̂ · �vII(r2, φ)

]
, (11)

where n̂ is the unit normal vector to the metasurface. Such
a system can be viewed as a two-port network, which can
be represented by an equivalent circuit. In the most general
linear, time-invariant, and reciprocal case, the impedance
matrix is symmetric, Z12 = Z21. If we further assume that
the system is lossless where the equivalent circuit is com-
posed of only capacitors and inductors without resistors or
other dissipative elements, the resulting impedance matrix
is purely imaginary, i.e., Zij = jXij .

For compactness, we denote

Cn1 = H (2)
n1

(kr1)ejn1φ , (12)

Cn2 = H (2)
n2

(kr2)ejn2φ , (13)

C′
n1

= 1
2

[H (2)

n1−1(kr1) − H (2)

n1+1(kr1)]ejn1φ , (14)

C′
n2

= 1
2

[H (2)

n2−1(kr2) − H (2)

n2+1(kr2)]ejn2φ . (15)

Substituting the assumed pressure field and velocity field
for the incident wave and transmitted wave into Eq. (11)
and employing the recurrence relation for Hankel func-
tions, namely dH (1,2)

α (x)/dx = [H (1,2)

α−1 (x) + H (1,2)

α+1 (x)]/2,
Eq. (11) can be rewritten in the form of a system of two
linear equations:

{
Z0Cn1 = −S1X11C′

n1
+ S2X12C′

n2
,

Z0Cn2 = −S1X12C′
n1

+ S2X22C′
n2

. (16)

After some algebra, the components of the impedance
matrix can thus be calculated:

X11 = Z0

S1

Im(Cn1)Re(C′
n2

) − Re(Cn1)Im(C′
n2

)

Im(C′
n2

)Re(C′
n1

) − Re(C′
n2

)Im(C′
n1

)
, (17)
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X22 = Z0

S2

Im(Cn2)Re(C′
n1

) − Re(Cn2)Im(C′
n1

)

Im(C′
n2

)Re(C′
n1

) − Re(C′
n2

)Im(C′
n1

)
, (18)

X12 = −Z0

S1

Im(C′
n2

)Re(Cn2) − Re(C′
n2

)Im(Cn2)

Im(C′
n2

)Re(C′
n1

) − Re(C′
n2

)Im(C′
n1

)
. (19)

For simplicity in the derivations, and to provide another
view point for the requirements, the required properties
of the metasurface can also be expressed in terms of the
transfer matrix, which is defined by
[

p I(r1, φ)

S1n̂ · �vI(r1, φ)

]
=

[
M11 M12
M21 M22

] [
p II(r2, φ)

S2n̂ · �vII(r2, φ)

]
. (20)

Conversion from the impedance matrix to the transfer
matrix is given by

M =
[Z11

Z21

Z11Z22−Z21Z12
Z21

1
Z21

Z22
Z21

]
, (21)

which indicates that M11 and M22 are real, while M12 and
M21 are imaginary. Explicit solutions for the elements of
the transfer matrix are expressed as

M11 = Im(C′
n2

)Re(Cn1) − Re(C′
n2

)Im(Cn1)

Im(C′
n2

)Re(Cn2) − Re(C′
n2

)Im(Cn2)
, (22)

M22 = −S1

S2

Im(Cn2)Re(C′
n1

) − Re(Cn2)Im(C′
n1

)

Im(C′
n2

)Re(Cn2) − Re(C′
n2

)Im(Cn2)
, (23)

M12 = jZ0

S2

Im(Cn2)Re(Cn1) − Re(Cn2)Im(Cn1)

Im(C′
n2

)Re(Cn2) − Re(C′
n2

)Im(Cn2)
, (24)

M21 = jS1

Z0

Im(C′
n2

)Re(C′
n1

) − Re(C′
n2

)Im(C′
n1

)

Im(C′
n2

)Re(Cn2) − Re(C′
n2

)Im(Cn2)
. (25)

It can be easily checked that this matrix corresponds to a
reciprocal and lossless system.

Note that as long as |n1| �= |n2|, we will always have
M11 �= M22, which leads to Z11 �= Z22 for a infinitely thin
surface (r1 = r2), which indicates a carefully designed
asymmetric response shall be provided by the unit cell.
Discussion about metasurfaces with a finite thickness can
be found in Appendix B. This asymmetry is analogous
to the plane-wave case in Cartesian coordinates, mean-
ing that controlling only the transmission phase along the
metasurface is not enough for full control of the power
flow. Instead, a bianisotropic metasurface with precisely
controlled asymmetric response is required.

