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The development of microwave photon detectors is paving the way for a wide range of quantum technologies
and fundamental discoveries involving single photons. Here, we investigate the photon emission from a
microwave cavity and find that distribution of photon waiting times contains information about few-photon
processes, which cannot easily be extracted from standard correlation measurements. The factorial cumulants of
the photon counting statistics are positive at all times, which may be intimately linked with the bosonic quantum
nature of the photons. We obtain a simple expression for the rare fluctuations of the photon current, which
is helpful in understanding earlier results on heat-transport statistics and measurements of work distributions.
Under nonequilibrium conditions, where a small temperature gradient drives a heat current through the cavity, we
formulate a fluctuation-dissipation relation for the heat noise spectra. Our work suggests a number of experiments
for the near future and it offers theoretical questions for further investigation.
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I. INTRODUCTION

The development of quantum technologies relies on the
ability to control, transmit, and detect single quanta of light,
heat, and charge [1]. Much effort has thus been devoted to the
manipulation of individual photons [2,3], phonons [4,5], and
electrons [6] at the nanoscale. Electrons [7-10] and photons
[11] can be emitted on demand and in some cases detected
with single-particle resolution. In one approach, single elec-
trons are captured in a quantum dot, whose charge state is
read out using a capacitively coupled conductor [12]. Photons,
by contrast, are uncharged with energies in nanoscale systems
that can be very small (in the microwave range), requiring
highly sensitive detectors [13].

Recently, it has been suggested that microwave photons
may be detected in a calorimetric approach [14-16]. A re-
sistive environment is monitored in real-time using ultrasen-
sitive thermometry with dips and peaks in the temperature
corresponding to the emission or absorption of single pho-
tons. In another proposal, microwave photons are detected
using Josephson junctions [17,18]. Very recently, a quantum
nondemolition detector for propagating microwave photons
was realized [19]. Such single-photon detectors are paving
the way for a wide range of applications within quantum
thermodynamics [20], feedback control [21], and quantum
information processing [22]. Moreover, they may help address
fundamental questions regarding heat transport, entropy pro-
duction, and fluctuation relations at the nanoscale [23].

In this paper, we investigate the photon counting statistics
of a microwave cavity at the single-particle level [24-27], see
Fig. 1. The problem is simple to formulate, yet, surprisingly
rich in physics. By combining a generating function technique
with the method of characteristics, we obtain a full analytic
solution for the photon counting statistics on all relevant
timescales. The short-time physics can be characterized by the
distribution of photon waiting times [28—33], which contains
information about few-photon processes which cannot easily
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FIG. 1. Photon emission from a microwave cavity. (a) Photons
are transmitted between a microwave cavity (in green) and an ex-
ternal heat bath (in blue). (b) A possible time trace of emission and
absorption events measured by a single-photon detector. The waiting
time between photon emissions is denoted by t. The setup is shown
schematically in the inset. The cavity with frequency wy is coupled
at the rate y to an external heat bath at the inverse temperature S.

be extracted from standard correlation measurements. The
factorial cumulants of the counting statistics [34—40] are
positive at all times, and we conjecture that this behavior
is linked with the bosonic quantum nature of the photons.
At long times, we find a simple expression for the rare
fluctuations of the photon current which may explain earlier
results on heat transport statistics [41] and measurements of
work distributions [42]. Finally, we consider a nonequilibrium
situation, where a temperature gradient drives a heat current
through the cavity. Here, we obtain fluctuation-dissipation
theorems in the linear and weakly nonlinear regimes, and we
formulate a relation between the heat noise spectra and the
response of the system to small perturbations of the cavity
frequency.

