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ARTICLE

Reconstructing meaning from bits of information
Sasa L. Kivisaari 1,2, Marijn van Vliet1,2, Annika Hultén1,2, Tiina Lindh-Knuutila1, Ali Faisal1 & Riitta Salmelin1,2

Modern theories of semantics posit that the meaning of words can be decomposed into a

unique combination of semantic features (e.g., “dog” would include “barks”). Here, we

demonstrate using functional MRI (fMRI) that the brain combines bits of information into

meaningful object representations. Participants receive clues of individual objects in form of

three isolated semantic features, given as verbal descriptions. We use machine-learning-

based neural decoding to learn a mapping between individual semantic features and BOLD

activation patterns. The recorded brain patterns are best decoded using a combination of not

only the three semantic features that were in fact presented as clues, but a far richer set of

semantic features typically linked to the target object. We conclude that our experimental

protocol allowed us to demonstrate that fragmented information is combined into a complete

semantic representation of an object and to identify brain regions associated with object

meaning.
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The brain binds available information about objects with
prior knowledge, thus allowing us to make sense of the
world around us. The ability to use available information

about an object (e.g. the observation of something that has legs, is
gray and has a trunk) to activate relevant existing knowledge in
the semantic system (e.g. is endangered, has white tusks) can be
characterized as a process of pattern completion where few ele-
ments serve to activate a number of relevant elements in the same
representation1–3. While one can easily demonstrate the existence
of such a process behaviorally, as in the example above, neuroi-
maging evidence of pattern completion of semantic information
is critically lacking. As such, we also do not understand the
neuroanatomical bases of this process. Thus, in this study, we ask
whether we can demonstrate that semantic pattern completion
occurs in the human brain and identify the brain regions which
support the representations of object meaning.

Many neurocognitive accounts on the semantic system propose
that the meaning of objects can be formalized using smaller
components called features4–7. The features which make an object
are putatively coded in a distributed fashion, primarily in the same
regions that are involved in processing and perceiving them6,8–10.
According to this view, a neural representation of the underlying
object would be defined as a specific and relatively stable pattern
of activation across the relevant feature nodes5,7,11. Computational
models further postulate that the activation of a sufficient number
of semantic features may lead to activation of the whole semantic
representation via a pattern-completion-like process8,9,11.

Here, we define pattern completion as a partial clue leading
into the retrieval of a previously learned memory trace2,12–14.
Previous research in this field has primarily centered around the
recall of episodic memories and the role of the hippocampus in
this process2,12–14. Several studies have also provided neuroima-
ging (functional MRI (fMRI)) evidence on the role of the hip-
pocampus in binding partial cues with the context in which they
were learned15–19. Pattern completion has been demonstrated for
example in the visual domain20, and it has been suggested that
pattern completion takes place also for other types of informa-
tion, including semantic memories1. However, there is little we
know about the neural underpinnings of pattern completion of
semantic memories.

We assess pattern completion of semantic information in the
human brain, by making use of a multi-dimensional semantic
space. Each dimension in the semantic space corresponds to a
single semantic feature. The meaning of an object is defined as a
position in this space (a semantic coordinate), which in turn is
determined by the weighted combination of the dimensions. The
distance (e.g. cosine) between two concepts quantifies their
semantic similarity. Semantic spaces can be obtained, e.g. by
using statistical co-occurrence information collected from large
text corpora21–24 or using behavioral methods to estimate simi-
larity of descriptive content between items25–27 (see also ref. 28).
Such semantic spaces have been used as priors in machine-
learning-based neural decoding models that have successfully
associated various semantic feature sets (i.e. sets of dimensions
that span the semantic space) with neural signatures and, by
combining them together, predicted neural activation patterns for
novel objects28–34. This demonstrates that the feature-based
model of the semantic system is useful in describing the neural
representation of meaningful stimuli.

The visual object processing system may provide insights into
the neuroanatomical underpinnings of the semantic pattern
completion process. Visual pattern completion has been sug-
gested to take place in the ventral stream via recurrent connec-
tions20; see also ref. 35. Particularly, the perirhinal cortex (PRC),
which is located in the anterior apex of this hierarchical system,
has been deemed relevant in fine-grained visual analysis of

objects36,37 and binding information across sensory
modalities38,39, including information about object meaning40.
This region has been suggested to be sensitive to object-specific
semantic information41–43. Therefore, we hypothesize that the
ventral stream system, and the PRC in particular, may be
involved in the pattern completion process where fragmental
semantic information is completed to form a coherent object.

We probe target objects with a small set of verbal semantic
features and thereby putatively facilitate activation in a rich
network of other semantic features that are related to the target
object. Specifically, we mimic a guessing game where the parti-
cipant is presented with a sequence of three clues (henceforth, a
“clue triplet”; e.g., “has legs”, “has a thick skin”, “has a trunk”)
and asked to guess the object that the clues describe (i.e., “an
elephant”). We take advantage of functional magnetic resonance
imaging (fMRI) and evaluate whether the blood-oxygen-level
dependent (BOLD) response is best predicted by the semantic
coordinates of the explicitly presented clues or a larger set of
features, extending to those that were never presented to the
participant (e.g., “is endangered”, “is heavy”, “does trumpet”). We
hypothesize that the brain automatically ties together the pre-
sented clues with other features linked to the target object. If so,
the best decoding performance would be achieved by using an
even larger set of features that are associated with the target
object, as compared to the exact selection of features that were
presented to the participants.

The semantic space in this study is built from a large Internet-
derived Finnish text corpus22 using the word2vec algorithm23,44.
In order to predict the brain activity to a given object/feature, we
use a linear-regression decoding approach which, for each target
object or semantic feature, maps its coordinates in a multi-
dimensional semantic space to a corresponding BOLD activation
pattern33,45. A leave-two-out scheme is used to assess the per-
formance of this mapping. We further employ representational
similarity analysis46 (RSA) to visualize the brain regions which
are involved in representing the implied target objects.

