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Abstract 19 

Constructing hydrological models for large urban areas is time consuming and laborious due 20 

to the requirements for high-resolution data and fine model detail. An open-source algorithm 21 

using adaptive subcatchments is proposed to automate Storm Water Management Model 22 

(SWMM) construction. The algorithm merges areas with homogeneous land cover and 23 

common outlet into larger subcatchments, while retaining small-scale details where land cover 24 

or topography is more heterogeneous. The method was tested on an 85 ha urban catchment in 25 

Helsinki, Finland. A model with adaptive subcatchments reproduced the observed discharge at 26 

the catchment outlet with high model-performance indices emphasizing the strength of the 27 

proposed method. Computation times of the adaptive model were substantially lower than those 28 

of a corresponding model with uniformly sized high-resolution subcatchments. Given that 29 

high-resolution land cover and topography data are available, the proposed algorithm provides 30 

an advanced method for implementing SWMM models automatically even for large urban 31 

catchments without substantial manual workload. Simultaneously, the high-resolution land 32 

cover details of the catchments can be maintained where they matter the most. 33 

Keywords 34 

SWMM, urban hydrology, stormwater, subcatchment delineation, automation, flow routing 35 

36 
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1. Introduction37 

Urban areas are characterized by fragmented, mosaic land cover leading to altered hydrological 38 

cycle when compared to natural areas. The changing landscape due to urbanization has impacts 39 

on heat balance and evaporation (Whitford et al., 2001; Zhou et al., 2011), snow cover and 40 

snowmelt (Bengtsson and Semádeni-Davies, 2011), infiltration and storm runoff generation 41 

(Sillanpää and Koivusalo, 2015), and biodiversity (Pauleit et al., 2005) amongst other effects. 42 

To understand the hydrology-related processes in urban areas, accurate description and 43 

understanding of the land cover spatial configuration is crucial (Fletcher et al., 2013; Salvadore 44 

et al., 2015).  45 

The high-resolution description of catchment details is important in urban hydrological models 46 

(Cantone and Schmidt, 2009). While for runoff volumes the impact of spatial resolution may 47 

be modest or even negligible (Ghosh and Hellweger, 2012; Goldstein et al., 2016; Krebs et al., 48 

2014; Park et al., 2008), the high detail in land cover description is particularly important for 49 

accurate simulation of peak flow rates (Elliott et al., 2009; Ghosh and Hellweger, 2012; Krebs 50 

et al., 2014). In addition to the increased accuracy of runoff simulations, describing 51 

subcatchments in high-resolution as detailed units with homogeneous land cover simplifies the 52 

model calibration procedure and narrows parameter ranges (Krebs et al., 2013; Sun et al., 53 

2014).  54 

In urban areas, impervious surfaces contribute the most to urban runoff and understanding their 55 

connection to surrounding areas and to the stormwater network is fundamental (Jacobson, 56 

2011; Mejía and Moglen, 2010; Shuster et al., 2005). To accurately represent the flow routing 57 

between contributing surfaces in urban hydrological models, flow paths have to be described 58 

in detail requiring high-resolution data (Gironás et al., 2010; Rodriguez et al., 2013). The 59 

demand for high-resolution spatial descriptions of urban areas is also driven by the assessment 60 
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of stormwater management systems, such as low-impact development and nature-based 61 

solutions. These are often spatially distributed to individual surfaces or outlets of impervious 62 

plots and need to be described in great spatial detail in models (Tuomela et al., 2019). 63 

The US EPA Storm Water Management Model (SWMM) (Rossman, 2015) is a widely used 64 

open-source urban hydrological simulation model used for both event-based (e.g., Kong et al., 65 

2017; Niemi et al., 2017) and long-term (e.g., Guan et al., 2015; Peleg et al., 2017; Taka et al., 66 

2017) hydrological assessments in urban areas. Manual construction of high-resolution urban 67 

hydrological models, where each contributing surface is individually described (Krebs et al., 68 

2014, 2013), is only feasible when the studied area is small. For larger areas, such as entire 69 

suburbs, automated methods are necessary to keep the task manageable.  70 

Several tools have been proposed to facilitate the task of urban hydrological model 71 

construction. Kertesz et al. (2007) developed a tool to compile and transfer subcatchment 72 

information from ArcGIS Geographical Information System (GIS) to SWMM. Pina et al. 73 

(2011) introduced an open-source tool inp.PINS for both creating SWMM input files directly 74 

from GIS and for visualizing SWMM results in GIS, but the tool has since become deprecated. 75 

Dongquan et al. (2009) presented a digital elevation model (DEM)-based automated batch 76 

process for subcatchment discretization in ArcGIS without accounting for different land covers 77 

within subcatchments and tested the results with SWMM. In addition, several commercial 78 

modelling packages built around the EPA SWMM computational engine exist (e.g., 79 