II. MICROWAVE CAVITY

We consider the photon emission from a microwave cav-
ity with the Hamiltonian A = hwo(a‘a + %), where a' (a)

©2019 American Physical Society
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creates (annihilates) photons with frequency wy. The density with f(s,q) =y@m+ 1) 7 —1) and g(g) = yn(e? —1).
matrix of the cavity p(t) evolves according to the Lindblad Remarkably, the differential equation can be solved analyti-

equation [43], cally using the method of characteristics [45]. The generat-
dp i ) ing function contains statistical information both about the
- Ld= _ﬁ[ , 1+ y([7 + 11Dlalp + aD[a"1p). number of photons in the cavity [46—49] and the number of

) photons that have been emitted [S0-52]. Here, we focus on the
where i = 1/(ef™ — 1) is the average occupation of the  Photon emission statistics with the moment-generating func-
cavity in equilibrium at the inverse temperature 8 = 1/(kgT), ~ tion (MGF) M(s,1) = 3, P(m, 1)e™ = G(s,0,1). In ther-
and y governs the photon emission and absorption rates. The mal equilibrium, we find (see Appendix B)

Liouvillian £ captures both the unitary evolution described 26 o1/2
by H and the incoherent dynamics given by the dissipators, M(s, t) = o TooTE 3)
Dlalp = apa’ — L{a'a, p). To be specific, we formulate our 2§ cosh [ 7] + (1 + &%) sinh[}*]

problem in terms of a microwave cavity [24-27]; however,
our findings below are clearly valid for any other bosonic
degree of freedom that can be treated as a dissipative quantum
harmonic oscillator, for instance, a nanomechanical resonator
[5]. Moreover, the heat bath can be either bosonic or fermionic
(see Appendix A), as, for example, an electronic reservoir,
where the emission and absorption of single photons give rise

to dips and peaks in the temperature, which can be measured
using ultrasensitive thermometry [14-16]. IV. WAITING TIME DISTRIBUTION

with & = /1 —4a(1 + i)(e* — 1). This expression holds on
all timescales, where Eq. (1) is valid [53], and it is important
for our further analysis of the photon emission statistics. With
y fixing the timescale, we are left with a single dimensionless
parameter, namely the mean occupation number 7, controlled
by the temperature 7.

We first analyze the waiting time 7 between photon emis-
III. PHOTON COUNTING STATISTICS sions [28-30]. Recently, waiting time distributions (WTDs)
have been measured both for photon emission [3] and elec-
tron tunneling [54]. The WTD can be obtained as W(t) =
<r)a$n(r), where () is the mean waiting time and I1(7) is
the probability that no photons are emitted in a time span of

To investigate the photon counting statistics, we unravel
the Lindblad equation with respect to the number of photons m
emitted during the time span [0, ] [44]. Hence, we resolve the

density matrix as p(t) = >, p(m,t), from which we obtain . 8 g -
the photon counting statistics, P(m, 1) = Tr{p(m, t)}. The duration 7 [31,32]. Physically, the time derivatives correspond

density matrices evolve as %,b(m,t) — (L= T)p(m, 1)+ tp a photon emission at the begi'n'ning and the end of the
Top(m—1,1), where J.p = y(ii + 1)&/A)&T is the superop- time interval [33]. From the deﬁmpon of the MQF, we have

. . I1(r) = M(—o00, t) and then obtain (see Appendix C)
erator for the photon emission current. The equations of
motion do not couple populations of the density matrices W(r) = Ty 7 y + 60" + (y + 2I') cosh[y¢] +  sinh[y¢]
to the coherences; however, the populations are mutuall - _ ot . PN
coupled. To decouple the system OI; eE:]uations, we introducz (y COSh[%] ++20 smh[%]) 4
the generating function G(s, g, 1) = Zn’m(m,?)(m, t)|n)yemstna, @
where s and g are conjugate variables to the number of emitted
photons m and the cavity occupation number #n, respectively.
The generating function obeys the partial differential equation
(see Appendix A),

vt
ez,

Here, we have used that the average emission rate is (J,) =
yi(l +n) =T, and we have defined y = y (1 + 2#).