III. DESIGN AND REALIZATION OF
CYLINDRICAL BIANISOTROPIC

METASURFACES

For the actual implementation of the metasurface
described in the previous section, there are several different
possible approaches.

A. Multilayer model

The analysis of a cylindrical metasurface with infinitesi-
mal thickness capable of perfectly transforming the scat-
tered wavefronts shows that a bianisotropic response is
needed. Such a response can be obtained by controlling the
electromagnetic coupling for electromagnetic (em) waves
or the Willis coupling in the acoustic counterpart. Looking
into the scattering characteristics of such particles, one can
see that the bianisotropic response is translated into asym-
metric reflection from the backward and forward directions
with same magnitude but different phases. Due to the small
size required for the implementation of bianisotropic gra-
dient metasurfaces, an extended way to fully control the
asymmetric response of the particles is to cascade multiple
impedance layers.

1. Electromagnetic metasurfaces

For the electromagnetic case, one can consider a cascade
of metallic patterns separated by concentric dielectric sub-
strates [see Fig. 2]. The patterned metallic sheets can be
modeled as shunt impedances with the following transfer
matrix:

MZi =
[

1 0
Yi 1

]
, i = 1, 2, 3, (26)

where Yi = 1/Zi represents the effective impedance of
the metallic patterns. On the other hand, the transmis-
sion matrix of a wedge-shaped dielectric sector can be

FIG. 2. Schematic representation of a multilayer system with
fully controllable asymmetric response.
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expressed as

MTi =
[

Ai Bi
Ci Di

]
, i = 1, 2. (27)

The values of the matrix elements are functions of the
inner and outer radii and the dielectric permittivity εd
(see Appendix B for more information). Finally the total
transmission matrix can be calculated as

M =
[

M11 M12
M21 M22

]
= MZ1MT1MZ2MT2MZ3. (28)

After some algebra, we can obtain the required sheet
admittances (Y1, Y2, and Y3) as a function of the required
scattering properties (M11, M12, M21, and M22):

Y2 = M12 − B1D2 − A1B2

B1B2
, (29)

Y1 = M22 − (D1D2 + C1B2 + D1B2Y2)

A1B2 + B1D2 + B1B2Z2
, (30)

Y3 = M11 − (B1C2 + A1A2 + B1A2Y2)

A1B2 + B1D2 + B1B2Y2
. (31)

At microwave frequency the required sheet admittances
can be implemented by using metallic patterns [33].

2. Acoustic models

For the acoustic scenario, the asymmetric response can
be obtained as a cascade of three different membranes sep-
arated by a certain distance. The response of a meta-atom
can be expressed in terms of the transmission matrices

M = MZ1MT1MZ2MT2MZ3 (32)

where

MZi =
[

1 Zi
0 1

]
, i = 1, 2, 3 (33)

and MTi, i = 1, 2, is the transfer matrix of a wedge-shaped
sector, which is a function of its inner and outer radius.
Detailed derivation of the explicit expression of MTi can

be found in Appendix B. Here, for simplicity, let us denote

MTi =
[

Ai Bi
Ci Di

]
, i = 1, 2. (34)

Then the required impedances for the three membranes can
be calculated as

Z2 = M21 − C1A2 − D1C2

C1C2
, (35)

Z1 = M11 − (A1A2 + B1C2 + A1C2Z2)

C1A2 + D1C2 + C1C2Z2
, (36)

Z3 = M22 − (C1B2 + D1D2 + C1D2Z2)

C1A2 + D1C2 + C1C2Z2
. (37)

B. Channel with side-loaded resonators

By controlling the thickness and in-plane tension of the
membranes, one can, in principle, control the impedances
to satisfy Eqs. (17)–(19). However, the surface ten-
sion, uniformity, and durability for the membranes are
extremely hard to control, and it is questionable whether
such a configuration can be practically realized.