InfoSWMM and XPSWMM by Innovyze, PCSWMM by Computational Hydraulics 80 

International) to aid the modeler e.g., by incorporating superior GIS capabilities over the 81 

standard EPA SWMM user interface or by allowing integrated 1D-2D modelling using 2D 82 

surface flow descriptions. Nevertheless, even with commercial packages, subcatchment 83 

delineation and routing of water between subcatchments and into the stormwater network are 84 
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still largely manual tasks. Clearly, there is still room for improvement as none of the tools 85 

facilitate automatic model building while retaining the detailed land cover characteristics of 86 

the urban environment.  87 

Easily available, remotely sensed high-resolution data on topography and land cover are 88 

abundant (Bates, 2004; French, 2003; Tarolli et al., 2013). This shifts the focus in hydrological 89 

modelling from describing the environment in as much detail as possible into such models 90 

where simulation times remain feasible (Bates, 2012; Sampson et al., 2012). High-resolution 91 

description of land cover and flow paths becomes important in urban environments and requires 92 

a modeler to find a balance between necessary level of detail and acceptable computational 93 

burden. 94 

Describing a sizeable urban area in high-resolution often results in unfeasibly long simulation 95 

times necessitating for a method to aggregate adjacent surfaces into larger computational units. 96 

Warsta et al. (2017) proposed an automatic method for building SWMM models in a manner 97 

where each DEM/land cover raster cell corresponded to one subcatchment. The method also 98 

allowed combining individual grid cells into larger rectangular subcatchments in a rudimentary 99 

manner. While this decreased computation times and facilitated application to large urban 100 

catchments (Rautiainen, 2016), averaging catchment properties (e.g., elevations) while 101 

combining grid cells led to problems with surface runoff routing and to a loss of fine-scale 102 

detail in describing land cover and topography.  103 

To tackle the challenge of automatically constructing SWMM models in high-resolution while 104 

minimizing the computational burden, the main objective of this paper was to propose a new 105 

open-source algorithm to automate SWMM model construction. Following the requirements 106 

for accurate flow path description and homogenous subcatchment land cover, the proposed 107 

algorithm automatically discretizes the studied area in an adaptive manner based on land cover 108 
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and flow routing using high-resolution land cover and DEM data. The result is a SWMM model 109 

with a minimum number of subcatchments where each subcatchment is covered by a single 110 

land cover type.  111 

The performance of the new discretization method was demonstrated by comparison against a 112 

uniform discretization scheme where each raster cell corresponds to one subcatchment. 113 

Simulation results were also compared against field measurements to validate model 114 

performance.  115 

2. Materials116 

The studied Länsi-Pakila catchment (Fig. 1) is an 85 ha urban area in Helsinki, Finland. 117 

Helsinki has a boreal climate with a mean annual air temperature of 5.9°C and mean annual 118 

precipitation of 655 mm, with most of the rainfall falling in late summer and early autumn 119 

(Pirinen et al., 2012).  120 

[FIGURE 1] 121 

The Länsi-Pakila catchment is a medium-density residential area characterized by detached 122 

houses. The area is relatively green, with vegetation covering 53.5%, asphalt 27.5%, and roofs 123 

13.5% of the area (Table 1), resulting in a total imperviousness of 43%. The area is prone to 124 

stormwater flooding (Raukola, 2012). Länsi-Pakila is subject to urban development and faces 125 

a risk of more severe urban flooding in the future unless due attention is paid to stormwater 126 

management.  127 

[TABLE 1] 128 

An openly available 1 × 1 m2 DEM from the City of Helsinki was used for catchment 129 

delineation. The catchment land cover description was based on the openly available land cover 130 
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classification data from the Helsinki Region Environmental Services Authority HSY. As is 131 

often the case with urban runoff studies, several site visits were required to complement the 132 

scattered stormwater network information available from the network map.  133 

Rainfall was measured at the Länsi-Pakila catchment during summer 2017 using three co-134 

located fully automatic tipping-bucket rain gauges (ECRN-100 High Resolution Rain Gauge) 135 

with 0.2 mm tip size and 1 min temporal resolution. The gauges were located on top of a low-136 

rise nursing home building to keep them safe from vandalism and to minimize obstruction from 137 

the urban surroundings (Fig. 1). Daily air temperature and wind speed data were available from 138 

the Finnish Meteorological Institute’s weather station in Kumpula, Helsinki, approximately 5 139 

km south-east from the catchment.  140 

Catchment discharge information was obtained by measuring water level and flow velocity at 141 

the catchment outfall (Fig. 1) in an 800 mm concrete pipe using a Starflow Ultrasonic Doppler 142 