Figure 2(a) shows WTDs for different temperatures. The
distributions start off at a finite value, YW(0) = 2I", and
then decay monotonically to zero at long times. This be-
0G(s,q,1) =[f(s,9) + g(@)19,G(s, g, 1) + g(@)G (s, q, 1), havior should be contrasted with that of noninteracting

2) fermions, for which the distributions are typically suppressed
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FIG. 2. Photon waiting times. (a) Distribution of waiting times for different average occupations of the cavity, 7 = 0.1, 1, 10. (b) The fast
and slow decay rates are clearly visible on a logarithmic scale with the dashed lines corresponding to 7 = 1. (¢) Conditional emission rate
given that the last emission occurred at the time t = 0. The dashed line corresponds to a Poisson process. (d) Probability of having n photons
(left axis) and mean number of photons (right axis) in the cavity given that the last emission occurred at the time t = 0. For 7 < 0, the cavity
is populated according to a Boltzmann distribution with 7 = 1.
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at short times due to the Pauli principle [31,32]. Similar
to the recent experiments [3,54], the WTDs are double
exponential. For short times, I't <« 1, we have W(r) ~
2l exp (—y[6n(in + 1) 4+ 1]t /2), showing that the fast decay
rate increases quadratically with the mean occupation #, and
not just linearly as one might expect. At long times, I't > 1,
we have W(t) ~ (yj_”;%w exp (—ynt) with the slow decay
rate given by y 7. Figure 2(b) illustrates the crossover between
these limiting behaviors.

The increased decay rate at short times is a signa-
ture of photon bunching. This phenomenon is illustrated in
Fig. 2(c), showing the conditional emission rate, I'.(t) =
W(t)/ froo W(u)du, at the time t after the last photon emis-
sion. Due to the photon bunching, the rate is enhanced at short
times and suppressed at long times. The bunching also affects
the number of photons in the cavity at the time t after the
last photon emission, see Fig. 2(d). An application of Bayes’
theorem shows that the expected number of photons in the
cavity increases by a factor of two directly after an emission
event (see Appendix C). At longer times, with no subsequent
emissions, it is increasingly likely that the cavity is empty, and
it eventually reaches a Boltzmann distribution, albeit with an
average photon number 71/(1 + 7) suppressed below one.

V. CORRELATION FUNCTION

A different perspective on the short-time physics is pro-
vided by the g®-function [2,3,5,55]. The g®-function is pro-
portional to the probability that a photon is emitted at the time
7, given that a photon was emitted at the time v = 0. Unlike
the WTD, other photon emissions may have occurred during
this time span. The correlation function can be obtained from
Eq. (3), and we find (see Appendix D)

P =147, (5)

This is the g®-function for chaotic thermal light as well as for
other noninteracting bosons, for example, thermal phonons as
shown in recent experiments [5]. Equations (4) and (5) are
important for the recurring discussion about possible connec-
tions between the WTD and the g®-function. For renewal
processes, where consecutive waiting times are uncorrelated,
the two functions are related in Laplace space as g (s) (J,) =
W(s)/[1-=W(s)] [32,33,56,56]. This relation does not hold
for our cavity, since it does not return to the same state
after each emission. Moreover, unlike the g(z)—function, the
WTD depends on temperature, showing that the two are not
equivalent.

VI. FACTORIAL CUMULANTS

To investigate the transition from short to long observa-
tion times, we consider the factorial cumulants of the pho-
ton counting statistics [34,34—40]. The factorial cumulants
are defined as (m*)r = (m@m — 1)...(m — k + 1)), where
(m*) = 85" In M(s, t)|s—0 are the ordinary cumulants of order
k. The counting statistics of noninteracting electrons in a
two-terminal setup is always generalized binomial [57-59],
and the sign of the factorial cumulants alternates with the

order k [36-39]. By contrast, for the photon cavity we find

(mhr = yta(l +n),
2 e =11, _\2
(mHr = 2Vf[1 + T]n (1+n), ©)

—yt

e’ —1
(m*)r = 12Vt|:1 +e "+ 27}_13(1 +71)?,

with similar expressions for the higher factorial cumulants,
which are positive. These results suggest that the quantum
statistics of the particles, being bosons or fermions, is inti-
mately linked with the sign of the factorial cumulants, consis-
tently with earlier works on photon counting statistics [34,35].
At long observation times, we have (m*))r o ytik(1 + i),
showing that the photon counting statistics is nearly Pois-
sonian at low temperatures, where only the first factorial
cumulant is nonzero.