An alternative approach based on a straight channel with
four resonators was proposed for flat surfaces [19]. The
design provides enough degrees of freedom for full con-
trol over the bianisotropic response while reducing the loss
induced by resonances. Here, we propose a four-resonator
design in cylindrical coordinates for full control over the
bianisotropic response of the unit cells. An example cell is
shown in Fig. 3. In this structure the width and the height
of the neck wneck = 1.5 mm and hneck = 1 mm are fixed
for the four resonators. The wall thickness between the
resonators is 1 mm and the width of the cavities wcav =
11.5 mm is also fixed. The sector angle of the wedge-
shaped channel θc and the height of the resonators wa, wb,
wc, and wd can be varied to control the overall impedance
response. The wall thickness of the unit cell is fixed and
will be defined by the fabrication limitations. The walls
between adjacent cells are assumed to be hard so that
the wave does not propagate along the orthogonal direc-
tion inside the metasurface. Therefore, all the cells in the
bianisotropic metasurfaces can be designed individually.

FIG. 3. A unit cell consisting of four resonators for the realiza-
tion of the impedance matrix in cylindrical coordinates.
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The transfer matrix of the proposed meta-atom topology
can be calculated as

M = MTLMH1MT1MH2MT2MH3MT3MH4MTR, (38)

with MTL, MTR, and MT1,2,3 being the transfer functions of
the transmission lines at the entrance, exit, and between
adjacent resonators, as is shown in Fig. 3. MHi are the
transfer matrices of each individual resonator and are
expressed as

MHi =
[

1 0
1/ZHi 1

]
, i = 1, 2, 3, (39)

where ZHi are the acoustic impedances for each shunted
resonator. The detailed derivation of ZHi is given in [34].

The impedance matrix of an arbitrary meta-atom can
then be calculated by converting the transfer matrix using

Z =
[M11

M21

M11M22−M21M12
M21

1
M21

M22
M21

]
. (40)

With the theoretical requirement for perfect wave-front
transformation and the versatility of the meta-atom for full
control over the bianisotropic response, the next step is to
decide the detailed physical dimensions of the meta-atoms
that form the metasurface. Since there are three indepen-
dent elements in the required impedance matrix (X11, X12,
X22) and five controlling parameters (θc, wa, wb, wc, and
wd), there can be many combinations for a meta-atom to
realize the required impedance matrix. To solve for a prac-
tical design within geometrical limitations, a continuous
genetic algorithm (GA) is adopted for optimization of the
design parameters, so that the impedance matrix of the
optimized structure matches the theoretical requirements.
In the algorithm, we minimize the cost function, which is
the relative error between the impedance matrix for the
unit cell and the theoretically required impedance matrix
at each point, defined as

cost =

√√√√√∑
i,j

∣∣∣∣∣
Zstr

ij − Zreq
ij

Zreq
ij

∣∣∣∣∣
2

, (41)

where “str” stands for impedance matrix of the structure
and “req” stands for the theoretical requirements. i, j =
1, 2 denote each element in the matrix.

We design a metasurface to transform a monopole
source (n1 = 0) located at the center to a spinning field
with the angular momentum of n2 = 12. In this case, r1 =
15 cm, r2 = 20 cm, and one period is represented by six
meta-atoms. In this case, each unit cell occupies a sector
of �φ = π/36 and, therefore, S1 = �φr1 and S2 = �φr2.
We sweep the circumferential positions with a step of 0.1

degrees, and run the GA optimization 50 times at each
point to search for the best combination with the lowest
relative error.

Although theoretical calculation offers a fast and close
approximation of the meta-atom behavior, it will also
introduce some error due to truncation of the infinite series
and the straight channel assumption. On the other hand,
extracting the impedance using commercial simulations
(for example, COMSOL MULTIPHYSICS) offers slow but more
precise characterization. Therefore, based on the structure
obtained from theoretical optimization, we further opti-
mize it locally using the GA by slightly perturbing the
structure dimensions within ±1 mm.

The method used for extracting the impedance matrix
from simulation is adopted from the standard “four micro-
phone” method where the incident wave, reflected wave
and transmitted wave are denoted as pi, pr and pti, as is
shown in Fig. 3.

The method uses four microphones to measure the pres-
sure at two fixed points on both sides of the tested structure
under two different boundary conditions, and the proper-
ties can be calculated accordingly. Based on the same idea,
we develop a method to extract the structure properties in
cylindrical coordinates. Detailed derivation of the method
is summarized in Appendix D.

The theoretical requirement for the desired metasurface
and the achieved values from the two-step optimization are
shown in Fig. 4(a). Detailed dimensions of the meta-atoms

(a)

(c)(b)

FIG. 4. Theoretically determined and optimized impedances
and the simulated fields. (a) Comparison between the theoreti-
cal requirements and the achieved values using GA optimization.
(b) The real part of the simulated acoustic field using real
structures. The inset shows the pressure amplitude near the meta-
surface. (c) The field generated by a GSL-based metasurface
using ideal unit cells as a comparison.
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TABLE I. Design parameters of the meta-atoms.