Instrument Model 6526. The time resolution of the discharge measurements was 1 min. The 143 

instantaneous discharge measurements caused velocity fluctuations, which were smoothed 144 

using a 5 min central moving average in further data preparation.  145 

3. Methods146 

3.1. Adaptive subcatchment discretization 147 

The proposed subcatchment discretization algorithm extends the automatic SWMM model 148 

construction tool introduced by Warsta et al. (2017). They divided the investigated area into 149 

subcatchments using a uniform computation grid with a desired spatial resolution. The grid 150 

cells were then connected to each other and into the stormwater network. Following Krebs et 151 

al. (2014), the generated subcatchments were small enough to be hypothesized to consist of a 152 

single homogenous land cover type, e.g., a green area, a rooftop, or a paved road. This 153 
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simplifies the calibration of the resulting SWMM model by allowing parameters to be linked 154 

to distinct surface types. In the proposed algorithm, the subcatchments are still assumed to be 155 

of a homogeneous land cover type, but their sizes depend on the underlying land cover and 156 

flow routing. This reduces the number of subcatchments greatly in areas where land cover and 157 

topography are uniform.  158 

The proposed algorithm proceeds as follows: 159 

1. A model with a uniform computation grid where each grid cell corresponds to one160 

subcatchment is created for the studied area.161 

2. Cells with open storm sewer nodes are initially saved as a set of one-cell-sized162 

subcatchments. SWMM parameters for each subcatchment are adopted from the node163 

cell.164 

3. Subcatchments are processed one by one.165 

4. All adjacent upstream cells routed into the currently processed subcatchment are listed:166 

a. If an upstream cell has the same land cover as the currently processed167 

subcatchment, the cell is merged to the subcatchment. Subcatchment parameters168 

(area, elevation, slope) are updated.169 

b. If an upstream cell has different land cover than the currently processed170 

subcatchment, a new subcatchment is created. Subcatchment properties are171 

copied from the underlying cell for the newly created subcatchment.172 

Downstream subcatchment is set as the outlet of the new subcatchment.173 

5. Subcatchments and upstream cells are traversed until all cells contributing to any of the174 

open storm sewer nodes are processed.175 

6. Neighbouring roof cells sharing their outlet are merged together to form a new176 

subcatchment. Subcatchment parameters (area, elevation, slope) are computed for each177 
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merged roof subcatchment. Depending on the given land cover class for the roof, the 178 

roof subcatchments are routed either 179 

a. to the nearest adjacent (non-roof) subcatchment (disconnected roof in Fig. 1) or180 

b. directly to the nearest storm sewer node (connected roof).181 

Subcatchment cells with an open storm sewer node are connected into the stormwater network. 182 

Furthermore, a 3 × 3 cell area surrounding each open storm sewer node is used as a collecting 183 

area for the node to account for errors in flow routing resulting from inaccuracies in the DEM. 184 

Cells not contributing to any downstream subcatchment or storm sewer node, e.g., at the 185 

borders of the study area, are disregarded from further analysis. Subcatchment area is the 186 

combined area of the contributing cells, whereas subcatchment elevation and slope are assigned 187 

the average of the contributing cells. The flow width (𝐹𝑊) parameter for adaptive 188 

subcatchments is approximated after Krebs et al. (2014) as 189 

𝐹𝑊 = 𝑘√𝐴 (1) 190 

where 𝐴 is the subcatchment area and 𝑘 = 0.7. 191 

The proposed algorithm requires three raster files with equal dimensions and resolution as 192 

inputs: a land cover raster where different land cover classes are identified with integers, a 193 

DEM raster depicting the topography of the studied area, and a flow direction raster with 194 

integers from 1 (north-east) to 8 (north) indicating the direction of flow from each raster cell. 195 

It is assumed that all cells in the flow direction raster are routed, i.e., there are no pits. Other 196 

input files to the tool are identical to those reported by Warsta et al. (2017), consisting of 197 

geometry files for the stormwater network, a file relating the land cover raster indices to 198 

SWMM subcatchment parameters, and various settings files. Given the input files, the tool 199 
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produces a SWMM input file (.inp) ready to be used in simulations and a set of GIS-compatible 200 

files that facilitate visualization of model set-up in GIS software. 201 

3.2. Model implementations 202 

Two models for the Länsi-Pakila catchment were created; a model where all subcatchments are 203 

rectangular and have dimensions of 1 × 1 m2 (referred to as 1x1) and a model with adaptive 204 

subcatchments (adap) according to the proposed algorithm. The 1x1 model acts as the reference 205 

model for assessing the subcatchment discretization impact on simulation performance.  206 

Six largest rainfall-runoff events from the Länsi-Pakila catchment were selected for analysis 207 

(Table 2). Three of the events were used for model calibration and the remaining three were 208 

validation events. Earlier, Sillanpää and Koivusalo (2014, 2015) showed a difference in urban 209 

runoff response between minor and major storms due to the runoff-contributing area expanding 210 

from impervious to pervious areas during major storms. Because the storm size may affect 211 

model parameterization, and because the main interest was in potential urban flood-producing 212 

events, the selected events were all major storms (rainfall accumulation >17 mm). The 213 

threshold defining a major storm corresponds with the rainfall threshold set by Sillanpää and 214 

Koivusalo (2014) and Guan et al. (2016) for similar climate and catchment conditions. 215 