VII. LONG-TIME STATISTICS

To complete the discussion of the long-time limit, we
analyze the large-deviation statistics of the photon emission
current [60]. To this end, we evaluate the counting statis-
tics P(J, 1) = 5= [ dse'®=%) in the long-time limit,
where O(s) = lim;_, oo In [M(s, t)]/t is the cumulant gener-
ating function for the photon emission current J, = m/t,

O(s) = %(1 —JT=4(e = Da(l + a)). )

The large-deviation statistics of the emission current can be
evaluated in a saddle-point approximation,

In[P(J., 1)]
t

where s, = 5,(J,;) solves the saddle-point equation ®'(s,) =
J.. Figure 3(a) shows the large-deviation statistics for different
temperatures. With increasing temperature, the distributions
become strongly non-Poissonian and large emission currents
are more likely. For large currents, the saddle-point s, must be
close to the square-root singularity of ®(s) at s = s., where
O(s.) = y/2 and the derivative ®'(s.) diverges. With s, >~
s¢c = 21In[cosh (Bhwy/2)] =~ Bhwy for Bhwy > 1, the large-
deviation statistics becomes (see Appendix E)

In[PUe.1)] _
t

>~ O(So) — Soe, (8)

>y /2 = Bhwode, Jo > y. 9)

This expression agrees well with the exact results in Fig. 3(a).
As we discuss below, it provides an analytic understanding
of the linear dependence on the heat current and the inverse
temperature observed in numerical calculations of the large-
deviation statistics in phononic heat transport [41]. A similar
reasoning might also be helpful in understanding the tails of
the work distributions measured for a microcantilever [42].

VIII. HEAT TRANSPORT

Our analysis can be extended to setups with the cavity
coupled to several reservoirs kept at different temperatures,
thus providing an interesting opportunity to investigate the
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FIG. 3. Large-deviation statistics of the photon current.
(a) Analytic results for the distribution of the photon emission
current J, from a cavity coupled to a single reservoir with 7 =1
(red), 1.5 (green), and 2 (blue). The dashed line is based on the
branch-point of the cumulant generating function in Eq. (7), and
it is given by Eq. (9) at low temperatures. (b) Distribution of the
current J running via the cavity between a hot and a cold reservoir
with n. =1, n, =1 (red), n. =1, i, =2 (green), and 7. =1,
fi, = 3 (blue), and we have defined y = y;, + y.. The dashed lines
are approximations based on the branch-points of the cumulant
generating function in Eq. (10). At low temperatures, the left line is
of the form o B.hiwyJ, while the right one is given by o< — B, fiwgJ .

heat flow through the cavity in a nonequilibrium situation
[61-64]. Similar to Eq. (3), we can evaluate the MGF at
finite times for the transfer of photons between the cavity
and each reservoir [65]. Here we are particularly interested
in the long-time statistics of the photon current J running via
the cavity from a hot to a cold reservoir. For the net photon
current, the cumulant generating functions reads

Yet Vi YeVh
O(s) = 1— [1—4—22 , 10
® 2 < \/ (ye + Vh)ZK(S)) (10
with k(s) = (e — D)(1 + A )iy, + (e~ — Dia.(1 + 7)),

where 7ip) is the Bose-Einstein distribution of the hot
(cold) bath at the photon frequency wg, and Yy is the
coupling strength (see Appendix F). This expression also
holds for the heat exchange between two resistors connected
via a narrow transmission profile [66]. Again, we can evaluate
the large-deviation statistics by analytically solving the
saddle-point equation. The cumulant generating function has
square-root singularities both for positive and negative values
of s, which determine the linear parts of the large-deviation
function for large (positive or negative) photon currents as
illustrated in Fig. 3(b). These results resemble the numerical
findings of Ref. [41].