We successfully decode object representations from BOLD
activity patterns without explicitly showing the target objects. The
resulting representations are best decoded by using a rich set of
object features, including features that were not presented as clues.
These findings demonstrate that the brain uses clues from the
environment to build coherent representations of object meaning.

Results
BOLD activation patterns reliably predict target objects. The
stimuli in this study consisted of 60 target objects that fell into
four semantic categories (animals, fruits/vegetables, tools, vehi-
cles, see also Supplementary Figure 1). The targets were never
presented directly in the fMRI task but, instead, the neural
representations of each target object were probed using six dif-
ferent sets of clue triplets. Over all trials, the participants guessed
the implied identities of the target objects at a high accuracy
(mean= 93.3%, SD= 3.1%, min= 87.3%, max= 98.0%; see also
Supplementary Table 1).

In the first analysis, we tested whether we can use the corpus-
derived semantic coordinates of the target objects to decode the
BOLD activation patterns elicited using clues. In order to optimize
the decoding accuracy, we averaged the BOLD activation maps
of the six trials for each target object. Furthermore, we restricted
the analyses to a subset of voxels (n= 500) that showed a
consistent activation pattern across the six trials (i.e., stability
selection; cf. 32,33). The measurement and analysis protocol for the
machine learning analyses is detailed in Fig. 1.

The overall level of classification accuracy using the semantic
coordinates of the unpresented target objects was high, ranging
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from 76.1% to 93.3% correct classifications across subjects (mean
= 87.2%, SD= 4.9; Fig. 2, see also Supplementary Table 1). The
null-distribution for chance level performance was determined
through a permutation test in which the relationship of each
feature vector and its target was randomized in the training set.
This process was iterated 1000 times, each time using a randomly
selected participant’s brain activation data. Based on the resulting
distribution, decoding accuracies > 61.5% were deemed signifi-
cantly better than chance (p < 0.05); this threshold was exceeded
by a comfortable margin for all subjects.

Decoding across semantic category (e.g., elephant vs. car) was
expectedly more accurate (mean= 94.2%, SD= 5.0%, min=
81.1%, max= 99.3%; permutation test: p < 0.05) than decoding
within a semantic category (e.g., elephant vs. giraffe; mean=
64.5%, SD= 7.1%, min= 49.8%, max= 74.0%; permutation test:
p < 0.05). Decoding accuracies across semantic category were
significant (permutation test: p < 0.05) in all participants, whereas
decoding accuracies within a semantic category were significant
in 12 out of 17 participants (see also Supplementary Figure 2 for a
confusion matrix).

The aforementioned analysis yielded a bi-directional mapping
between BOLD activation patterns and the corpus-derived
semantic space. This mapping can be used to predict BOLD
activation patterns to any number of novel objects in the text
corpus based on their semantic space coordinates. In the
Supplementary online material (https://aaltoimaginglanguage.
github.io/guess/), the recorded BOLD activation patterns for
each target object are visualized along with their semantic space
coordinates. Furthermore, we included additional targets to
demonstrate how the mapping can be used to predict the BOLD
activation patterns for novel targets.

Best decoding is achieved using a rich set of item features. We
next examined whether we can demonstrate pattern completion

in the BOLD activity patterns. Specifically, we tested whether the
neural representations elicited by the clues are better defined
through semantic coordinates obtained as a summation of all
available features linked to a given target object, as compared to
only using the exact clues presented to the participants. For this,
we used a single-trial model where no averaging was performed
across the six repetitions of the same target concept and all voxels
in the grey matter were used (i.e. no stability selection). We
determined the null-distribution of chance level performance for
the single-trial analyses in the same way as for the analyses on
averaged data. Based on the resulting distribution, decoding
accuracies > 53.6% were deemed significantly better than chance
(p < 0.05).

The brain activation patterns for each trial were predicted
using semantic coordinates obtained via different models: (1) the
last clue of each triplet (“Clue 3”), (2) sum of the three clues of
the triplet (“Clue 1+ 2+ 3”), (3) the target object and (4) sum of
the full list of semantic features typically associated with the target
object (“All available features”). The best approximation for the
multitude of semantic features associated with each target object
was obtained by using a list of behaviorally produced object
features from the Centre for Speech Language and the Brain
dataset (henceforth, the CSLB features25). In addition, we
generated two models which excluded those clues that were
explicitly provided to probe the target concept. In one variant (5),
we mixed the clue sets across blocks such that the semantic
coordinates of a given trial were constructed using the clue
features of another trial with the same target object (“Mixed
clues”). This way, the clues used to predict the brain activation
patterns are not the same as those actually presented to the
participant (e.g. for a trial where we would probe elephant using
clues “has legs”, “is thick-skinned” and “has a long trunk”, we
would decode the brain activation patterns using features “gray”,
“herd”, “tusk”, i.e. clues from another block). In the last model
(6), we included all features from the CSLB norm data that were
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not presented as clues (“All nonclues”; akin to the “All available
features” model above, but excluding the nine clue features used
in the guessing game task). For all these models, we established a
semantic coordinate using the word2vec model and applied the
same procedure as for the target words (Fig. 2).

The best performing model was the “All available features”
model, i.e. the one where the resulting semantic coordinates
incorporated the combination of all CSLB features of a target
object (see also Supplementary Figure 3 for a confusion matrix).
This model contains numerous features for a given object: both
those included in any one of the trials, as well as those never
presented to the participant during the course of the entire
experiment. For this model, decoding across semantic category
was significant in all 17 participants (mean= 77.2%, SD= 6.3%,
min= 64.4%, max= 87.3%). Decoding within semantic cate-
gories was significant in 16 out of 17 participants (mean= 58.1%,
SD= 3.0%, min= 52.6%, max= 63.9%). Within an individual
semantic category, the highest decoding accuracy was achieved
for tools (mean= 61.7%, SD= 6.0%, min= 49.8%, max= 72.5%;
significant decoding accuracy in 16/17 participants), followed by
vehicles (mean= 60.8%, SD= 5.1%, min= 51.4%, max= 72.4%;
significant decoding accuracy in 15/17), animals (mean= 56.2%,
SD= 3.4%, min= 50.7%, max= 65.7%; significant decoding
accuracy in 14/17 participants) and fruits and vegetables (mean=
53.7%, SD= 4.3%, min= 46.2%, max= 61.7%; significant
decoding accuracy in 9/17 participants). These results suggest

that the semantic coordinates were sufficiently detailed to
distinguish items within the same semantic category.