[TABLE 2] 216 

Land cover in both 1x1 and adap was represented with 6 classes. All model parameter values 217 

except for infiltration parameters corresponded to those used by Warsta et al. (2017) and Krebs 218 

et al. (2014) for similar urban catchments in Finland (Appendix A). Initial tests showed 219 

SWMM to be sensitive to the Green-Ampt infiltration model parameters, i.e., the suction head 220 

(𝜓𝑠), the saturated hydraulic conductivity (𝐾𝑠), and the maximum soil moisture deficit (𝜃𝑑𝑚𝑎𝑥), 221 

and therefore these parameters were selected for the model calibration. Infiltration parameters 222 
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of the underlying soil were uniform for all land cover types and PEST (v.13) software (Doherty, 223 

2016) with Tikhonov regularization was used to calibrate the adap model. The parameters for 224 

loamy sand from Rawls et al. (1992) were used as initial values. The calibration was conducted 225 

by minimizing the sum of squared errors of simulated flow against observed flow for time steps 226 

when observed flow exceeded a threshold of 7 – 15 l/s depending on the event. The threshold 227 

was selected due to the focus on potential flood-producing events and the desire to match peak 228 

flows rather than base flow. The same calibrated parameters were then used for the 1x1 model.  229 

The flow direction raster was created from the DEM. As a pre-processing step, the stormwater 230 

network information was integrated into the DEM using “stream burning” (e.g., Saunders, 231 

1999) to ensure maximum collecting area for the catchment. Subsequently, the original DEM 232 

without network burning from the corresponding area was used to produce the flow direction 233 

raster using r.watershed tool from GRASS GIS (GRASS Development Team, 2017). Cells with 234 

land cover classified as buildings were set to block the overland flow and cells with open storm 235 

sewer nodes were set to collect the water. 236 

The model performance was evaluated against observations using the Nash-Sutcliffe efficiency 237 

𝑁𝑆𝐸 (-) (Nash and Sutcliffe, 1970), volume error (relative bias) 𝑉𝐸 (%), and peak flow error 238 

𝑃𝐹𝐸 (%). 239 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑡−𝑄𝑠,𝑡)

2
𝑡

∑ (𝑄𝑜,𝑡−𝑄𝑜̅̅ ̅̅ )
2

𝑡

   (2) 240 

𝑉𝐸 = 100
𝑉𝑠−𝑉𝑜

𝑉𝑜
   (3) 241 

𝑃𝐹𝐸 = 100
𝑄𝑠,𝑚𝑎𝑥−𝑄𝑜,𝑚𝑎𝑥

𝑄𝑜,𝑚𝑎𝑥
   (4) 242 
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where 𝑄𝑜,𝑡 and 𝑄𝑠,𝑡 are the observed and simulated discharge (l/s), respectively, at time 𝑡, 𝑄𝑜̅̅̅̅  243 

is the average observed discharge (l/s) during an event, 𝑉𝑜 and 𝑉𝑠 are the observed and simulated 244 

flow volumes (m3), respectively, during an event, and 𝑄𝑜,𝑚𝑎𝑥 and 𝑄𝑠,𝑚𝑎𝑥 are the observed and 245 

simulated maximum discharges (l/s), respectively. The performance of adap was evaluated 246 

against 1x1 using the Pearson correlation coefficient 𝑟 (-):  247 

𝑟 =
∑ (𝑄1,𝑡−𝑄1̅̅̅̅ )𝑡 (𝑄𝑎,𝑡−𝑄𝑎̅̅ ̅̅ )

√∑ (𝑄1,𝑡−𝑄1̅̅̅̅ )𝑡
2
√∑ (𝑄𝑎,𝑡−𝑄𝑎̅̅ ̅̅ )𝑡

2
  (5) 248 

where 𝑄1,𝑡 and 𝑄𝑎,𝑡 are the simulated discharges (l/s) at time 𝑡 from the 1x1 and the adap 249 

models, respectively, and 𝑄1̅̅ ̅ and 𝑄𝑎̅̅̅̅  are the average simulated discharges (l/s) during an event 250 

using the 1x1 and the adap models, respectively. In addition, the performance was evaluated 251 

using volume difference 𝑉𝐷 (%) and the peak flow difference 𝑃𝐹𝐷 (%) by substituting 1x1 252 

and adap for observed and simulated in Eqs. (3) and (4), respectively. 253 

4. Results 254 

4.1. Adaptive subcatchment discretization 255 

Table 3 presents the subcatchment statistics for adap and 1x1 subcatchment discretizations. 256 

The adap model resulted in only 10% (82 554) of the number of uniform 1 × 1 m2 257 

subcatchments in 1x1 (848 258). The subcatchment sizes for adap ranged up to 9 322 m2 with 258 

a mean size of 10.3 m2. As both adap and 1x1 share the same input DEM data, the mean 259 

subcatchment elevation and slope are equal. Differences in the range of subcatchment 260 

elevations and slopes are due to some individual raster cell subcatchments of 1x1 being merged 261 

in adap. The maximum subcatchment slope of over 400% is explained by local errors in the 262 