IX. FLUCTUATION RELATIONS

It is interesting to understand the properties of the heat
current fluctuations. The cumulant generating function fulfills
the symmetry ®(s) = ©@(—s — o), where o = hwo(B. — Bn)
determines the entropy increase per transferred photon. This
symmetry immediately implies the fluctuation relation [67,68]

(see Appendix G)

1 [ P(J,t) :|

-In| — | =0/, an
t P(—J,1)

which connects the probabilities to observe photon currents
J of opposite signs, also far from equilibrium with large tem-
perature differences. Close to equilibrium, we may expand the
mean heat current (Jo) = hwg(J) >~ G(QI)AT + G(Q AT?)2

and the noise Sp = ((Jé)) o~ qu) + S(QI)AT in the temperature
difference AT. From the symmetry of the generating function,
we then obtain the fluctuation-dissipation theorem for heat
currents, S(Qeq) = 2kBT2G8), relating the equilibrium noise to
the linear thermal conductance [41,69]. Moreover, we find the
relation Sg ) = kBTZGg) between the noise susceptibility and
the second-order response coefficient of the heat current in the
weakly nonlinear regime (see Appendix H).

X. NOISE POWER SPECTRUM

Finally, we turn to the noise spectra of the heat currents.
The finite-frequency noise can be obtained from the MGF at
finite times using MacDonald’s formula [70-72]. In equilib-
rium, the auto-correlation functions read (see Appendix I)

Sg" (@) = sgq>(1 + U“’—z) (12)
Yh,c (Ye + Vh)z + w?

while for the real-part of the cross-correlator, we find

2
(Ve + vu)* + w2>' (1)

We see that §5(0) = Sp(0) = —Re[S3'(0)] = S5¢', since
there is no accumulation of photons in the cavity at low
frequencies. Generally, we do not expect simple fluctuation-
dissipation theorems for the individual heat currents at finite
frequencies [73]. On the other hand, using the continuity equa-
tion U(t) = —[Jé(t) + Jé(r)] for the cavity energy and the
outgoing heat currents, we can write the energy fluctuations
as *Sy () = SH(@) + Si(w) + 2Re[S (w)]. Now, applying
a weak perturbation H (1) = K@t)H, the change of the cavity
energy (AU)(w) = x(w)K(w) in the Fourier domain can be
expressed in terms of the susceptibility x (@) in response to the
force IC(w) [74]. We then arrive at the fluctuation-dissipation
theorem, Sy (w) = 2kgT Im[x (w)]/w, which is valid for fre-
quencies below the temperature, 7iw < kg7 . Combining these
expressions brings us to the relation

So(@) + Sp(@) + 2Re[SG (@)] = 2ksTw Im[x ()]  (14)

Re[S5'(w)] = S5 <—1 -

between the sum of the noise spectra and the response of
the system to small perturbations of the cavity frequency. We
expect this relation to hold for many systems, where external
reservoirs exchange heat via a central region.

XI. CONCLUSIONS

We have fully determined the photon counting statistics
of a quantum harmonic oscillator with dissipative Lindblad
dynamics. To be specific, we have formulated our finding in
terms of a microwave cavity, although our general results are
valid for any quantum harmonic oscillator. The short-time
physics can be characterized by the distribution of photon
waiting times, which contains information about few-photon
processes that cannot easily be extracted from standard cor-
relation measurements. The factorial cumulants are positive
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at all times, unlike the case of noninteracting electrons for
which the sign alternates with the order. This finding indicates
that the quantum statistics of the particles, being bosons or
fermions, determines the sign of the factorial cumulants. We
have obtained a simple expression for the large-deviation
statistics of the photon current, which may explain earlier
results on heat-transport fluctuations and measurements of
work distributions. Finally, we have generalized our problem
to a nonequilibrium situation in which a temperature gradient
drives a heat current through the cavity. In this case, we
have derived fluctuation-dissipation theorems in the linear and
weakly nonlinear regimes and formulated a relation between
the heat noise spectra and the response of the system to small
perturbations of the cavity frequency. These predictions may
be tested in future experiments with single-photon detectors
or calorimetric measurements of heat currents.
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APPENDIX A: FROM THE LINDBLAD EQUATION [Eq. (1)]
TO THE PARTIAL DIFFERENTIAL EQUATION Egq. (2)

