Ferreira, Daniela C.; Oliveira, Mayara L.; Bioni, Thais A.; Nawaz, Haq; King, Alistair W.T.; Kilpeläinen, Ilkka; Hummel, Michael; Sixta, Herbert; El Seoud, Omar A.

Binary mixtures of ionic liquids-DMSO as solvents for the dissolution and derivatization of cellulose

Published in:
Carbohydrate Polymers

DOI:
10.1016/j.carbpol.2019.02.024

Published: 15/05/2019

Please cite the original version:
Binary mixtures of ionic liquids-DMSO as solvents for the dissolution and derivatization of cellulose: Effects of alkyl and alkoxy side chains

Daniela C. Ferreiraa,b, Mayara L. Oliveiraa, Thais A. Bionia, Haq Nawaza, Alistair W. T. Kingc, Ilkka Kilpeläinenc, Michael Hummeld, Herbert Sixtad*, Omar A. El Seouda*

a Institute of Chemistry, the University of São Paulo, Prof. Lineu Prestes Av., 748, 05508-000, São Paulo, SP; Brazil

b Institute for Technological Research from State of São Paulo, Prof. Almeida Prado Av., 532, 05508-901, São Paulo, SP, Brazil

c Department of Chemistry, University of Helsinki A.I. Virtasen Aukio 1, 00014, P.O. Box 55, Helsinki, Finland

d Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland

*herbert.sixta@aalto.fi, +358 50 3841 764
*elseoud.usp@gmail.com, +55 11 3091 3874
Abstract

The efficiency of mixtures of ionic liquids (ILs) and molecular solvents in cellulose dissolution and derivatization depends on the structures of both components. We investigated the ILs 1-(1-butyl)-3-methylimidazolium acetate (C₄MeImAc) and 1-(2-methoxyethyl)-3-methylimidazolium acetate (C₃OMeImAc) and their solutions in dimethyl sulfoxide, DMSO, to assess the effect of presence of an ether linkage in the IL side-chain. Surprisingly, C₄MeImAc-DMSO was more efficient than C₃OMeImAc-DMSO for the dissolution and acylation of cellulose. We investigated both solvents using rheology, NMR spectroscopy, and solvatochromism. Mixtures of C₃OMeImAc-DMSO are more viscous, less basic, and form weaker hydrogen bonds with cellobiose than C₄MeImAc-DMSO. We attribute the lower efficiency of C₃OMeImAc to “deactivation” of the ether oxygen and C₂-H of the imidazolium ring due to intramolecular hydrogen bonding. Using the corresponding ILs with C₂-CH₃ instead of C₂-H, namely, 1-butyl-2,3-dimethylimidazolium acetate (C₄Me₂ImAc) and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C₃OMe₂ImAc) increased the concentration of dissolved cellulose; without noticeable effect on biopolymer reactivity.

Keywords: ionic liquid-DMSO; cellulose dissolution; solvatochromism; biopolymer derivatization; cellulose esters.
1. Introduction

There is sustained interest in investigating solvents for the physical dissolution of cellulose, i.e., without formation of covalent bonds. The reason is that the resulting solutions are used for cellulose regeneration in different forms, including fibers (Jedvert & Heinze, 2017) and nanospheres (Gericke, Trygg, & Fardim, 2013), and for synthesizing cellulose derivatives - in particular esters - with controlled properties (El Seoud, Nawaz, & Arêas, 2013; Gericke, Liebert, El Seoud, & Heinze, 2011). Cellulose fiber regeneration from its solutions is commercially important because cotton production is not expected to meet world population demand for cellulosic fibers by 2030 (Hämmerle, 2011). The viable solution to close this so-called “cellulosic fiber gap” is to increase cellulose use from sources other than cotton (e.g., wood and agricultural residues) and enhance the efficiency of recycling, e.g., of cellulose-containing fabrics (Eichinger, 2012).

The solvent employed should disrupt the intramolecular hydrogen bonds within the anhydrous glucose unit (AGU), the intermolecular hydrogen bonds between the biopolymer chains, and the van der Waals interactions present because cellulose is amphiphilic and has a relatively hydrophobic inner surface (Lindman et al., 2017; Medronho, Romano, Miguel, Stigsson, & Lindman, 2012). Consequently, efficient cellulose solvents are strongly dipolar or ionic, employed pure or as solutions in molecular solvents (MSs), usually dipolar aprotic ones. Examples are LiCl/N,N-dimethylacetamide, DMAC (El Seoud et al., 2013), N-methyl morpholine-N-oxide hydrate (Rosenau, Hofinger, Potthast, & Kosma, 2003); ionic liquids, ILs, based on heterocyclic rings, in particular imidazole (Gericke, Fardim, & Heinze, 2012; Laus et al., 2005) and quaternary ammonium electrolytes (QAE)/MSs (Casarano, Nawaz, Possidonio, Da Silva, & El Seoud, 2011; Heinze et al., 2000; Kostag, Jedvert, Achtel, Heinze, & El Seoud, 2018).

Figure 1 shows a schematic representation of the mechanism of cellulose dissolution in QAE/MS where, for simplicity, the steps are depicted as occurring in sequence; this need not be the case. Part (a) of Figure 1 shows the cellulose chains immersed in the MS (blue background) before the introduction of the QAE; in (b) the anion interacts with the hydroxyl groups of the AGU. The chains are separated by electrostatic repulsion because they acquire a negative charge.
As shown in part (c), the solvated polymer chains are further separated, i.e., the biopolymer-QAE complex dissolves in the MS because of “condensation” of the (voluminous) cation around the biopolymer-anion complex (Östlund, Lundberg, Nordstierna, Holmberg, & Nydén, 2009; Papanyan, Roth, Wittler, Reimann, & Ludwig, 2013; Wei, Meng, Cui, Jiang, & Zhou, 2017).