DEM. For 1x1, with all the subcatchments having constant dimensions of 1 × 1 m2, the 263 

subcatchment flow width is always either 1 or 0.7 m depending on whether the flow is 264 
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perpendicular or diagonal from the cell. For adap subcatchments, the flow width was computed 265 

using Eq. (1) resulting in a larger range of flow widths for individual subcatchments. The 266 

average subcatchment flow width was however similar for both models; 0.9 and 1.4 m for 1x1 267 

and adap, respectively. 268 

[TABLE 3] 269 

Creating the adap models using the proposed algorithm consumed 30% more time (29.3 min) 270 

than creating the 1x1 model (22.6 min). The reduction in the number of subcatchments led to 271 

a corresponding reduction in SWMM computation time; the average computation time of an 272 

adap SWMM model was 10% of the corresponding 1x1 model computation time for the 273 

calibration and validation events (Fig. 2).  274 

[FIGURE 2] 275 

Fig. 3 shows the reduction in the number of subcatchments and the effect of combining 276 

individual cells into larger subcatchments on flow routes when moving from 1x1 to adap. The 277 

routing from one land cover type to another follows the same paths in adap and in 1x1. 278 

However, in adap the number of subcatchments is substantially lower as cells with the same 279 

land cover type and sharing a common flow path have been merged. Note that the flow routing 280 

in Fig. 3 is displayed between subcatchment mass centers, creating an illusion that not all adap 281 

subcatchments are routed when in fact some subcatchment mass centers are situated outside 282 

the subcatchment and/or the figure.  283 

[FIGURE 3] 284 



 

14 

 

4.2. Model calibration and validation 285 

Fig. 4 illustrates the adap and 1x1 simulation results for the calibration and validation events, 286 

while Table 4 presents the corresponding performance statistics (Eqs. 2 – 5). The adap model 287 

performed well for both calibration and validation events. For all events except v1, 𝑁𝑆𝐸 288 

coefficients exceeded 0.90 indicating ”very good” adap model performance, and 𝑁𝑆𝐸 of 0.8 289 

for event v1 still indicated ”good” model performance according to the recommended model-290 

performance classes by Ritter and Muñoz-Carpena (2013). Regardless of the event, simulations 291 

from adap tended to slightly underestimate flow volumes with the underestimate somewhat 292 

larger for the validation events (average 𝑉𝐸 −13.1%) than for the calibration events (−7.1%). 293 

This was partly explained by a more rapid return to pre-storm flow levels in the simulations 294 

than in the observed data, although some of the high flows were also underestimated. Peak 295 

levels were mainly well captured, with 𝑃𝐹𝐸 less than 10% except for events c3 (𝑃𝐹𝐸 −11.3%) 296 

and v3 (19.3%). Only for event v3 did adap overestimate the peak flow.  297 

[FIGURE 4] 298 

[TABLE 4] 299 

Performance of the 1x1 model in terms of 𝑁𝑆𝐸 varied from ”acceptable” for events v1 and c1 300 

to ”very good” for c2 and c3 (Table 4). Unlike in adap simulations where volume error was 301 

negative for all events, in 1x1 the flow volume was overestimated for all events with 𝑉𝐸 302 

ranging from 5.1% for v1 to 22.9% for c1. For events c1 and v3, 1x1 overestimated the peak 303 

flow by roughly 20%. However, for the other events the peak flow was accurately simulated.  304 

The statistics between adap and 1x1 (Table 4) highlight the similar reaction of both models to 305 

rainfall events, as demonstrated by the correlation coefficients between adap and 1x1 306 

approaching unity. Still, adap constantly produced 15 – 25% lower flow volumes than 1x1. 307 
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Although in absolute terms 𝑉𝐸 of both models was similar, adap on average underestimated 308 

observed flow volumes by 10.1% while 1x1 overestimated by 11.6%. The adap model 309 

generally predicted roughly 5% lower peak flows than 1x1 with the maximum 𝑃𝐹𝐷 being 310 

−17.4% for event c1. For this event, the difference was almost entirely due to discharge 311 

overestimation of 1x1.  312 

The differences in peak flows and flow volumes are consistent with catchment mass balance 313 

differences between adap and 1x1 (Table 5). In each event, share of surface runoff was less for 314 

adap than for 1x1, whereas infiltration was greater for adap than for 1x1. In addition, adap 315 

produced slightly less evaporation than 1x1 while final stored water volume was slightly larger 316 

in adap than in 1x1. 317 

[TABLE 5] 318 

5. Discussion 319 

Automated DEM-based methods for SWMM subcatchment generation have been proposed 320 

before, but they differ from the current algorithm. Dongquan et al. (2009) aimed for a low 321 

number of computational units by using a high-resolution 2 × 2 m2 DEM but combining all 322 

cells belonging to the same drainage basin into subcatchments regardless of land cover or flow 323 