Cell
Cost
(%)

θc
(mm)

wa
(mm)

wb
(mm)

wc
(mm)

wd
(mm)

1 2.08 0.5699 6.8 8.8 8.6 6.9
2 0.66 0.5655 7.0 7.0 8.3 6.4
3 0.16 0.6997 8.4 7.9 2.5 5.2
4 0.55 0.7002 7.4 8.4 0.9 4.3
5 0.35 1.0221 4.1 8.1 6.7 3.0
6 0.84 1.3931 8.7 2.1 0.5 3.0

and their relative errors can be found in Table I. We
can see that the required impedance is accurately realized
by the optimized meta-atoms. Simulation of the obtained
structure is performed in COMSOL MULTIPHYSICS with the
pressure acoustics module. The walls of the unit cells are
set to be hard due to the large impedance contrast in the
implementation. The background medium is air with den-
sity 1.21 kg/m3 and sound speed 343 m/s. The incident
pressure amplitude is 1 Pa at r = 2 cm. The outer edge of
the simulated region is connected to a perfectly matched
layer. The simulated pressure field and the pressure ampli-
tude are shown in Fig. 4(b). We can see that the monopole
wavefront is nearly perfectly converted to a field with the
angular momentum of 12 without parasitic reflection and
scattering. Remarkably, from the pressure amplitude field
we can see that the macroscopic transmission coefficient
|T| > 1. This means that the pressure on the transmission
side is larger than the incident side, which is in agreement
with the theoretical analysis. The corresponding reference
GSL metasurface formed by ideal unit cells with the same
size and the same number of cells per period is shown in
Fig. 4(c) as a comparison. Here the ideal GSL unit cells are
defined as the unit cells whose transmission coefficient has
the amplitude 1 and a precisely controlled phase, i.e., the
scattering matrix for an ideal unit cell is expressed as

S =
[

0 ej�t

ej�t 0

]
, (42)

where �t = nφ denotes the desired transmission phase
along the metasurface. By converting the scattering matrix
into a transfer matrix (Appendix C), the multilayer model
in Sec. III A can be applied to realize such an ideal scat-
tering property in the simulation. From Fig. 4(c) we can
see that there is strong reflection, much of the transmitted
energy is scattered to the unwanted modes and the overall
wave pattern is corrupted.

IV. EXPERIMENTAL VERIFICATION

The theory and simulations are then verified with experi-
ments. We choose the same scenario discussed in the previ-
ous section. The experimental setup is shown in Fig. 5(a).
The sample is fabricated by selective laser sintering three-
dimensional printing. The material is nylon with a density

of 950 kg/m3 and sound speed of 1338 m/s, so that the
walls can be regarded as acoustically rigid due to the large
impedance contrast with air. The printed sample has an
inner radius of 150 mm and an outer radius of 200 mm,
and the height of the sample is 41 mm to fit in the 2D
waveguide. The overall size of the 2D waveguide is 1.2
m by 1.2 m. The monopole source is provided by a 1-inch
speaker located at the center, which sends a Gaussian mod-
ulated pulse centered at 3000 Hz. At each scanned point,
the transmitted pulse is recorded by averaging the mea-
surement 10 times to eliminate noise. The pulse is then
time-gated to eliminate reflections from the boundaries.
Then the complex field at each point is calculated by per-
forming a Fourier transform of the time-gated signal. The
whole field is scanned by moving the microphone with a
step of 1 cm. Since the overall size of the scanning sys-
tem is limited, a quarter of the whole field is scanned, as
shown in Fig. 5(a), and the measured data are then mapped
to other regions due to field symmetry.