Figure 1. Schematic representation of cellulose dissolution in quaternary ammonium electrolytes/molecular solvent mixture: (a) cellulose (green lines) is added to the MS (blue background); (b) the anions (pinkish spheres) interact with the hydroxyl groups of cellulose (polar domains) which separate the cellulose chains because they acquire a negative charge; in (c) the cations (yellow pentagrams) join the anions and separate entirely the cellulose chains leading to its dissolution.

Therefore, cellulose dissolution is a function of the charge density (or hardness) of the ions and their volumes, both determine anion-cation, ion-cellulose and, where applicable, ion-MS interactions. In the present study, we used solutions in DMSO of the ILs shown in Figure 2 for the dissolution and acylation of microcrystalline cellulose, MCC. The IL anion was acetate and the corresponding cations differ in the presence of an ether oxygen in the side chain, and of hydrogen or methyl group in position 2 of the imidazolium ring.
Figure 2. Molecular structures of the studied ionic liquids: (a) 1-(1-butyl)-3-methylimidazolium acetate (C₄MeImAc); (b) 1-(2-methoxyethyl)-3-methylimidazolium acetate (C₃OMeImAc); (c) 1-(1-butyl)-2,3-dimethylimidazolium acetate (C₄Me₂ImAc); and (d) 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C₃OMe₂ImAc). The atoms are numbered in red.

The presence of an ether oxygen resulted in more viscous IL and IL-DMSO mixtures; lower effective basicity, and lower degree of substitution, DS of the synthesized acetate and benzoate esters. We attribute these results to “deactivation” of the ether group and the C2-H of the imidazolium ring due to intramolecular hydrogen bonding. “Blocking” of the C2 position of the heterocyclic ring increased cellulose dissolution in the IL-DMSO mixtures but reflected little on cellulose reactivity.

2. Experimental Section

2.1. Chemicals
The chemicals were purchased from Sigma-Aldrich or Merck and were purified as recommended elsewhere (Armarego & Chai, 2009). Microcrystalline cellulose (MCC), Avicel PH 101 (viscosity-based degree of polymerization $\overline{DP}_V = 175$) was from Sigma-Aldrich and kraft dissolving eucalyptus pulp ($\overline{DP}_V = 497$) was from Bahia Specialty, Salvador. The solvatochromic probes employed (Figure 3) were previously synthesized as reported elsewhere (Catalán et al., 1996; Catalan, Mena, Meutermans, & Elguero, 1992).

![Molecular Structure](attachment:image.png)

Figure 3. Molecular structure of the solvatochromic probes employed. (a) σ-tert-butylstilbazolium betaine (TBSB); (b) σ,σ'-di-tert-butylstilbazolium betaine (DTBSB); (c) 4-nitroaniline (NA); (d) N,N-dimethyl-4-nitroaniline (DMNA).

2.2. Equipment

NMR spectroscopic data were obtained with Varian, Inova 300 (300 MHz for 1H), or Bruker DRX 500 (500 MHz for 1H) spectrometers. The UV-VIS spectra of the solvatochromic probes were recorded with Shimadzu UV-2550 spectrophotometer. The temperature inside the cuvette holder was controlled $\pm 0.05^{\circ}C$ with a digital thermometer (Yellow Springs Instruments model 4000A). The rheology data were acquired with Physica model MCR 300 rheometer (Anton Paar) with cone-plate geometry (50 cm diameter) using Peltier heating element ($\pm 0.1^{\circ}C$) and Rheoplus software.
We dissolved MCC in the IL-DMSO by continuous magnetic stirring in a glass tube with GL 25 threaded polybutylene terephthalate (PBT) screw cap (DURAN®), provided with an inner PTFE protecting seal, and evaluated the dissolution under 12x magnifying glass provided with LED light, followed by examination under a microscope (Nikon, Eclipse 2000 microscope with cross polarization) as given elsewhere (Kostag & El Seoud, 2019). We carried out cellulose acylation as given elsewhere, (Possidonio, Fidale, & El Seoud, 2009) employing Discover model DU-8316 (CEM) microwave equipment and IKA model RW 20 mechanical stirrer with a digital tachometer.

2.3. Synthesis of C₄MeₙImAc and C₃OMeₙImAc (n = 1 or 2)

Four ionic liquids were prepared: 1-(1-butyl)-3-methylimidazolium acetate (C₄MeImAc); 1-(1-butyl)-2,3-dimethylimidazolium acetate (C₄Me₂ImAc); 1-(2-methoxyethyl)-3-methylimidazolium acetate (C₃OMeImAc); and 1-(2-methoxyethyl)-2,3-dimethylimidazolium acetate (C₃OMe₂ImAc). Figure 2 shows the molecular structures of these ILs along with the corresponding atoms numbering.