routing details. Their approach resulted in 113 subcatchments for a 13.65 ha study area, 324 

yielding a hundred times coarser average subcatchment size of 1 200 m2 than in the adap model 325 

here (10.3 m2). Warsta et al. (2017) described the catchments in fine detail but because each 326 

cell was considered an individual subcatchment, computation times were long with a large 327 

number of redundant cells in areas with a homogenous land cover type. This is analogous to 328 

the 1x1 simulations here. In the proposed adaptive algorithm, more subcatchments are 329 

generated in areas where either land cover or flow routes are heterogeneous whereas in more 330 
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homogenous areas the subcatchments are allowed to have a larger size. The rudimentary grid 331 

cell aggregation procedure of Warsta et al. (2017) yielded shorter computation times, but 332 

changed the land cover and flow routing patterns in the catchment. This resulted in a moderate 333 

reduction of simulated peak flows and flow volumes. Here, the computation time was greatly 334 

reduced as adap simulations took on average only 10% of the corresponding 1x1 simulation 335 

time, while both adap and 1x1 produced good simulation results. The smaller computational 336 

burden associated with the proposed algorithm allows model construction for large urban 337 

catchments. 338 

Because no manually constructed SWMM models exist for the studied catchment, direct 339 

comparison of computation times to a corresponding manual model was not possible. However, 340 

a crude estimate of a roughly five-fold increase in computation time between a manual model 341 

and a corresponding adap model was approximated by comparing models from earlier studies. 342 

In the work of Niemi et al. (2019), the proposed algorithm was used to create SWMM models 343 

with adaptive subcatchments for three small urban catchments (5.87, 6.63, and 12.59 ha 344 

catchment areas) in Lahti, Finland. Earlier, Krebs et al. (2014) manually constructed high-345 

resolution SWMM models for the same catchments. The adap models in Lahti had, on average, 346 

14.7 times the number of subcatchments when compared to the corresponding manual models, 347 

and required, on average, 4.8 times as long to compute.  348 

The adaptive subcatchment discretization algorithm retains the high spatial resolution of the 349 

input DEM and land cover data where necessary, but creates larger subcatchments where such 350 

spatial detail is not crucial. This allows for an accurate spatial representation of land cover, 351 

deemed important by Cantone and Schmidt (2009) and Petrucci and Bonhomme (2014). 352 

However, it also relieves the computational burden that can become excessive with a uniformly 353 

high spatial resolution model. Given that input land cover data are in raster format, the 354 
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developed algorithm retains the land cover description from the input data. Otherwise, the 355 

accuracy of the land cover description depends on the rasterization of non-raster-format input 356 

data. 357 

When building stormwater models manually, surfaces are usually assumed to drain entirely 358 

into a single inlet node unless there is a compelling reason to resolve the routing in other way. 359 

Therefore, an entire impervious surface, such as a parking lot, may be routed into a single inlet 360 

although actual topography-driven flow paths would drain a part of the area to adjacent yards. 361 

In the method of Warsta et al. (2017), routing of pit cells depended on their location in either 362 

pervious or impervious areas. All water routed into pits residing in pervious areas was 363 

infiltrated whereas water routed into pits in impervious areas was routed directly to the nearest 364 

storm sewer node. As a result, some areas did not contribute to the catchment runoff as the 365 

water had been infiltrated into a pit along its flow path. On the other hand, contribution of other 366 

areas was unduly exaggerated as flow from them was routed directly to the stormwater 367 

network. The proposed new algorithm allows the water to follow topography-driven flow 368 

paths, and the use of a depressionless DEM ensures that water is routed through local pits. This 369 

refined routing, compared to Warsta et al. (2017), should offer better runoff predictions during 370 

major storms when pervious surfaces get saturated and start to convey runoff (Sillanpää and 371 

Koivusalo, 2014; Yao et al., 2016). 372 

Both adap and 1x1 models appropriately reproduced the observed runoff at the studied 373 

catchment. The slight underestimation of flow volumes by adap was expected, as the 374 

underestimation by SWMM in simulating hydrograph tails and low flows is commonly 375 

encountered (e.g., Guan et al., 2015, 2016). This behaviour was accentuated by calibration of 376 

adap focusing on high flows in lieu of low flows to more accurately simulate potential urban 377 

flood-producing events.  378 
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Because the model parameters in adap and 1x1 were identical, differences in simulated flow 379 

volumes and peak flows between the implementations are explained by those model 380 

characteristics that were different: flow width, subcatchment slope, and subcatchment area. As 381 

these variables appear in the Manning equation SWMM uses to express the surface runoff for 382 

each computation time step, the dynamics of runoff production are altered when the parameters 383 

change. More importantly, the volume of infiltrated water within a subcatchment depends on 384 

its size. As the volume of the infiltrated water is the product of the area and infiltration depth, 385 

a larger subcatchment can infiltrate more water than an equally parameterized but a smaller 386 