The real part of the scanned field and the phase of the
field is plotted in Figs. 5(b) and 5(c), respectively. From
the experimental results, we can see that the fabricated
metasurface creates a field with much lower unwanted
scattering compared with an ideal GSL-based metasurface,
as shown in Fig. 5(d). The small discrepancies between
simulation and experiment are due to fabrication toler-
ance and the small difference between the assumed and
actual properties of air. In particular, the sound speed is
344 m/s in our laboratory during the measurement win-
dow, while we assume 343 m/s in the simulation, which
will cause the working frequency to increase by about
8 Hz. The small misalignment in the vertical and horizontal
directions is caused by a small misalignment of the sam-
ple and the scanning stage. To quantitatively characterize
the results, we extract the coefficients of the contributing
modes by taking the measurements on a r = 22 cm circle
centered at the source and performing a Fourier trans-
form of the fields to extract the amplitudes of different
modes. The power of each mode is calculated and then nor-
malized by the total power. The power distribution over
the modes of n = −30 to n = 30 is plotted in Fig. 5(d).
For comparison, the same analysis is performed for the
simulation of the bianisotropic metasurface and the ideal
GSL-based metasurface. We can clearly see that the GSL-
based metasurface, even with the perfectly designed cells
of full transmission and precise control of the transmitted
phase, produces a large component of the n = −12 mode,
and only 70% of the transmitted energy is in the desired
mode. On the other hand, for the bianisotropic designs, the
unwanted scattering is greatly suppressed, showing 99%
and 92% of the transmitted energy in the desired mode
n = 12 in the simulation and experiment, respectively.
The experimental results show good agreement with the
simulation, demonstrating the possibility of near-perfect
transformation of acoustic wavefronts.
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(a)

(c)(b)

(d)

FIG. 5. Experimental setup and results.
(a) A photo of the experimental setup.
The field is scanned by moving the
microphone in the green region. (b)
The real part of the measured pressure
field. (c) The phase of the scanned field.
We can clearly see that the wavefront
is nearly perfectly transformed to the
field with the angular momentum n =
12. (d) The comparison among the bian-
isotropic metasurface in simulation and
experiment, and the ideal GSL-based
metasurface in the simulation. In the
experiment, 92% of the transmitted
energy is concentrated in the desired
mode.

V. DISCUSSION

In this paper, we introduce a multiphysics design
method for creation of acoustic or electromagnetic bian-
isotropic metasurfaces of cylindrical shape for perfect gen-
eration of waves with arbitrary angular momenta. We first
define theoretically the conditions and requirements, and
point out that controlling the local phase shift in transmis-
sion alone cannot achieve such transformations. Instead,
full control over the reflection and transmission coeffi-
cients in both directions through bianisotropy is required.
Then we propose possible realizations for acoustic waves,
and verify them with simulations, showing that the pro-
posed metasurface nearly perfectly transforms a monopole
source into a spinning wave field with the angular momen-
tum of 12, which is beyond the ability of conventional
GSL-based metasurfaces. Then we propose a systematic

and practical way of creating cylindrical bianisotropic
acoustic metasurfaces and verify it with experiments. The
experimental results show excellent agreement with simu-
lations, with 92% of the transmitted energy concentrated
in the desired mode, whereas with the use of an ideal
GSL-based metasurface, 30% of the transmitted energy
is scattered to other modes. Here we would like to note
that the efficiency of the conventional GSL-based design
is even lower because the simulation shows that 10% of
the energy is reflected indicating that the ideal efficiency
can reach only 63%, while our design is free of reflections.

The use of waves with nonzero angular momenta
has shown great potential in high-speed communications,
source illusion, and particle manipulation in the fields
of optics, electromagnetics, and acoustics. However, one
obstacle is the efficiency of generating angular momentum,
especially when the target angular momentum is large. In

024016-8



HIGHLY EFFICIENT GENERATION OF ANGULAR. . . PHYS. REV. APPLIED 11, 024016 (2019)

this article, we propose and demonstrate the realization
of theoretically perfect generation of angular momenta
with a bianisotropic metasurface. We also hope that such
metasurfaces can be explored in optics to enhance the effi-
ciency of generating orbital angular momentum beams for
high-speed optical communications and other applications.

Here we would like to stress that the proposed design
strategy is not only valid for generation of angular momen-
tum beams but for the arbitrary manipulation of wave-
fronts, both for acoustic and electromagnetic waves. For
example, by designing the bianisotropic impedance matrix
profile, one may create a multipolar source from a single
excitation within a limited space; the proposed metasur-
face may also be applied as an interface between two
media to enhance energy transfer. The metasurface may
also be applied in topological insulators to either act as a
spinning source to excite some certain modes, or even pro-
vide the “pseudospin” for topological insulators in airborne
systems. We believe that the proposed bianisotropic meta-
surface concepts can serve as an approach to designing
highly efficient metasurfaces.
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APPENDIX A: ELECTROMAGNETIC
FORMULATION OF THE CYLINDRICAL