The ILs were synthesized as described elsewhere (El Seoud et al., 2011) and schematized in Figure 4. In a typical run, the appropriate volumes of the reagents (see Table 1) were charged into PTFE-coated stainless-steel reactor and heated at 110 °C for 6 h under constant stirring and pressure (N₂, 10 bar). After cooling to room temperature and removal of acetonitrile, the IL (as chloride; (IL – Cl⁻)) was purified by vigorously stirring with cold ethyl acetate (three times, 75 mL each time); separated (lower layer) and dried at 40 °C under reduced pressure over P₄O₁₀ for 72 h. The IL – OAc⁻ was obtained by anion exchange (IL – Cl⁻ → IL – OH⁻; methanol solvent), followed by neutralization of the IL – OH⁻ with acetic acid. The completeness of the (Cl⁻/OH⁻) ion-exchange was assured by testing a dilute aqueous solution of the IL – OH⁻ with AgNO₃/HNO₃ solution. After neutralization, methanol was evaporated under reduced pressure and the IL was dried at 40 °C under reduced pressure over P₄O₁₀ for 96 h. The final yield for each IL is shown in Table 1. The structure of the IL was confirmed by ¹H NMR spectroscopy (Table SM1, Table 1 of supplementary material).
Figure 1. Synthesis of IL: (a) preparation of IL in the chloride form; (b) Cl⁻/OH⁻ ion exchange (IL – Cl⁻); (c) neutralization of IL – OH⁻ with acetic acid (IL – OAc⁻).

Table 1. Synthesis conditions and properties of the ionic liquids employed

<table>
<thead>
<tr>
<th>Ionic Liquid</th>
<th>1-Methylimidazole</th>
<th>Alkyl or alkoxy chloride</th>
<th>CH₃CN, mL</th>
<th>IL yield, %<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compound<sup>a</sup></td>
<td>g (mole)</td>
<td>Compound<sup>b</sup></td>
<td>g (mole)</td>
</tr>
<tr>
<td>C₄MeImAc</td>
<td>A</td>
<td>38.7 (0.50)</td>
<td>C</td>
<td>47.3 (0.45)</td>
</tr>
<tr>
<td>C₄Me₂ImAc</td>
<td>B</td>
<td>38.7 (0.50)</td>
<td>C</td>
<td>47.3 (0.45)</td>
</tr>
<tr>
<td>C₃OMeImAc</td>
<td>A</td>
<td>23.4 (0.30)</td>
<td>D</td>
<td>29.5 (0.27)</td>
</tr>
<tr>
<td>C₃OMe₂ImAc</td>
<td>B</td>
<td>23.4 (0.30)</td>
<td>D</td>
<td>29.5 (0.27)</td>
</tr>
</tbody>
</table>

^a A = N-methylimidazole; B = 1,2-dimethylimidazole;

^b C = 1-chlorobutane; D = 1-chloro-2-methoxyethane;

^c IL yield (%) = (n_{alkyl or alkoxy chloride}/n_{IL}) x 100, where n = number of mol of the indicated substance.

2.4. Cellulose dissolution

We evaluated MCC dissolution in pure RMeₙImAc (n = 1 and 2) and binary mixtures of
RMeₙImAc-DMSO with DMSO at a mole fraction (χ_{DMSO}) between 0.2 and 0.9. In a typical experiment, we introduced the solvent (pure or binary mixture, ca. 2 g) into the above-mentioned glass vial, heated it to 60 °C under continuous magnetic stirring for 15 min. We added a small mass of MCC (ca. 5-10 mg; dried at 60 °C; reduced pressure; 8 h) to the heated solvent and continued the stirring for additional 15 min. We evaluated the solubility of cellulose as indicated above. If a dark image was observed in the microscope, we considered the cellulose soluble, added fresh cellulose and repeated the stirring/examination protocol. If we observed luminous spots in the image, due to (undissolved) cellulose crystals, we heated/stirred the mixture at 60 °C for an additional hour and assessed the solubility. We continued this protocol until cellulose did not dissolve after 75 minutes of the last biopolymer addition; we considered, arbitrarily, that this is the saturation point. We report the dissolved cellulose in wt % as shown below. We employed a similar procedure for eucalyptus pulp at a single solvent composition where the maximum solubility of MCC was observed.

$$\text{Cellulose solubility, wt\%} = \left(\frac{m_{\text{Cellulose}}}{m_{\text{Cellulose}} + m_{\text{Solvent}}} \right) \times 100$$ (1)

where, $m_{\text{Cellulose}}$ is the total mass of dissolved cellulose; m_{Solvent} is the initial mass of solvent.

2.5. Acylation of MCC in RMeₙImAc-DMSO using N-acyl imidazole

Cellulose acetate (Cell-Ac) and cellulose benzoate (Cell-Bz) were synthesized as described elsewhere (Possidonio et al., 2009) using N-acylimidazole synthesized in situ. Firstly, an MCC (0.5 g MCC, 3.1 mmol) solution in RMeₙImAc-DMSO (10 g of IL-DMSO, χ_{DMSO} = 0.7) was prepared by heating the suspension in a MW-equipment for 10 min (30 W nominal power; 80 °C; mechanical stirring, 500 rpm). In another reaction flask, N-acyl imidazole was synthesized by reacting acetic anhydride (0.44 mL, 4.6 mmol) or benzoic anhydride (1.05 g, 4.6 mmol) and imidazole (0.66 g, 9.2 mmol) in 2 mL of DMSO by stirring at room temperature for 30 min.