In the next step, we attempted to directly test whether the task
elicited features that were not explicitly presented (i.e. whether
pattern completion took place). We focused on the two models
that included other features of the target objects than the ones
that were explicitly provided in a specific trial (Fig. 2; i.e., Mixed
clues (model 5) and “All nonclue features" (model 6)). In the
“Mixed clues model”, there was no overlap between the clue
features presented to the participant and those used to create the
word2vec semantic coordinates. Using this model, the overall
decoding accuracy was significant for all but one participant (see
Fig. 2). When the model combined all available features from the
CSLB dataset excluding the nine clues used in the task, a
significant decoding accuracy was obtained for all 17 participants
(see Fig. 2). These results indicate that we can reach a significant
decoding accuracy even when the explicitly presented clues are
excluded from the model.

The “All available features” model achieved the highest
decoding accuracy out of the six models tested. The next best
model was the All nonclues model (All available features vs. “All
nonclue features”, two-sided t-test: t(16)=−9.0, p < 0.001)
followed by the Target word model, on par with the Clue 1+ 2
+ 3 model (“All nonclue features“ vs. Target word, two-sided t-
test: t(16)=−3.6, p= 0.1; Target word vs. Clue 1+ 2+ 3, two-
sided t-test: t(16)= 1.0, p= 1.0). The next best model was the
Mixed clues model (Mixed clues vs. Clue 1+ 2+ 3, two-sided t-
test: t(16)=−4.5, p= 0.002). The model using only the last clue
of each triplet performed at the lowest level of all (Mixed clues vs.
Clue 3, two-sided t-test: t(16)=−4.2, p= 0.003). The summary
measures and distributions of the decoding results of all models
are presented in Fig. 2.

Item identity can be decoded using PRC activity. We conducted
an additional region-of-interest (ROI) decoding analysis where
we restricted the analysis to the bilateral PRC, given our a priori
hypothesis regarding the importance of the PRC in combining the
features together into object representations. For this ROI ana-
lysis, we averaged the BOLD signal in the bilateral PRC across the
six repetitions of the same target object and used the semantic
coordinates constructed from all available features. This analysis
resulted in a statistically significant decoding accuracy in 15 out
of 17 participants (mean accuracy= 69.1%, SD= 6.0%, min=
59.5%, max= 79.7%). This result indicates that the meaning of
the target objects can be decoded based on the BOLD signal in the
PRC alone. The result further supports the hypothesis that the
PRC is involved in decoding object meanings that are recon-
structed from a limited set of clues.

RSA shows regions where BOLD reflects semantic similarity.
We used a single-trial searchlight RSA to determine the brain-
wide set of regions where BOLD activation patterns reflected the
semantic similarities of the implied target objects. Here, sepa-
rately for each searchlight sphere, a representational dissimilarity
matrix (RDM) was computed based on the BOLD activation
patterns46. This RDM reflected the distance (1–Pearson’s corre-
lation) between activation patterns for each pair of trials. We
tested for significant correlations between these activation-pattern
RDMs and a model RDM which was based on the All available
features model, i.e. the best performing model from the zero-shot
decoding analysis. Here, the semantic coordinate of each trial was
calculated as the sum of semantic coordinates of All available
features of the implied target object. The model RDM was
computed using the cosine distances between these semantic
coordinates.
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Fig. 2 Decoding performance using different models. For each model, the
raw data points are indicated as a jittered scatter plot on the left side of the
summary boxplot and in the same color. Here, each dot represents the
decoding accuracy across all pairwise-classifications (n= 64,620) for one
participant using a given model. Central tendencies for each model are
illustrated as a boxplot (the band indicates the median, the box indicates
the first and third quartiles and the whiskers indicate ± 1.5 × interquartile
range). The black triangle within each box indicates the mean decoding
accuracy across participants. The level of significant decoding performance
(p < 0.05, based on a permutation test) is marked as a dashed line. The
significance of the pairwise two-sided t-tests (Bonferroni-corrected for the
number of pairwise comparisons performed) between the mean accuracy
scores of the different models is indicated on top (*p < 0.05, **p < 0.01,
***p < 0.001, ns= nonsignificant)
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The RSA resulted in 12 significant clusters (family-wise error
corrected (FWE) p < 0.05 based on a permutation test; Fig. 3).
The clusters comprised bilateral ventral-stream regions (inferior
temporal gyrus and parahippocampal gyrus) including the
bilateral PRCs (Table 1, see e.g. refs. 47,48). Other clusters were
centered in the bilateral middle occipital cortices, left inferior
frontal gyrus (two peaks), left supramarginal gyrus, right superior
frontal gyrus and left insula. The locations of all peak voxels are
reported in Table 1. Analyses on the alternative models used in
the decoding analyses (i.e. Clue 3, Clue 1+ 2+ 3, Target, Mixed
clues, All nonclues) resulted in largely similar anatomical
patterns. These results are provided in the associated online
material (https://aaltoimaginglanguage.github.io/guess/).

Discussion
Humans are able to recognize objects and understand their rich
meanings even when only limited information about them is
available. In this study, we simulated such a situation by pre-
senting the participants with brief verbal descriptions of 60
objects and asking them to guess the identity of each of them. We
showed that it was possible to decode the implied target object
with high accuracy without ever showing the object explicitly,
suggesting that the clues triggered a coherent representation of
the target object. The single-trial results further demonstrated
that the brain activation patterns elicited by the guessing game
paradigm indeed contained more information about each target

object than what was initially given as input in the experiment.
This suggests that the entire neural representation of an object
became activated based on partial stimulation in the form of only
few features. This finding provides neuroimaging evidence on
semantic pattern completion whereby limited information in the
environment is used to reconstruct coherent object
representations.