subcatchment. In adap, the average subcatchment size was larger than in 1x1 and the likelihood 387 

of runon being completely or mostly infiltrated was larger. It is noteworthy, that the 388 

dependence of infiltration volume on subcatchment size involves all SWMM models, 389 

regardless of their construction procedure. The matter concerns especially models that treat 390 

infiltration as a loss from the system without consideration of the storage capacity of the 391 

underlying ground.  392 

Adjusting only the infiltration parameters while taking other input parameters from Warsta et 393 

al. (2017) and Krebs et al. (2014) was sufficient to yield a well-performing model, with relative 394 

uncertainty variance reductions of 0.61, 0.99, and 0.96 for 𝜓𝑠, 𝐾𝑠, and 𝜃𝑑𝑚𝑎𝑥 respectively. 395 

These results are in line with earlier research suggesting that extensive calibration of a 396 

hydrological model may be unnecessary if representative parameter sets are available from 397 

similar catchments (Bárdossy, 2007; Gao et al., 2015; Kokkonen et al., 2003; Krebs et al., 398 

2016). The results also support the findings of Petrucci and Bonhomme (2014) stating that an 399 

uncalibrated SWMM model may perform comparably to a calibrated model as long as land 400 

cover is described accurately. The slightly less accurate discharge simulations from 1x1 than 401 

adap were because infiltration parameters were calibrated using adap and applied to 1x1 402 
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without further calibration. However, had 1x1 also been calibrated the differences between the 403 

models would likely be smaller.  404 

SWMM performance is often found to be sensitive to the subcatchment flow width parameter 405 

(Niazi et al., 2017). Here, the sensitivity to 𝐹𝑊 was assessed by evaluating the performance of 406 

adap in event c1 with calibrated infiltration parameter values while allowing coefficient 𝑘 in 407 

𝐹𝑊 (Eq. 1) to vary from 0.3 to 1.1 in steps of 0.2. The results showed adap to be rather 408 

insensitive to 𝐹𝑊 (𝑁𝑆𝐸 variation between 0.91 – 0.94, 𝑃𝐹𝐸 −1.36% – 1.43%, and 𝑉𝐸 −3.99% 409 

– −4.44%), justifying the decision to use Eq. (1) with 𝑘 = 0.7 to describe the flow width in this410 

study. However, due to the often encountered importance of proper flow width 411 

parameterization in SWMM modelling, and the possibility to calculate it explicitly in the 412 

proposed algorithm that traverses through raster cells, this should be considered as one of the 413 

first improvements to the presented algorithm.   414 

6. Conclusions415 

This study presented a new algorithm for automating SWMM model construction with a novel 416 

solution to delineate subcatchments based on shared land cover and outlet. The algorithm 417 

creates subcatchments adaptively by merging small subcatchments having homogeneous land 418 

cover and common outlet into larger areas while retaining small-scale details where land cover 419 

is heterogeneous. While pre-processing the input files for the proposed tool is convenient to 420 

perform in a GIS software, the proposed tool itself is platform-independent, open-source, and 421 

not tied to any specific GIS software. The tool facilitates urban hydrological assessments by 422 

substantially reducing the required manual workload.  423 

Based on the results obtained in this study, the following conclusions were drawn: 424 
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 The proposed algorithm facilitates rapid model construction even for large urban areas 425 

while retaining the high-resolution details where necessary. 426 

 SWMM simulation results obtained using the proposed algorithm matched well with 427 

catchment discharge observations.  428 

 Use of adaptive subcatchments resulted in a substantial reduction in the computational 429 

burden while yielding similar simulation results to a model having a uniformly high-430 

resolution subcatchment delineation. 431 

 Good model performance obtained with an existing parameter set from similar 432 

catchments conditions, adjusting only infiltration parameters, is encouraging regarding 433 

stormwater predictions in ungauged urban areas. 434 

 The main limitation of the proposed tool is the requirement for high-resolution and 435 

high-quality land cover and DEM data. 436 

7. Appendix A 437 

Table A1 presents the land cover parameter values used in adap and 1x1 adopted from Warsta 438 

et al. (2017) and Krebs et al. (2014) for similar urban catchments in Finland. The Green-Ampt 439 

infiltration parameters are based on model calibration. 440 

[TABLE A1] 441 
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Tables 603 

Table 1. Land cover fractions (%) in the Länsi-Pakila catchment. 604 

Land cover Fraction (%) 

Vegetation 53.50 

Asphalt 27.51 

Connected roofs 7.87 

Disconnected roofs 5.66 

Sand and gravel 5.17 

Water 0.23 

Rock outcrops 0.06 

605 

Table 2. Summary statistics of the studied rainfall-runoff events. Events c1-c3 were calibration 606 

and v1-v3 validation events. 607 

Event 

code 

Date Event 

duration 

(h) 

Rainfall 

depth 

(mm) 

Peak rain 

intensity 

(mm/min) 

Flow 

volume 

(m3) 