The N-acyl imidazole suspension in DMSO was added, in one portion, to the MCC-RMeₙImAc-DMSO solution and the reaction mixture (χ_{DMSO} 0.6) was heated under MW-irradiation with mechanical stirring (2 h; 60 °C; 15 W power; 500 rpm). The cellulose ester was
isolated by precipitation in ethanol (70 mL) and washing five times with warm ethanol (50 mL each wash, 40 °C). The degree of substitution of Cell-Ac (DS_{Ac}) and Cell-Bz (DS_{Bz}) was determined by integration of 1H NMR spectra (300 MHz) obtained from cellulose ester solution in DMSO-d$_6$ (~ 33 mg/mL), containing 2-3 drops of trifluoroacetic acid. The calculations of DS are indicated in item 3 of SM; the uncertainty in DS was ≤ 0.05.

2.6. Viscosity measurements of ILs and ILs-DMSO

The flow curves of pure RMeImAc and binary RMeImAc-DMSO mixtures with $0.0 < \chi_{DMSO} < 1.0$, were examined at (60 ± 0.05) °C using 90 s$^{-1}$ shear rate (cone-plate fixture, 50 cm diameter). In order to eliminate absorption of adventitious water, the plate was surrounded with home-constructed PTFE circular “trough” filled with silica gel and covered with two-part glass cover with a central hole, as shown in Figure SM2.

To calculate the energy of viscous flow, the viscosity of binary RMeImAc-DMSO mixtures, with and without dissolved MCC (1 % weight) were obtained at 40 °C, 60 °C, and 80 °C with a constant shear rate of 90 s$^{-1}$. The energy of viscous flow was calculated by Arrhenius-type equation, i.e., from the slope of ln(η) x 1/T plot. (Gericke, Schlufter, Liebert, Heinze, & Budtova, 2009).

2.7. NMR spectroscopic study of cellobiose/RMeImAc-DMSO interactions

Solutions of cellobiose (model for cellulose) in RMeImAc-DMSO-d$_6$ were prepared as follows: to ten small glass vials were added 200 mg of IL; 1 mL of DMSO-d$_6$; and increasing concentrations of cellobiose (2-25 mg). Each mixture was stirred with a magnetic bar at 40 °C for 30 min. until complete dissolution of cellobiose. The solution (0.5 mL) was transferred to NMR tube and its 1H NMR and 13C NMR spectra (500 MHz) were recorded at room temperature.

2.8. Spectrophotometric determination of Lewis acidity (SA) and Lewis basicity (SB) using solvatochromic dyes

We prepared binary mixtures of RMe$_n$ImAc-DMSO (n = 1 or 2) by weight to cover a χ_{DMSO}
range of 0.2 to 0.9. We pipetted the solvatochromic probes (Figure 3) solutions in acetone (6 μg/mL) into small glass vials with a plastic cap and dried the solutions under reduced pressure over P₄O₁₀. To the glass vials containing the (solid) solvatochromic probe we added pure RMeₙImAc, pure DMSO, and binary mixtures RMeₙImAc-DMSO; and dissolved the probe at room temperature using a tube rotator (Labquake, Lab Industries; 30 min; 60 rpm). The final probe concentration was 2–5 x 10⁻⁴ mol/L for all probes.

UV-VIS spectra of probe solutions were recorded twice using the following parameters: scan speed of 120 nm/min; spectral resolution of 0.2 nm; 60 °C. We calculated values of λₘₐₓ from the first derivative curve of the absorption spectrum. The uncertainty in this determination was ± 0.5 nm. We calculated Lewis acidity (SA) and Lewis basicity (SB) from the values of λₘₐₓ of the intramolecular charge transition band as given in item 6 of SM.

3. RESULTS AND DISCUSSIONS

3.1. Effects of the IL side-chain structure on cellulose dissolution: C₄MeImAc versus C₃OMeImAc

We show in Figure 5a the wt% dissolved MCC at 60 °C in the pure ILs and their binary mixtures with DMSO; κDMSO = 0.2 – 0.9 (pure DMSO causes only cellulose swelling); we comment on Figure 5b later. The maximum dissolution in both RMeImAc (R = 1-butyl or 2-methoxyethyl) occurs at the same κDMSO = 0.6. At this molar fraction, the wt% dissolved MCC was 13 and 16 for C₃OMeImAc-DMSO and C₄MeImAc-DMSO, respectively. At κDMSO = 0.6, the eucalyptus pulp solubility was 4.5 wt% and 6.0 wt%, for C₃OMeImAc-DMSO and C₄MeImAc-DMSO, respectively.

Therefore: (i) IL-DMSO mixtures dissolve more MCC than eucalyptus pulp; and (ii) under the same conditions, the IL with an alkyl side-chain (C₄MeImAc) dissolves more cellulose than the one with alkoxy side-chain (C₃OMeImAc). That is, we did not observe the expected beneficial effect on cellulose dissolution from the presence of ether oxygen in the side-chain of C₃OMeImAc.
Figure 5. Dissolution curve of MCC in binary mixtures of IL-DMSO in a different molar fraction of DMSO (χ_{DMSO}) determined at 60 °C. IL = RMe$_n$ImAc, R = 1-butyl or 2-methoxyethyl, n = 1 (a) or 2 (b).