Distributed accounts of semantic representations postulate that
neural representations of objects can be modeled as unique and
consistent distributions of activity across a set of perceptual and
semantic feature nodes (see e.g. refs. 5,6,49). This model has been
successful in describing, not only the healthy semantic
system11,26, but also patterns of semantic impairments associated
with brain damage9,42,50. Importantly, such a feature-based dis-
tributed system also gives an account on how information is
reconstructed from incomplete patterns of information. Specifi-
cally, the activation in a subset of feature nodes is postulated to
propagate in the network based on connection weights which, in
turn, are based on experience on co-occurence8,11,51.

We found evidence of semantic pattern completion by com-
bining neuroimaging and machine learning with corpus-derived
coordinates of objects and their features in a shared semantic
space. Using single trials, we found the best mapping using
semantic coordinates created by summing many features for each
given object, including features never presented to the participant.
This model performed significantly better than the model using
the semantic coordinates for the target object alone or that using
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Fig. 3 Single-trial RSA searchlight results. Brain regions whose activation patterns correlated with the semantic similarity among the target objects when
each object was represented by a combination of its full semantic feature set. Pseudo-t values for each voxel are projected onto the surface of a template
brain. The vertices where the pseudo-t value was not statistically significant are semi-transparent (significance level set by a permutation test at FWE-
corrected level of p < 0.05, pseudo-t > 4.82). The uncorrected t-maps rendered on 3D volumes are provided online (https://aaltoimaginglanguage.github.
io/guess/)

Table 1 Peaks of the significant single-trial RSA searchlight clusters

Anatomical location Pseudo-t Cluster extent Voxel-level p(FWE) x y z

Left middle occipital 8.1 591 <0.001 −41 −78 21
Left inferior frontal 8.0 111 <0.001 −28 35 −13
Left inferior temporal 7.9 465 <0.001 −41 −40 −16
Left supramarginal 6.8 76 <0.001 −59 −28 31
Right parahippocampal 6.5 139 0.002 31 −34 −10
Left inferior frontal 6.3 58 0.002 −50 32 18
Left insula 6.3 64 0.002 −34 −6 9
Right middle occipital 6.1 118 0.003 47 −68 27
Left inferior parietal 6.0 44 0.004 −41 −40 43
Left PRCa 5.7 33 0.006 −28 −6 −31
Right superior frontal 5.7 36 0.006 22 32 −16
Right PRCa 4.9 1 0.046 34 −9 −31

The results are based on a permutation test (10,000 iterations) and family-wise-error (FWE) – corrected p < 0.05. Anatomical location is based on the AAL atlas62 unless indicated otherwise
aBased on anatomical localization of the PRC in refs. 47,48,70
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the sum of the clues presented to the participant in a given trial.
This finding therefore provides neuroimaging markers of pattern
completion, that is, that activation in a subset of object features
leads to activation in a network of features associated with a given
object entity8,9,11,51.

Further evidence for semantic pattern completion was offered
by models incorporating features that had not been presented to
the participant. We were able to decode brain activation patterns
using non-overlapping clues from other trials (above chance-level
decoding for 16 out of 17 participants). Moreover, a high level of
decoding accuracy could also be achieved by using a rich set of
target features (akin to the All available features model) while
excluding those nine features that were used as clues in the
experiment. Indeed, this analysis performed significantly above
chance level for all participants and better than the other models,
surpassed only by the model that incorporated All available fea-
tures including the nine features used as clues in the experiment.
This means that the guessing game task activated features that
were incidental to the task, i.e. those that were not given as input
in the experiment. We suggest this finding provides further
support for the notion of pattern completion in the current study.

Interestingly, the decoding accuracy was higher for the All
available features model, combining word2vec vectors over a rich
set of features, than the model using the word2vec vector for the
target word only. We speculate that the All available features
model performs better than the Target model as it combines
several target-appropriate features together, and therefore creates
a vector representation which explicitly contains information
about the relevant features of the concept. This may be a richer
representation than that inferred from simple co-occurrence
counts of isolated target words or individual clues in the corpus.

A combination of the present RSA results and previous
research on visual processing may provide insights into the neural
basis of semantic pattern completion of objects. Studies on visual
object recognition suggest that pattern completion in the visual
domain occurs in the ventral stream via recurrent connections20

(see also ref. 35). The importance of the ventral stream in pro-
cessing also the meaning of visual objects has been demonstrated
by Clarke and Tyler41. In that study, the authors presented par-
ticipants with a large set of naturalistic color photographs and
showed that regions in the lateral occipital cortex and ventral
stream were sensitive to the semantic similarity of the presented
visual objects. The anatomical pattern of the RSA results in the
ventral stream in our study bears remarkable similarity to those of
Clarke and Tyler41 despite the fact that we never showed images
or pictorial stimuli to our participants. It is possible that reading
descriptions about objects, such as in the guessing game task,
recruits embodied visual representations of objects and, thus,
recruit the ventral stream system (see also ref. 52). Our results
suggest that this system may also play a role in pattern comple-
tion of meaningful object representations.

The significant link between brain activation patterns and the
similarity of semantic features of the objects was observed at a
high level of ventral stream hierarchy. A ROI analysis also
demonstrated that we could decode the identities of objects based
on the BOLD response from PRC alone (significant decoding
accuracy: 15/17 participants). Similarly, in the RSA analysis, the
clusters showing sensitivity to the semantic similarity of the target
objects included the bilateral PRC, located at the apex of this
system. Importantly, this region has been highlighted in item-
specific processing of object meaning in a visual object naming
task41 and a property-verification task with pictures and words52.
Our findings extend these results in showing that this region is
involved in item-level processing of objects even in the absence of
pictorial stimuli. Moreover, the findings corroborate those by
Taylor and colleagues38,39 who showed that the PRC is involved

in binding features from multiple modalities. Importantly, the
current study demonstrates that these features need not be visual
or auditory but they may also come in the form of more abstract
semantic properties. Therefore, this study strongly supports the
claim that this region is involved in processing object meaning.