BIANISOTROPIC METASURFACE

Using a similar analysis to that the proposed in the
main text, metasurfaces for perfect cylindrical transforma-
tions of electromagnetic wavefronts can be designed (see
Fig. 6). For example, let us consider the TE-polarization
case where the electric field is along the z direction, �E =
Ezẑ. The wave equation for TE polarization can be written
as

1
r

∂

∂r

(
∂Ez

∂r

)
+ 1

r2

∂2Ez

∂ϕ2 = 1
c2

0

∂2Ez

∂t2
. (A1)

It is clear that this wave equation has the same form as the
acoustic counterpart and consequently the solution can also
be expressed as a combination of cylindrical waves emerg-
ing [H (1)

n (kr)] and diverging [H (2)
n (kr)] from the origin of

coordinates with a certain angular momentum n.
We start by defining a diverging wave with angular

momentum, n1, in medium I that can be written as

EI
z = E0H (2)

n1 (kr)ejn1ϕ , (A2)

FIG. 6. Schematic representation the electromagnetic system
for TE polarization.

where E0 is the amplitude of the wave. It is easy to
obtain the expression of the corresponding magnetic field
by applying the Maxwell equation (∇ × �E = −jωμ0 �H ).
Finally, the magnetic field reads

�H I = −E0

Z0

[n1

kr
H (2)

n1 (kr)r̂ + j∂rH
(2)

n1 (kr)ϕ̂
]

ejn1ϕ , (A3)

with Z0 =√
μ0/ε0 being the wave impedance in the back-

ground field. Following the same procedure, the field in
medium II will be defined as

EII
z = EtH

(2)

n2 (kr)ejn2ϕ , (A4)

where T is the transmission coefficient and n2 is the angu-
lar momentum of the fields outside the metasurface. The
expression for the magnetic field in medium II is

�H II = Et

Z0

[n2

kr
H (2)

n2 (kr)r̂ + j ∂rH
(2)

n2 (kr)ϕ̂
]

ejn2ϕ . (A5)

In order to realize cylindrical transformations with 100%
power efficiency, it is necessary to ensure the fulfill-
ment of the power conservation between the waves
inside and outside the metasurface. The Poynting vector
of the cylindrical waves can be calculated as �P = 1

2 Re{�E × �H ∗} = Prr̂ + Pϕϕ̂, where

Pr = E2
0

πZ0

1
r

(A6)

and

Pϕ = E2
0

πZ0

n
kr

Jn(kr). (A7)

The angular component of the Poynting vector, Pϕ , rep-
resents the circumferential contour around the origin of
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FIG. 7. Schematic representation of the Poynting vector dis-
tribution inside and outside the metasurface. Green patterns
represent the wavefronts.

coordinates (see Fig. 7). Due to the inherent periodicity
of the system in the angular direction, this component does
not contribute to the global power balance. If we consider
that the internal and external boundaries of the metasur-
face are located at r1 and r2, the condition for ensuring
the power balance reads S1PI

r|r1 = S2PII
r |r2 . Finally, the

amplitude of the transmitted waves should satisfy Et = E0.
Once the desired waves are fully defined, one has to

relate the fields at both sides of the metasurface as follows:
[

EI(r1, ϕ)

EII(r2, ϕ)

]
=

[
Z11 Z12
Z12 Z22

] [
S1n̂ × H I(r1, ϕ)

−S2n̂ × H II(r1, ϕ)

]
, (A8)

where n̂ is the normal vector to the metasurface and the
matrix [Z] defines the electromagnetic properties of the
metasurface. It is important to notice that the off-diagonal
terms of the impedance matrix are forced to be equal,
meaning that we will inspect only reciprocal metasurfaces.
In addition to the reciprocal condition, we will impose the
lossless behavior by considering all the elements of the
impedance matrix to be purely imaginary, i.e., Zij = jXij .
By putting all these constraints into Eq. (A8), the equation
can be found to be exactly the same as Eq. (16). The solu-
tion to the impedance components are therefore the same
as Eqs. (17)–(19).