3.2. Effects of the IL side-chain structure on cellulose acylation: C$_4$MeImAc-DMSO versus C$_3$OMeImAc-DMSO

Acylation of MCC by N-acetyl imidazole (acyl = acetyl, benzoyl) was carried in a binary mixture of RMeImAc-DMSO (χ_{DMSO} 0.6), the solvent composition of maximum solubility of MCC. We used N-acetyl imidazoles, generated in situ by the reaction:

$$\text{Acid anhydride + 2 imidazole} \rightarrow \text{N-acetyl imidazole} + \text{imidazolium carboxylate} \quad (2)$$

We used N-acylimidazoles rather than the parent acid anhydrides because of the side reaction between the latter and DMSO (Albright & Goldman, 1965, 1967; Marx & Tidwell, 1984; Omura & Swern, 1978). As we showed earlier, the formation of N-acetyl imidazole is quantitative; the formed imidazolium salt has no effect on the rate of acylation, \textit{i.e.}, it does not act as an acid/base catalyst (Nawaz, Pires, & El Seoud, 2013; Pires et al., 2015). In the acylation experiments, we were interested in assessing cellulose reactivity at its maximum dissolution because of the demonstrated cellulose aggregation in solutions of LiCl/N,N-dimethylacetamide and ILs (Ciacco, Morgado, Frollini, Possidonio, & El Seoud, 2010; Kuzmina, Sashina, Troshenkowa, & Wawro, 2010).
In the first four entries of Table 2 we list the values of DS of cellulose esters prepared in pure $C_4\text{MeImAc-DMSO}$ and $C_3\text{OMeImAc-DMSO}$; we will address entries 5 and 6 later. In entries 1 to 4, values of DS_{Ac} are higher than DS_{Bz}. These results agree with previous data on MCC acylation with carboxylic acid anhydrides and N-acylimidazoles in tetra(n-butyl)ammonium fluoride hydrate/DMSO (Nagel & Heinze, 2012). Likewise, the values of DS_{Ac} and DS_{Bz} of cellulose esters prepared in $C_4\text{MeImAc-DMSO}$ are higher than those obtained in $C_3\text{OMeImAc-DMSO}$. That is, the dependence of cellulose reactivity on the molecular structure of the IL (as indicated by DS) is parallel to its dissolution in the same media.

Table 2. Degree of substitution of cellulose esters prepared in RMe$_n$ImAc-DMSO (χ_{DMSO} 0.6; $n = 1$ or 2)$^{a,b)}$

<table>
<thead>
<tr>
<th>Entry</th>
<th>IL-MS</th>
<th>Acylating agent</th>
<th>Esters obtained</th>
<th>DS_{Ac}</th>
<th>DS_{Bz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$C_4\text{MeImAc-DMSO}$</td>
<td>N-acetyl imidazole</td>
<td>Acetate</td>
<td>1.64</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>$C_3\text{OMeImAc-DMSO}$</td>
<td>N-acetyl imidazole</td>
<td>Acetate</td>
<td>0.81</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>$C_4\text{MeImAc-DMSO}$</td>
<td>N-benzoylimidazole</td>
<td>Acetate + benzoate</td>
<td>0.46</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>$C_3\text{OMeImAc-DMSO}$</td>
<td>N-benzoylimidazole</td>
<td>Acetate + Benzoate</td>
<td>0.63</td>
<td>0.41</td>
</tr>
<tr>
<td>5</td>
<td>$C_4\text{Me}_2\text{ImAc-DMSO}$</td>
<td>N-acetylimidazole</td>
<td>Acetate</td>
<td>1.10</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>$C_3\text{Ome}_2\text{ImAc-DMSO}$</td>
<td>N-acetylimidazole</td>
<td>Acetate</td>
<td>1.00</td>
<td>-</td>
</tr>
</tbody>
</table>

$a)$ Microwave-assisted acylation employing 15 W, 60 °C and 2 h of reaction;
$b)$ Molar ratio of MCC: N-acylimidazole = 1.0 : 1.5.

The ^1H NMR spectra of the obtained cellulose benzoates (Figure 6a) always showed a singlet at δ ca 2.00 ppm, characteristic of the acetate methyl group. From these spectra, we calculated DS_{Ac} and DS_{Bz} as shown in the last two columns of entries 3 and 4. That is, cellulose acetate was obtained as a by-product when we used RMeImAc-DMSO for the synthesis of cellulose benzoate. Note that the DS_{Ac} in entry 1 is 1.64, i.e., higher than the maximum possible DS_{Ac} of 1.5, see point 2.5 in Experimental. These results suggest that solvent-induced cellulose
acetylation is occurring as a side reaction.

Figure 6. 1H NMR spectra (300 MHz for 1H) of cellulose benzoate: (a) synthesized in $\text{C}_3\text{OMeImAc}$-DMSO using N-benzyloximidazole as acylating reagent; (b) synthesized in 1-allyl-3-methylimidazolium chloride using benzoic anhydride as acylating reagent; (c) the product synthesized in (b) after stirring with pure $\text{C}_3\text{OMeImAc}$; (d) the product synthesized an in (b) and stirred in $\text{C}_3\text{OMeImAc}$-DMSO (χ_{DMSO} 0.6). In all cases, the treatment conditions of Cell-Bz were 2 h, 15 W and 60 °C. The peaks marked with * correspond to the non-deuterated solvent residue, DMSO ($\delta = 2.5$ ppm) and CHCl$_3$ ($\delta = 7.2$ ppm).