We found a set of other regions that were associated with the
semantic similarity of the target objects in addition to those in the
ventral stream. These regions include the temporo-parietal
junction and inferior frontal cortex, whose involvement may
reflect the verbal nature of the task and conceptual and lexical
preparation for the verbal response53. Other regions include the
bilateral retrosplenial cortex, which in previous research has been
associated with visual imagery and memory, and whose invol-
vement can partly be explained by specific strategies employed in
the task (for a review, see ref. 54). Importantly, the network of
areas revealed by this analysis are also likely to be a reflection of
the distributed nature of the semantic representations themselves.
Indeed, Huth and colleagues30,31 showed that semantic infor-
mation in the brain is organized systematically as smooth gra-
dients reflecting semantic similarity in wide-spread and
distributed regions of the brain. Therefore, we postulate that the
regions highlighted by the RSA searchlight analysis are relevant in
representing concrete objects such as those targeted in the current
experiment.

We note that the RSAs yielded largely overlapping anatomical
patterns for all models tested in this study (i.e. Clue 3, Mixed
clues, Clue 1+ 2+ 3, Target word, All nonclues, All available
features; see https://aaltoimaginglanguage.github.io/guess/). Thus,
despite the fact that we found significant differences in decoding
accuracy in the zero-shot decoding analysis, all six models had
similar anatomical patterns of correlation with BOLD activity
which differed primarily in extent. Indeed, we would like to
emphasize the fact that each one of the six models contained
relatively high-level conceptual information about objects (i.e. as
compared to e.g. low-level perceptual features). We propose that
this explains the overlapping patterns of activity in regions
associated with semantic object processing.

The selection of a statistical threshold is to some extent arbi-
trary. As illustrated in Fig. 3, there were multiple regions where
correlations failed to reach the selected statistical threshold, but
which may nonetheless be functionally linked with item-level
semantic processing of objects. The full range of effects can be
seen in the uncorrected statistical images which we have made
available https://aaltoimaginglanguage.github.io/guess/). These
data demonstrate that effects which may seem discrete with the
chosen threshold in fact reflect a continuum of effects over a
larger region.

We postulate that the neural basis of semantic pattern com-
pletion may differ from that of episodic memories, which has
been attributed to the hippocampus1–3,15–17,19,55,56. Specifically,
we suggest that the pattern completion of semantic information
about objects partly takes place in the ventral stream and the
PRC. We suggest that semantic pattern completion may require
the disambiguation of feature combinations (i.e. the clues in the
present task) and, therefore, rely on the complex representations
of feature conjunctions provided by the PRC37,57. Thus, pattern
completion of semantic object memories may take place in the
same system that is involved in processing and perceiving objects.
It should be noted that similar effects have been demonstrated for
mental imagery (see e.g. ref. 58) and in the current framework we
cannot dissociate the process of pattern completion from the end
result of mental imagery (i.e. the target concept). Therefore,
further research is required to provide a mechanistic account of
the process of semantic pattern completion in the brain.

Pattern completion of semantic information is a frequent
phenomenon in our everyday life. The brain automatically and
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effortlessly takes advantage of clues in our environment with
prior knowledge about the meaning of objects we encounter.
Otherwise, we would not be able to make sense of the world
around us. The present study aimed to find empirical neuroi-
maging evidence for this process. Indeed, the present results
demonstrate that we can use clues to elicit a representation that
contains more information about the object’s meaning than what
was provided as input. We do this by showing that (1) the highest
decoding accuracy was achieved by combining the rich set of
features associated with each object and that (2) we could decode
features incidental to the task, i.e. features that were not pre-
sented. We suggest that these results reflect the spread of acti-
vation in the neural networks as suggested by computational
accounts on semantics1–3,56. It should be noted, however, that
although we deduce that this is most likely the case, we cannot
directly observe the pattern completion process with the current
design owing to the sluggish haemodynamic response. Future
studies are needed to demonstrate the actual process of semantic
pattern completion in the brain. We believe that the present
methodology (guessing game, word2vec and zero-shot decoding)
combined with more time-sensitive brain imaging techniques will
be a very fruitful approach in understanding the neural dynamics
of that process.

Using stability selection and data averaged across all six trials
of the same target object resulted in a high decoding accuracy that
was comparable to those in studies which have used colored
photographs as stimuli33. In the past, semantic category-level
decoding performance has, at least partly, been attributed to a
robust response to low-level visual features59. However, the pre-
sent results demonstrate that these visual attributes are not
necessarily needed in order to achieve high-level decoding accu-
racy. Moreover, we suggest that the guessing game paradigm used
in this study is highly engaging from the participant’s point of
view, leading to elaborate processing of the target stimuli.
Therefore, we suggest that it is particularly well-suited for
experimentally accessing semantic representations.

The present neuroimaging study used a novel experimental
design to demonstrate that the brain completes patterns of frag-
mented information into meaningful, coherent semantic repre-
sentations. This design, coupled with our machine learning
models, allowed us to show, for the first time using neuroimaging,
that the brain takes advantage of very limited information and
enriches it with prior knowledge of object meaning. The present
results give strong support for the distributed, feature-based
models of semantics in the brain and suggest that rich repre-
sentations of object meanings are partly supported by the ventral
stream and the PRC.

Methods
Participants. Eighteen native Finnish-speaking, right-handed individuals with no
history of developmental or acquired language or other neurological disorders
participated in the study. The participants were recruited through student mailing
lists in the Aalto University. One participant chose not to finish all measurement
runs and was therefore excluded from data analysis. Thus, the sample consisted of
17 individuals (mean age= 20.9 years; SD= 3.3 years, min= 18 years, max= 31
years; mean education= 12.4 years, SD= 1.5 years, min= 12 years, max= 18
years; 10 identified themselves as females, and seven as males). All of the partici-
pants gave a written informed consent before participating in this study. The study
was approved by the Aalto University Research Ethics Committee.