APPENDIX B: TRANSFER MATRIX OF A
SECTOR OF WEDGE-SHAPED MATERIAL

Here we consider an acoustic notation as an example;
for TE-polarized em waves, the results are equivalent. For
waves propagating in isotropic and homogeneous material,

the fields generated by a monopole source located at the
center can be written as

p = XH (2)

0 (kr) + YH (1)

0 (kr), (B1)

v = − 1
2jZ0

{X [H (2)

−1 (kr) − H (2)

1 (kr)]

+ Y[H (1)

−1 (kr) − H (1)

1 (kr)]}. (B2)

The transfer matrix is defined as[
pi

S1vi

]
=

[
M11 M12
M21 M22

] [
po

S2vo

]
, (B3)

where the subscripts denote the fields at the input port
r1 and output port r2. To calculate these values, we
first impose that vo = 0, so that M11 = pi/po and M21 =
S1vi/po. This condition is satisfied when

Y
X

= α = −H (2)

−1 (kr2) − H (2)

1 (kr2)

H (1)

−1 (kr2) − H (1)

1 (kr2)
. (B4)

Then M11 and M21 can be calculated as

M11 = H (2)

0 (kr1) + αH (1)

0 (kr1)

H (2)

0 (kr2) + αH (1)

0 (kr2)
, (B5)

M21 = − S1

2jZ0

[
H (2)

−1 (kr1) − H (2)

1 (kr1)

H (2)

0 (kr2) + αH (1)

0 (kr2)

+α
H (1)

−1 (kr1) − H (1)

1 (kr1)

H (2)

0 (kr2) + αH (1)

0 (kr2)

]
. (B6)

Similarly, we can impose that po = 0, so that M12 =
pi/S2vo and M22 = S1vi/S2vo. This condition is satisfied
when

Y
X

= β = −H (2)

0 (kr2)

H (1)

0 (kr2)
. (B7)

Then M12 and M22 can be calculated as

M12 = −2jZ0

S2

× H (2)

0 (kr1)+ βH (1)

0 (kr1)

H (2)

−1 (kr2)− H (2)

1 (kr2)+ β[H (1)

−1 (kr2)− H (1)

1 (kr2)]
,

(B8)

M22 = S1

S2

H (2)

−1 (kr1)− H (2)

1 (kr1)+ β[H (1)

−1 (kr1)− H (1)

1 (kr1)]

H (2)

−1 (kr2)− H (2)

1 (kr2)+ β[H (1)

−1 (kr2)− H (1)

1 (kr2)]
.

(B9)
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Hence the transfer matrices can be calculated by assign-
ing the corresponding input and output positions. The
impedance matrix can be calculated with Eq. (40).

For a given finite-thickness metasurface with fixed r1
and r2, there are only two variables: k and Z0 (essen-
tially ρ and κ for acoustics and ε and μ for em waves).
However, the derived requirement for the metasurface
shows three components that need to be controlled (Z11,
Z12, and Z22). Therefore, conventional GSL-based meta-
surfaces by phase shifting with high index media cannot
fulfill the requirements, even with ideally matched char-
acteristic impedance. To realize the required impedance
matrix profile, we need another degree of freedom, which
is the bianisotropy, or Willis coupling within the unit cells.

APPENDIX C: CONVERSION FROM
SCATTERING MATRIX TO TRANSFER MATRIX

The schematic is shown in Fig. 8. The transfer matrix
of an arbitrary structure in a wedge-shaped waveguide is

defined in Eq. (B3), and the scattering matrix is defined as
[

B
C

]
=

[
S11 S12
S21 S22

] [
A
D

]
. (C1)

The calculation strategy of the transfer matrix is the
same as in Appendix B, where we first set vo = 0 to obtain
M11 and M21. In this case we have D

C = α and

A
C

= 1 − S22α

S21
, (C2)

B
C

= 1 − S22α

S21
S11 + S12α, (C3)

where α is defined in Eq. (B4). Then M11 and M21 can be
expressed in terms of the S matrix:

M11 = (1 − S22α)H (2)

0 (kr1) + (S11 − S11S22α + S21S12α)H (1)

0 (kr1)

S21H (2)

0 (kr2) + S21αH (1)

0 (kr2)
, (C4)

M21 = − S1

2jZ0

(1 − S22α)[H (2)

−1 (kr1) − H (2)

1 (kr1)] + (S11 − S11S22α + S21S12α)[H (1)

−1 (kr1) − H (1)

1 (kr1)]

S21H (2)

0 (kr2) + S21αH (1)

0 (kr2)
. (C5)

Similarly, we can impose that po = 0, in which case

A
C

= 1 − S22β

S21
, (C6)