3.2.1. Acetylation of cellulose as a side reaction in RMeImAc

Acetylation of cellulose in IL with acetate anion is known. Köhler et al. (2007) showed that pure cellulose acetate was obtained when the biopolymer was reacted with 2-furoyl- or tosyl chloride in C_2MeImAc (1-ethyl-3-methylimidazolium acetate). These authors suggested that the
acetate from the IL reacts with derivatizing agents forming mixed anhydrides (e.g., acetic-2-furoic anhydride) which act as acylating reagent. Mixed cellulose acetate-propionate, with $DS_{Ac} > DS_{Pr}$, was prepared by reacting cellulose with propionic anhydride in C$_2$MeImAc due to the formation of acetic-propionic mixed anhydride (Dorn, 2009). Finally, cellulose acetate ($DS \ 0.017$) was obtained from cellulose/C$_2$MeImAc solution, even without the addition of an acetylating agent (Karatzos, Edye, & Wellard, 2012). In this case, acetic anhydride is generated, in situ, via dehydration of the acetic acid produced by abstraction of the relatively acidic C2-H of the imidazolium ring by the acetate ion (Gericke et al., 2012; Sowmiah, Srinivasadesikan, Tseng, & Chu, 2009).

The DS_{Ac} value obtained by Karatzos et al. (2012) is too small to explain the (large) DS_{Ac} values listed for in entries 3 and 4 of Table 2. Considering that the acylating reagent in the benzoylation reaction is N-benzoylimidazole, the formation of mixed acetic-benzoic anhydride was discarded. The reason is that the pK_a values in water are 7.1 and 4.75, for imidazole and acetic acid, respectively (CRC Handbook of Chemistry and Physics, 2017). Consequently, the best leaving group in the tetrahedral intermediate formed by attack of the acetate anion (from the IL) on N-benzoylimidazole is the acetate group, not imidazole, leading to regeneration of N-benzoylimidazole. It appears, therefore that the production of cellulose acetate (entries 3 and 4 of Table 2) is due to a DMSO-mediated catalysis/reaction.

To test this hypothesis, cellulose benzoate with $DS \ 2.6$ was prepared in pure 1-allyl-3-methylimidazolium chloride, using benzoic anhydride. As shown in Figure 6b, no peak at 2.00 ppm was observed, i.e., pure cellulose benzoate was obtained. We dissolved the cellulose benzoate thus obtained in pure C$_3$OMeImAc and in C$_3$OMeImAc-DMSO ($\chi_{DMSO} \ 0.6$) and kept the solution under the acylation conditions (15 W MW power, 500 rpm, 60 °C, 2 h), except that no acylating agent was added. We then recovered/purified the esters from both solutions using the workup procedure given in item 2.5 of Experimental; recorded their 1H NMR spectra. As shown in parts (c and d) of Figure 6, the singlet at ca. 2.0 ppm was observed only in the product recovered from C$_3$OMeImAc-DMSO (Figure 6d). That is, DMSO is catalyzing the formation of cellulose acetate. Although determination of the mechanism of this reaction is beyond the scope
of the present work, this is another manifestation that ILs and their solutions in MSs may not always be "spectators" (Wang, Qin, Mu, Xue, & Gao, 2017).

3.3. A rationale for effect of IL side-chain structure on cellulose dissolution and acylation

Because of the presence of ether linkage in the side-chain of C₃OMeImAc we expected that it should form more hydrogen bond with AGU-OH leading to higher cellulose dissolution than pure C₄MeImAc and C₄MeImAc-DMSO. Additionally, the (expected) higher Lewis basicity of C₃OMeImAc should contribute favorably to cellulose acylation, due to a combination of less biopolymer aggregation in solution and stabilization of the reaction (polar) transition state. However, our data for cellulose dissolution (Figure 5) and acylation (Table 2) showed the opposite behavior, C₄MeImAc is more efficient than C₃OMeImAc.

The attenuation/elimination of the expected side-chain effect of C₃OMeImAc may arise from macroscopic effects; microscopic effects/interactions, or both. As example of the former we studied solution rheology, whereas we assessed microscopic interactions by ¹H, ¹³C NMR spectroscopy and solvatochromic parameters. We present these results below in the order mentioned.

3.3.1. Rheology of IL-DMSO binary mixtures

The Stokes-Einstein equation for rigid sphere is given by:

\[D = \frac{k_B T}{6 \pi \eta a} \]

(3)

where “\(k_B\)”, “\(a\)” and \(\eta\) refer to the Boltzmann constant, particle radius, and viscosity, respectively (Berry, Rice, & Ross, 2000). Equation 3 indicates that the diffusion coefficient (D) in solution is inversely proportional to the viscosity. Lower viscosity is expected to favor cellulose dissolution and derivatization. This expectation (rate increase as a function of decreasing medium viscosity) was verified experimentally for reactions of isomerization (Baba et al., 2006) and Diels-Alder (Khupse & Kumar, 2011; Tiwari & Kumar, 2012) in pure ILs and their mixtures with MSs.

We investigated the rheological behavior of RMeImAc-DMSO binary mixtures at 60 °C (temperature of cellulose dissolution and acylation). The dependence of viscosity (\(\eta\)) on shear
rate \((0.01 - 100 \text{ s}^{-1})\) at 60 °C for RMeImAc-DMSO binary mixture with \(\chi_{\text{DMSO}}\) range 0.2 – 0.9 was evaluated; both ILs-DMSO showed a Newtonian behavior (results not shown). As shown in Figure SM3, the mixture viscosity decreases as a function of increasing \(\chi_{\text{DMSO}}\): mixtures of C\(_3\)OMeImAc-DMSO are more viscous than their C\(_4\)MeImAc-DMSO counterparts. The dependence of IL-DMSO solution \(\eta(\chi_{\text{DMSO}} = 0.0, 0.4, 0.6, 0.8)\) on the temperature \(T\) was investigated. From these data, we calculated the energy of viscous flow \(E_{\text{flow}}\) using Arrhenius-type equation (Gericke et al., 2009). As shown in Table SM4 and Figure SM4 solutions of 1 wt% MCC in C\(_4\)MeImA-DMSO are less viscous (ca. 4 %) over the range of \(\chi_{\text{DMSO}}\) investigated and show smaller values of \(E_{\text{flow}}\) (1-2 J/mol).