Stimuli. The stimuli consisted of 540 brief verbal descriptions of 60 target objects
in Finnish (9–29 characters including spaces, mean= 17.5, SD= 3.6). Fifty-eight
target objects were selected from the CSLB property data set25). We additionally
included two target objects that were not part of the CSLB data [forklift (Finnish:
‘trukki’), and metro (subway) (Finnish: ‘metro’)]. One fourth (n= 15) of the target
objects fell into each of the following semantic categories: animal, fruit/vegetable,
tool and vehicle. We created nine clues (i.e., descriptions) per each target object by
translating and adapting semantic features from the CSLB data. For the two objects
not included in the CSLB data set, we selected six features from that set that applied

to the target object and additionally created three new highly distinctive features.
We also created 29 new clues (5.3% of clues in total) in cases where sufficiently
many suitable clues were not available in the CSLB data set. The first, second and
third clues were matched on length across the four semantic categories (pairwise t-
test: p > 0.59 for all).

The nine clues assigned to each target object were further divided into three clue
triplets. When feasible, the presentation order of the clues within a triplet was
sorted such that the first clue in each triplet was the least distinctive (e.g., ‘has four
legs’), and the following two clues increasingly distinctive (e.g., ‘is found in the
savannah’ > ‘has a trunk’) based on the CSLB feature norm data25. The purpose of
this approach was to ensure that the participants would guess the target object
approximately at the same stage (i.e., at the third clue).

Each individual clue was repeated at least twice in the fMRI experiment, once in
Set 1 and once in Set 2, with the two sets presented on different days. The clue
combinations were rearranged such that each clue’s position in a triplet was
retained, i.e., the first clue of the triplet in Set 1 was always the first clue of a triplet
in Set 2, but the other clues it was grouped with were not identical in both sets. This
procedure resulted in six unique clue triplets for each target object which were
presented in six separate blocks. The order of sets (across measurement days) and
blocks (within a set) was balanced across subjects. The full list of clues (Set 1) can
be found in https://aaltoimaginglanguage.github.io/guess/.

Procedure. The fMRI experiment was conducted on 2 days, with three measure-
ment sessions (i.e., blocks) on each day. We divided the data acquisition into two
separate days to ensure that the participants would be able to sustain attention
throughout the experiment. The two measurement days were on average 10 days
apart (mean= 9.9, SD= 7.9, min= 6 days, max= 35 days) with each fMRI
measurement lasting ca. 45 min in total. Each trial started with a fixation cross (‘+’,
duration: 300 ms) after which the clues were presented one after another. The clue
duration was 1000 ms and the first two clues were followed by a blank screen for
200 ms. The third clue was followed by a jittered interval (mean= 8.0 s, min=
4.0 s, max= 11.8 s), after which a string of hash characters ‘#################’
was presented for 1000 ms, prompting the participant to overtly name the target
object (Fig. 4). The interval between the final clue and the naming prompt was
relatively long as we attempted to minimize the overlap between the peaks of the
BOLD signals. The naming condition was followed by a jittered interval (mean=
4.0 s, min= 2.3 s, max= 6.2 s) after which the next trial started. The jittering was
generated using efMRI version 9 (Chris Rorden, Columbia, SC, USA, www.mricro.
com). The black text stimuli were presented on a gray background. There were two
18 s rest periods in each measurement session. The rest trials were signaled by a
pair of hyphens ‘--‘ that the participant was asked to fixate while remaining still.

Functional MRI data acquisition. Participants were scanned with a Siemens 3 T
Skyra Magnetom MRI device using a custom 30-channel receiver head-coil. We
acquired echo-planar imaging (EPI) volumes in axial oblique angle using an
acquisition matrix of 64 × 64 with 3.1 mm × 3.1 mm × 3.1 mm voxel dimensions.
The following acquisition parameters were used: TE= 32 ms, TR= 2.4 s, flip angle
= 90°, slices= 41, FOV= 200 mm, phase resolution= 100%. A structural T1-
weighted MPRAGE volume was also acquired (TE= 3.3 ms, TR= 1.1 s, slices=
176, FOV= 256 mm, phase resolution= 100%).

The stimuli were controlled using Presentation® 15.0 software (www.neurobs.
com) running on a Dell Optiplex 960 PC. The stimuli were projected to a mirror
mounted on the head-coil using a Panasonic PT-DZ110XEJ projector with 1920 ×
1200 resolution and 60 Hz frequency. Participants’ verbal responses were recorded
using an OptoAcoustics (Or-Yehuda, Israel) FOMRI-III optic microphone with
OptoActive noise control. The microphone was mounted on the head-coil.

Semantic space from text corpus data. The model of semantic space used in the
decoding was estimated from a 1.5 billion token Internet-derived text corpus in
lemmatized Finnish22. The semantic space was built using a word2vec skip-gram
model with a maximum context of 5+ 5 words (5 words before and after the word
of interest)22. The skip-gram model is a fast and efficient method for learning dense
vector representations of words from large amounts of unstructured text data. The
objective is to find vector representations that are useful for predicting the sur-
rounding words in a sentence given a target word23,44. The code is available online
at https://code.google.com/archive/p/word2vec, and the word vector data set used is
available online at http://bionlp-www.utu.fi/fin-vector-space-models/fin-word2vec-
lemma.bin. The word vectors of the model have the dimensionality of 300, and they
were used in the machine learning analyses and the RSA46. Note that single
dimensions of the semantic space are not interpretable.

Word2vec was used to acquire altogether six sets of semantic space coordinates:
(1) the last single clue of the triplet that was used as the onset for the fMRI response
(Clue 3); (2) the sum of the first, second and third clue of the triplet that were used to
probe a given target word (Clue 1+ 2+ 3), (3) the target word alone (Target word)
and (4) the sum of the semantic coordinates of all features for a given target object
available in the CSLB data set (All available features)25, including features that were
never presented to the participant. In addition, we generated two models which
excluded the clues used to probe the target concept: (5) in one of these models, we
mixed the clue sets across blocks such that the semantic coordinates of a given trial
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were constructed using the clue features of another trial with the same target item.
This way, the clues used to predict the brain activation patterns were not the same as
those that had been presented to the participant (e.g. for a trial where we would probe
elephant using clues “has legs”, “is thick-skinned” and “has a long trunk”, we would
decode the brain activation patterns using features “gray”, “herd”, “tusk”, i.e. clues
from another block). In the final model (6), we calculated the sum of semantic
coordinates of all such features that were not presented in the guessing game task for a
given target concept (akin to the All available features model but excluding the nine
clue features used in the guessing game task).