B
C

= 1 − S22β

S21
S11 + S12β, (C7)

where β is defined in Eq. (B7), so that M12 = pi/S2vo and
M22 = S1vi/S2vo can be expressed as

M12 = −2jZ0

S2

(1 − S22β)H (2)

0 (kr1) + (S11 − S11S22β + S21S12β)H (1)

0 (kr1)

S21[H (2)

−1 (kr2) − H (2)

1 (kr2)] + S21β[H (1)

−1 (kr2) − H (1)

1 (kr2)]
, (C8)

M22 = S1

S2

(1 − S22β)[H (2)

−1 (kr1) − H (2)

1 (kr1)] + (S11 − S11S22β + S21S12β)[H (1)

−1 (kr1) − H (1)

1 (kr1)]

S21[H (2)

−1 (kr2) − H (2)

1 (kr2)] + S21β[H (1)

−1 (kr2) − H (1)

1 (kr2)]
. (C9)

FIG. 8. Setups for the measurement of samples in a wedge-
shaped waveguide.

APPENDIX D: CALCULATION OF THE
MATRICES IN THE SIMULATION

For ease of implementation, the method we use to
retrieve the impedance matrix in COMSOL is inspired
by the standard four-microphone method for acous-
tic experiments with impedance tubes, whose setups
are shown in Fig. 8. The waves in the upstream and
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downstream directions can be written as

pup = AH (2)

0 (kr) + BH (1)

0 (kr), (D1)

pdown = CH (2)

0 (kr) + DH (1)

0 (kr). (D2)

The positions of the four microphones are x1, x2, x3, and
x4, respectively. By performing two measurements with
different boundary conditions at the end of the tube, we
can obtain four independent equations for the determina-
tion of the four transfer matrix elements. The two different
boundaries that we use at the end of the tube are plane
wave radiation (condition no. 1) and a hard wall (condition
no. 2). The pressure detected by these microphones under
these two boundary conditions are noted as p (n)

m , where
m denotes the number of the microphone and n denotes
the number of the boundary condition. They satisfy the
condition

[
H (2)

0 (kx1) H (1)

0 (kx1)

H (2)

0 (kx2) H (1)

0 (kx2)

] [
A(1) A(2)

B(1) B(2)

]
=

[
p (1)

1 p (2)

1
p (1)

2 p (2)

2

]
.

(D3)

Similarly,

[
H (2)

0 (kx3) H (1)

0 (kx3)

H (2)

0 (kx4) H (1)

0 (kx4)

] [
C(1) C(2)

D(1) D(2)

]
=

[
p (1)

3 p (2)

3
p (1)

4 p (2)

4

]
.

(D4)

With the measurement of p (n)
m under two different condi-

tions, all the values of A, B, C, and D in the matrices
can be calculated. Therefore, the scattering matrix can be
calculated as

S =
[

B(1) B(2)

C(1) C(2)

] [
A(1) A(2)

D(1) D(2)

]−1

. (D5)

If the inner and outer radii of the metasurface are r1 and r2,
then the pressure and volume velocity at both sides can be
written as

[
p(1)

i p(2)
i

S1v
(1)
i S1v

(2)
i

]

=

⎡
⎢⎣

H (2)
0 (kr1) H (1)

0 (kr1)

− S1

2jZ0
[H (2)

−1 (kr1) − H (2)
1 (kr1)] − S1

2jZ0
[H (1)

−1 (kr1) − H (1)
1 (kr1)]

⎤
⎥⎦

×
[

A(1) A(2)

B(1) B(2)

]
, (D6)

[
p(1)

o p(2)
o

S2v
(1)
o S2v

(2)
o

]

=
⎡
⎣ H (2)

0 (kr2) H (1)
0 (kr2)

− S2

2jZ0
[H (2)

−1 (kr2) − H (2)
1 (kr2)] − S2

2jZ0
[H (1)

−1 (kr2) − H (1)
1 (kr2)]

⎤
⎦

×
[

C(1) C(2)

D(1) D(2)

]
. (D7)

The transfer matrix of the measured unit cell can thus be
calculated as

T =
[

p (1)
o p (2)

o
S2v

(1)
o S2v

(2)
o

] [
p (1)

i p (2)
i

S1v
(1)
i S1v

(2)
i

]−1

. (D8)

Hence the impedance matrix can is calculated as

Z =

⎡
⎢⎣ − d22

T21 − 1
T21

T12T21 − T11T22

T21
− T11

T21

⎤
⎥⎦ . (D9)
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