The rheology data of IL-DMSO binary mixtures show that both viscosity and \(E_{\text{flow}}\) of C\(_4\)MeImAc-DMSO are smaller than the C\(_3\)OMeImAc counterpart, indicating that cellulose dissolution should be favored in the C\(_4\)MeImAc, and C\(_4\)MeImAc-DMSO, in agreement with our cellulose solubility data. Based on the Stokes-Einstein equation, diffusion of the reactants in C\(_4\)MeImAc medium are faster which should affect product \(DS\) favorably, as shown in Table 2.

3.3.2. Assessment of hydrogen bonding by \(^1\)H and \(^{13}\)C NMR

We investigated the efficiency of hydrogen bond formation between cellulose and both solvents systems by \(^1\)H and \(^{13}\)C NMR spectroscopy. In order to avoid the severe \(^1\)H line broadening observed for cellulose solutions in IL-DMSO (Cao et al., 2016; Lu et al., 2017; Zhang et al., 2010) we used cellobiose as a model. The (linear) dependence of the relevant \(^1\)H and \(^{13}\)C chemical shifts \((\delta)\) of the ILs in DMSO-d\(_6\) on [cellobiose] is shown in Figure SM5, whereas the equations that describe this dependence are listed in Table SM5. In absence of cellobiose, the bonds formed are those between hydrogens of the imidazolium cation, the acetate anion and the (S=O) dipole of DMSO. The hydroxyl groups of cellobiose form hydrogen bonds with both ions of the IL and with DMSO; this is manifested by changes in \((\delta)\). We dwell here on the magnitude of \(\Delta \delta\) rather than its sign, because the latter is the result of changes in the electron density of the atom (due to hydrogen bonding) coupled with changes in diamagnetic shielding/deshielding by the anisotropic acetate ion and (S=O) dipole of DMSO (Lambert & Mazzola, 2011). Changes in diamagnetic shielding/deshielding result from changes in the movements (diffusion, tumbling, etc.) of the ions
and the solvent dipoles due to their interactions with cellobiose; the magnitude of these changes is not known. The slopes of all equations shown in Table SM5 are larger for C₄MeImAc than C₃OMeImAc. That is the strength of hydrogen bonding is larger for the former IL. Additionally, the slope is largest for C₂-H and C₂, as expected for this relatively acidic site (Alder, Allen, & Williams, 1995; Amyes, Diver, Richard, Rivas, & Toth, 2004).

In conclusion, ¹H and ¹³C NMR data clearly show: (i) the formation of hydrogen bonds between the cations of ILs and hydroxyl groups of cellobiose; (ii) the strength of these interactions depends on the acidity of the imidazolium carbon atom (C₂), hence the attached hydrogen (the slope of C₂-H is largest); (iii) these interactions are stronger for C₄MeImAc than C₃OMeImAc. As the NMR data per se do not offer a clear answer regarding the origin of the dependence of Δδ on the nature of the IL side-chain, we measured Lewis acidity and basicity of ILs-DMSO using solvatochromic probes.

3.3.3. Solvatochromic data of ILs-DMSO solvent systems

Table SM6 shows all solvatochromic data as a function of χₓDMSO calculated by use of solvatochromic probes. As argued elsewhere, the “effective Lewis basicity” (= SB-SA) is a good indicator of the efficiency of ILs as cellulose solvents (Hauru, Hummel, King, Kilpeläinen, & Sixta, 2012). ILs with large SB and small SA are good solvents.

Figure 7a shows dependence of (SB-SA) on χₓDMSO for both ILs (Figure 7b will be discussed later). The values of (SB-SA) are almost constant in the χₓDMSO range 0.0-0.8 for the two ILs examined, due to a preferential solvation of solvatochromic probes by a component of each medium (Achtel, Jedvert, Kostag, Seoud, & Heinze, 2018; de Jesus, Pires, Scharf, & El Seoud, 2017). Therefore, the maximum dissolution of cellulose at χₓDMSO = 0.6 (Figure 5a) cannot be explained solely on the bases of (SB-SA). On the other hand, C₄MeImAc is associated with higher effective basicity than C₃OMeImAc at any χₓDMSO, hence forms stronger hydrogen bonds with the hydroxyl groups of the AGU. This leads, according to this criterion, to more efficient cellulose dissolution by the IL with alky side-chain. This result agrees with our previous data.
Figure 2. Dependence of effective basicity (SB-SA) on DMSO molar fraction (χ_{DMSO}), of RMe$_n$ImAc-DMSO, R = 1-butyl or 2-methoxyethyl, n = 1 (a) or 2 (b), determined at 60 °C.