The semantic coordinates were built in the following way. For each trial, we
used word2vec to extract semantic coordinates for the implied target word, as well
as all corresponding CSLB features and the clues used in the task. In cases where
the clue/feature consisted of more than one word, we selected and lemmatized one
key word (e.g., has legs → leg) and extracted the corresponding semantic
coordinate from the corpus. For models, which combined many features together
(i.e. Clue 1+ 2+ 3, Mixed clues, All nonclues, All available clues), we extracted
the semantic coordinates of all features’ key words and then calculated the sum of
the resulting semantic coordinates (see Fig. 5). Thus, all models used in the single-
trial analyses resulted in a 360-by-300 matrix (i.e., number of trials × number of
dimensions of the semantic space). In the analysis with averaged data, we used a
60-by-300 matrix (i.e. number of target objects × number of dimensions in the
semantic space).

FMRI data preprocessing. The preprocessing was performed using
SPM8 software (Wellcome Trust Centre for Neuroimaging, University College

London, UK) running on Matlab (MATLAB 2014a, MathWorks Inc., Natic, MA).
The EPI volumes were first corrected for slice timing and head motion and cor-
egistered to the structural volume of the same participant. We used a General
Linear Model approach, where the model contained the head motion and session
parameters as nuisance regressors as well as high-pass filtering. Each of the target
objects in each of the six blocks was modeled by convolving a canonical hemo-
dynamic response function from the onset of the last clue of a triplet. All analyses
were run on native-space unsmoothed data. For visualization purposes, the data
was co-registered to Montreal Neurological Institute (MNI) reference space60.
Anatomical labeling was based on the AAL atlas61 unless otherwise cited.

Zero-shot decoding analyses. The machine learning analyses were run on Python
3 (www.python.org) using Anaconda3 distribution and the scikit-learn module62.
The machine learning models implemented in this study evaluated the contribu-
tions of the brain activation patterns to each of the 300 dimensions in the semantic
space (Fig. 1). The aim of these analyses was to test whether we can establish a
statistically significant mapping between the brain activation patterns and the
word2vec semantic coordinates.

The models were trained by using a subset (n= 58) of the altogether 60 targets
and the respective multi-dimensional semantic coordinates such that, in the end,
each semantic dimension was associated with a particular weighted activation
pattern. For this, we used multiple regression with regularization parameters. The
trained model can be used to predict the brain activation patterns of any novel
concept outside the training set for which the corpus-derived semantic coordinates
are available.

Clue 3: Clue 1 + 2 + 3: Target: All available features:

Has tusks It is gray
lives in herds
has tusks

An elephant is big
is an animal
has legs
does eat
has a tail
is a mammal
is scared of mice
lives a long time
...

is gray
made of bones
has skin
has ears
is endangered
is clever
does find water
has tusks
...

is ridden
does trample
has a trunk
lives in herds
eats plants
has species
is found in Asia
has a good memory
...

b Resulting semantic coordinates used in single-trial machine learning models

a Words for which semantic coordinates were extracted using word2vec

Fig. 5 Examples on how the different models were constructed. a The key word whose semantic coordinates were built using word2vec is shown in
boldface. The semantic coordinate was either based on one word (i.e., Clue 3 and Target) or several words (i.e., Clue 1+ 2+ 3 and All available clues) in
which case the final semantic coordinate was a sum of the semantic coordinates of all words in the respective model. b The sum of the resulting semantic
coordinates (i.e. one 300-dimensional vector per each item) was entered into the zero-shot decoding analysis

An elephant A banana An anchor An airplane

Fixation
cross

Clue 1

Clue 2

Clue 3

Overt response
prompt

Blank screen

+ + + +

Has legs Is a fruit Is heavy Is loud

Has a thick skin Is peeled Does sink Has wings

########### ########### ########### ###########

Has a trunk Monkeys eat it Does rust Used for flying

Fig. 4 Examples of stimuli and experimental design in fMRI. Three clues were shown one at a time, after which the participants were asked to guess which
object they describe (e.g., here: an elephant, a banana, an anchor, an airplane). A string of hash characters prompted the participant to utter the name of
the target object. The target object itself was never presented to the participants before or during the experiment, either pictorially or as a word, and no
feedback regarding correct or incorrect answer was provided
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The model was evaluated after the training such that the predicted semantic
coordinates of the two left-out objects were compared with the original corpus-
derived (‘true’) semantic coordinates. The classification outcome was determined
using cosine distance. We evaluated the level of statistical significance using a
permutation test with 1000 iterations, randomly selected subjects and randomly
shuffled order of the semantic coordinates across the target objects.

Zero-shot decoding on averaged data. In this analysis, the six repetitions with
unique clue triplets for a given target object were averaged together into a single
BOLD activation map using stability selection as described below. The zero-shot
decoding model was trained by using 58 of the target items and the training data
was used to predict the semantic coordinates of the two left-out target items. The
training and evaluation process was iterated 1770 times to cover all leave-two-out
combinations.

We focused the machine learning analysis of averaged data on a specific subset
of voxels that showed a consistent activation pattern across the six trials of each
target object32,33. First, we masked the native space beta images using an individual
gray matter mask extracted from the SPM segmentation. We then extracted beta
values for each voxel of each repeated trial (n= 6) of each object (n= 58, i.e.,
excluding the leave-two-out objects at each iteration). We then calculated pairwise
Pearson correlations across the six repetitions of each target object and averaged
the correlations over the 58 target objects in the training set. Finally, the 500 most
stable voxels, i.e., those with the highest average correlation, were selected for
further analyses.