Peak flow 

(l/s) 

c1 6 Jun 2017 20 30.0 0.6 4 321 540 

c2 2 Aug 2017 9 17.6 0.4 2 567 368 

c3 9 Sep 2017 13 19.8 0.4 2 882 364 

v1 12 Jun 2017 19 23.2 0.2 3 263 309 

v2 4 Aug 2017 13 31.4 1.0 5 368 509 

v3 12 Sep 2017 7 23.6 1.0 4 035 615 

608 

Table 3. Subcatchment statistics in adap (82 554 subcatchments) and 1x1 (848 258 609 

subcatchments) SWMM models. 610 

Statistic adap 1x1 

min mean max min mean max 

Area (m2) 1.0 10.3 9 322.0 1.0 1.0 1.0 

Elevation (m.a.s.l.) 19.1 27.5 45.8 13.4 27.7 45.8 

Flow width (m) 0.7 1.4 67.6 0.7 0.9 1.0 

Slope (%) 0.2 5.5 417.7 0.1 5.5 464.0 

611 
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Table 4. Performance statistics of the adap and the 1x1 model simulation results against 612 

observations (obs) and of the adap against the 1x1 model simulation results for the calibration 613 

(c1-c3) and the validation (v1-v3) events. 614 

Event 
adap vs. obs 1x1 vs. obs adap vs. 1x1 

𝑁𝑆𝐸(-) 𝑉𝐸 (%) 𝑃𝐹𝐸 (%) 𝑁𝑆𝐸 (-) 𝑉𝐸 (%) 𝑃𝐹𝐸 (%) 𝑟 (-) 𝑉𝐷 (%) 𝑃𝐹𝐷 (%) 

c1 0.92 −4.1 0.7 0.74 22.9 21.9 0.97 −22.0 −17.4

c2 0.97 −9.4 −2.2 0.94 9.8 7.8 0.99 −17.5 −9.3

c3 0.96 −7.7 −11.3 0.97 8.8 −3.4 0.99 −15.2 −8.1

v1 0.80 −9.6 −5.2 0.70 5.1 −0.1 0.99 −14.0 −5.1

v2 0.92 −16.3 −3.5 0.89 6.2 0.9 0.97 −21.2 −4.3

v3 0.91 −13.3 19.3 0.84 16.4 21.3 0.95 −25.5 −1.6

615 

616 
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Table 5. Mass balance statistics of the adap and the 1x1 model simulation results for the 617 

calibration (c1-c3) and the validation (v1-v3) events. 618 
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Note: 𝑃 = precipitation; 𝐸 = evaporation; 𝐼 = infiltration; 𝑅 = surface runoff; 𝑆 = final storage; 𝐶𝐸 = continuity error. 619 
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Table A1. SWMM parameter values for six surface classes and three stormwater network 620 

classes in adap and 1x1 models. Adopted from Warsta et al. (2017) and Krebs et al. (2014). 621 

Surface type 𝐼 (%) 𝐷 (mm) 𝑛 (-) 𝐾𝑠 (mm/h)a 𝜓𝑠 (mm)a 𝜃𝑑𝑚𝑎𝑥 (-)a

Asphalt 100 0.42 0.011 24.965 55.832 0.350 

Rock outcrop 100 2.49 0.030 24.965 55.832 0.350 

Roof 100 0.87 0.012 24.965 55.832 0.350 

Sand, gravel 33 2.49 0.030 24.965 55.832 0.350 

Vegetation 0 4.22 0.238 24.965 55.832 0.350 

Water 100 0.10 0.011 24.965 55.832 0.350 

Concrete pipe - - 0.015 - - - 

PVC pipe - - 0.011 - - - 

Open channel - - 0.049 - - - 
Note: 𝐼 = imperviousness; 𝐷 = depression storage; 𝑛 = Manning’s roughness; 𝐾𝑠 = saturated hydraulic conductivity; 𝜓𝑠 =622 

suction head; 𝜃𝑑𝑚𝑎𝑥 = maximum moisture deficit; a calibrated parameter.623 

624 
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Fig. 1. Land cover and layout of the stormwater network in the Länsi-Pakila catchment. Surface 

runoff is routed to open storm sewer nodes, representing storm drain inlets and channel inlets, 

whereas runoff from connected roofs is routed both into open and closed storm sewer nodes, 

the latter representing manholes and pipe connections. 

Fig. 2. SWMM computation times (min) for the calibration and validation events using 1x1 

and adap models (Desktop PC, Intel Xeon 3.20 GHz CPU, Ubuntu Linux 16.04 LTS).  

Fig. 3. Comparison of subcatchments and routing between (a) 1x1 and (b) adap models for the 

Länsi-Pakila catchment. The arrows depicting subcatchment routing are drawn between the 

subcatchment mass centers.  

Fig. 4. Observed (5 min moving average) and adap and 1x1 simulated discharges for the 

calibration events (a) c1, (b) c2, and (c) c3 and for the validation events (d) v1, (e) v2, and (f) 

v3. 
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