We now address the reason for the lower efficiency of C$_3$OMeImAc. In a recent publication on solvation by aqueous solutions of C$_4$MeImAc and C$_3$OMeImAc, we attributed the dependence of solvatochromic parameters on the nature of the side-chain of C$_3$OMeIm$^+$ to the formation of intramolecular hydrogen bonding between the ether oxygen with C2-\cdotH and C4-\cdotH of the imidazolium ring; the former is stronger, see Figure (de Jesus, Pires, Mustafa, Riaz, & El Seoud, 2017). This cycling behavior of C$_3$OMeIm$^+$-indicated by theoretical calculations- was corroborated with 1H NMR spectroscopy (de Jesus, Pires, Mustafa, et al., 2017). Note that C$_4$MeImAc is not subject to this side-chain/imidazolium ring hydrogen bonding. Therefore, we attribute the less hydrogen bonding (NMR, Table SM5) and lower effective Lewis basicity (solvatochromism, Table SM6) to the cyclization of C$_3$OMeIm$^+$. This intramolecular hydrogen bonding should decrease the interactions of C$_3$OMeIm$^+$OAc$^-$/cellulose both as hydrogen-bond donor (through the relatively acidic C2-\cdotH···O(H)-cellulose) and acceptor (cellulose-OH···ether oxygen of the IL side-chain).
Figure 8. Schematic representation of the possible intramolecular hydrogen bonding in C₃OMelImAc-DMSO between the ether oxygen and C2-\(H\) (a) and C5-\(H\) (b). These configurations are based on arguments advanced for aqueous solutions of the same ILs (de Jesus, Pires, Mustafa, et al., 2017).

The relevant points of 3.3 are: (i) insertion of ether oxygen in side-chain of IL imidazolium cation did not enhance the dissolution and acylation of the cellulose in that solvent; (ii) both macroscopic and microscopic effects of RMeImAc-DMSO binary mixtures contribute to the observed efficiency of C₄MeImAc.

3.4. Effects of “blocking” position 2 of the imidazolium ring on cellulose dissolution and derivatization

Our recent work on solvatochromism in aqueous solutions of these ILs indicated the following order for empirical polarity: aqueous C₄MeImAc > aqueous C₃OMelImAc. This order was inverted, however, when the IL was based on 1,2-dimethylimidazole, i.e., the order of empirical polarity was: aqueous C₃OMe₂ImAc > aqueous C₄Me₂ImAc (de Jesus, Pires, Scharf, et al., 2017). We decided, therefore, to determine whether 1,2-dimethylimidazole-based ILs are necessarily better solvents for cellulose dissolution and acylation, relative to those based on 1-methylimidazole. As shown in Figure 5b, introduction of C2-\(\text{CH}_3\) in the imidazolium ring increased the values of wt% dissolved cellulose at every \(\chi_{DMSO}\), although C₄Me₂ImAc-DMSO is still a more efficient cellulose solvent than C₃OMe₂ImAc-DMSO, over the entire DMSO concentration range. The enhanced cellulose dissolution by 1,2-dimethylimidazole-based ILs relative to its 1-
methylimidazole counterparts may result, in part, from increased solvent-biopolymer hydrophobic interactions because of the slight difference in hydrophobicity of both diazoles (calculated Log P = partition coefficient 1-octanol/water are -0.094 and 0.034 for 1-methyl- and 1,2-dimethylimidazole, respectively). However, the ether linkage of the C₃OMe₂Im cation may still form an intramolecular hydrogen bond with C₄-H of the imidazolium ring and the weakly acidic hydrogens of the C₂-CH₃ group, impairing its interaction with cellulose. Note that the C₂-CH₃ hydrogens still undergoes H/D exchange, albeit more slowly than the relatively acidic C₂-H (Handy & Okello, 2005).

Figure 7b shows that the effective Lewis basicity of C₄Me₂ImAc-DMSO solutions is still higher than that of C₃Me₂ImAc-DMSO. Additionally, values of DSₐc of cellulose acetates prepared in both ILs are the same within the uncertainty in DS calculation. Therefore, blocking the C2 position of two ILs enhanced cellulose dissolution relative to 1-methylimidazole-based ILs, but did not enhance the Lewis effective basicity or cellulose reactivity.

4. CONCLUSIONS

We assessed the effects of presence of (basic) ether linkage in the side chain of RMeImAc ILs and their solutions in DMSO on the solubility of cellulose and its acylation. Contrary to our initial expectation, the presence of this ether oxygen did not enhance the efficiency of IL as a solvent or reaction medium for cellulose. We attributed the lower efficiency of C₃OMe₂ImAc to deactivation of both (−O- and C₂-H) as hydrogen bonding acceptor, and donor respectively due to intramolecular hydrogen bonding or cyclization, as depicted in Figure 8. We corroborated this conclusion by rheology measurements, 1H, 13C NMR- and solvatochromic data. The observed enhancement of cellulose dissolution due to methylation of C2 position of the imidazolium ring shows the importance of hydrogen bonding and hydrophobic interactions in cellulose chemistry.

Acknowledgments

D. C. Ferreira thanks FIPT for PDCE fellowship for her stay at Aalto University. M. L. Oliveira, T. A. Bioni and H. Nawaz thanks FIPT, Capes, and FAPESP, respectively for their fellowships. O. A.
El Seoud thanks CNPq for research productivity fellowships (grant 307022/2014-5) and FAPESP for financial support (2014/22136-4). H. Sixta and M. Hummel wish to thank Tekes – the Finnish Funding Agency for Innovation - and Finnish Bioeconomy Cluster FIBIC Ltd for funding.

REFERENCES

http://doi.org/10.2174/157017905774322640

http://doi.org/10.1039/c7cp02409f

http://doi.org/10.1021/jo00179a009