Single-trial zero-shot decoding. In the single-trial analysis, no averaging was
performed over the six trials of the same target object, but each trial using a unique
clue triplet was considered a separate item. The brain activation patterns related to
each trial were then used to predict the semantic coordinates (for details, please see
section: Semantic space from text corpus data). First, the test pair was selected after
which the other 5+ 5 trials corresponding to the same target concepts were
removed from the training set. Thus, the zero-shot decoding model was trained on
348 trials, i.e. all 12 trials representing the two targets we tried to predict were
excluded from the training set. Note that we did not use stability selection in the
single-trial analysis, since there were no repeated trials over which stability selec-
tion could sensibly have been performed. Furthermore, as each trial had a different
set of clues, we did not want to potentially wipe out this variability.

In the last step, we wanted to test which one of the trained models (i.e. using
different sets of semantic coordinates as described above) provided the best
mapping to the observed brain activation patterns. To this aim, the decoding
accuracies between different models were compared using a pairwise t-test using a
Bonferroni correction.

Visualization of the zero-shot results. To demonstrate the mapping between the
brain and semantic space learned by the zero-shot decoding algorithm, we have
created an interactive visualization (https://aaltoimaginglanguage.github.io/guess/)
that shows, for each target object, its coordinates in the semantic space and the
corresponding BOLD activation pattern, averaged across the six trials. T-
distributed stochastic neighbor embedding (t-SNE)63 was used to obtain a two-
dimensional visualization of the semantic space, and pycortex64 was used to
visualize the BOLD activation pattern. To illustrate that the mapping between the
brain and semantic space is defined at all coordinates, we added 19 new targets
(mouse, parrot, chicken, goat, lynx, peach, grapefruit, beetroot, broccoli, lettuce,
plane, screw, plate, watch, tape, tram, tank, dinghy, gondola) to the interactive
visualization. By reversing the mapping to obtain a linear transformation between
the semantic space and the brain65, BOLD activation patterns were predicted for
these novel items.

Representational similarity analysis. In the RSA analysis, we used the single-trial
data to maximize comparability with the decoding results. We used searchlight
mapping46 and RSA toolbox66 running on MATLAB 2014a (The MathWorks, Inc.,
Natick, Massachusetts, United States) to find regions where similarity of activation
patterns (activation pattern RDMs) was related to the semantic similarities of the
implied target objects (model RDM).

The model RDM was based on All available features model. That is, the
semantic coordinate of each trial was calculated as the sum of semantic coordinates
of All available features of the implied target object (see model 4 above). The
resulting model RDM was a 360 × 360 matrix, where the value in each cell reflects
the cosine distance between the semantic coordinates of a pair of trials. The model
RDM was compared to activation pattern RDMs which were constructed for each
spherical searchlight (radius= 7 mm) across each voxel in the gray matter volume.
The activation pattern RDMs were symmetrical 360 × 360 BOLD matrices, where
the value in each cell reflects the dissimilarity (1–Pearson’s correlation) of
activation patterns between a pair of trials. A whole-brain correlation map was
produced by calculating Spearman’s rank correlations between the activity-pattern
RDMs and semantic model RDMs. The correlation maps were Fisher transformed
in order to make them normally distributed and projected back onto each
searchlight’s center voxel.

The correlation maps of each participant were transformed into MNI space and
smoothed at six FWHM. The resulting normalized and smoothed images of each
participant were subjected to a group-level statistical nonparametric mapping
analysis (one sample t-test) using variance smoothing of six FWHM and 10,000
permutations (SnPM13, version 13.1.06; http://go.warwick.ac.uk/tenichols/snpm).
FMRI analyses are prone to increased risk of false positives as statistical tests are
performed on a very large number of voxels. To deal with this problem, we indicate
the pseudo-t values that survive the voxel-level FWE corrected p-threshold < 0.05
(height threshold: pseudo-t= 4.82). The uncorrected pseudo-t maps of the main
RSA analysis67 are provided in an online repository: https://aaltoimaginglanguage.
github.io/guess/. We further provide the results of alternative RSA analyses, using
the remaining models applied in the single-trial decoding analyses.

Region of interest analysis. The PRC ROI was based on FreeSurfer’s (https://
surfer.nmr.mgh.harvard.edu) probabilistic PRC label68. This label encompasses the
medial bank of the collateral sulcus which corresponds to the Brodmann’s
cytoarchitectonic field 35, i.e. the transentorhinal cortex69 (see also refs. 47,48). The
surface-based labels were converted to volume-based ROIs after which the resulting
ROI was manually inspected. When necessary, the ROIs were corrected manually
such that they continuously covered the entire medial bank of the collateral sulcus.

The BOLD activation maps inside the PRC ROIs were averaged across the six
repetitions of each target object. The voxel-wise BOLD signals in the left and right
hemispheres were then concatenated resulting in a matrix with 60 rows (number of
target items) and n columns, where the n corresponds to the total number of voxels
in the left and right PRC ROI. These data were subjected to the zero-shot decoding
scheme and used to predict the semantic coordinates of the 60 items. The semantic
coordinates were built using the All available features model (i.e. All available
features in the CSLB norm data25).

Code availability. The used software and algorithms are detailed in Supplementary
Table 2. The custom code related to the zero-shot-learning algorithm and visua-
lization code is available https://aaltoimaginglanguage.github.io/guess/.

Data availability
Information related to data availability is detailed in Supplementary Table 2. The relevant
data used in this study are available upon request to the editors and reviewers and
researchers who meet the criteria for access to confidential data. Qualified researchers
may contact the secretary of the Aalto University Research Ethics Committee, Jari
Söderström (jari.soderstrom@aalto.fi). Ethical restrictions prevent the authors from
making the raw MRI data publicly available, as this would compromise research parti-
cipants privacy and consent. These restrictions have been imposed by the Aalto Uni-
versity Research Ethics Committee, in compliance with Finnish legislation on Data
Protection.
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