We here derive the partial differential equation in Eq. (2)
from the Lindblad equation [Eq. (1)] for a single light mode,
with resonance frequency wy, coupled to a single heat bath at
temperature 7 (we consider multiple baths in Appendix F).
The light mode is modeled as a quantum harmonic oscillator
with the Hamiltonian

A = nhoy(d'a+1), (A1)
where 7 is the reduced Planck constant and a (af) is the
anniliation (creation) operator of the oscillator. Taking the
coupling to the heat bath into account, the time evolution of
the reduced density matrix p of the cavity is given by the

Lindblad master equation [43,75,76]
dap A 1 .
d_f — _% (A, 1+ y(i+ 1) <&i>& - 5{&’&,/6})

| I

+yi (a*i)& — 5 laa, f)}), (A2)
which is the same as Eq. (1) in the main text. Here, y is
a reference rate of relaxations and excitations in the system
induced by the reservoir and

n= ! A3

S e 1 (A3)
is the average occupation of the light mode in equilibrium at
the inverse temperature g = 1/(kgT ).

The Lindblad Eq. (A2) is not dependent on the microscopic
details of the heat bath and can describe both bosonic and
fermionic heat baths. To see this, we may rewrite the emission
and absorption rates as

dE
y(i+1) =y f h_a)of(E)[l — f(E + hay)] (A4)

and

_ dE
yn=y / h_a)of(E)[l — f(E — hay)], (A5)

using the definitions of the Bose-Einstein and Fermi-Dirac
distributions, 7 and f(E) = 1/(e’f 4+ 1). We may think of
the left-hand side of these equations as corresponding to a
bosonic bath, such as the thermal background radiation, with
i being the average number of bosons in the reservoir with
energy fiwy. Similarly, we may think of the right-hand sides in
terms of a fermionic bath, such as the Fermi sea of electrons
in a nanoscale conductor. In this case, the emission of a
photon from the cavity with energy hw, is associated with
the excitation of an electron with energy E to a higher-lying
state with energy E + Fliwy. The absorption of a photon is in
a similar manner associated with an electron relaxing from
energy E to a lower-lying state with energy E — hwy. The
electronic processes take place close to the Fermi level, Er =
0, where the electronic density of states is approximately
constant, g(E) o 1/(hwy).

1. Unraveling the master equation

To keep track of the number m of photons emitted into
the heat bath, we introduce the m-resolved density matrices
p(m,t), so that P(m,t) = Tr p(m,t) is the probability of
having emitted m photons to the heat bath. They satisfy the
unraveled Lindblad equation [44],

dp(m,t) i
L [, p(m,t
o h[ p(m, 1)]

1 .
+y@+1) (ai)(m—l, na' — 5{5&, p(m, r)})

+yn (”f)(m, 1)a— %{&& »p(m, m)’ (46)

A A

since the gain term J,p = y (7 + 1)apa’ in the Lindblad
equation [Eq. (A2)] is responsible for photon emissions.

Following the framework of full counting statistics
[77-79], we introduce a counting field s by performing a
Laplace transformation,

oo
pls, )= plm,1)e™,

m=0

(A7)

which finally transforms the Lindblad equation to

dp(s,t)
dt

= LB, (s, 1)
+y@+1) (ex ap(s,ta’ — %{&T&, D(s, t)})
+yi (a*p(s, ta — %{&&*, D(s, t)}). (A8)

Since we start counting the emitted photons at time ¢ = 0, the
initial probabilities are P(m, 0) = §,, 9, which translates to the
initial condition p(s, 0) = po for the density matrix.

085418-5



FREDRIK BRANGE, PAUL MENCZEL, AND CHRISTIAN FLINDT

PHYSICAL REVIEW B 99, 085418 (2019)

2. The generating function G(s, q,¢)

Taking the matrix elements (ng|---|ny) of Eq. (AS), we
obtain a set of dynamical equations for the populations
(n|p(s, t)|n) and the coherences (n|p(s,t)|n2) (ny # ny) of
the density matrix. To determine the emission probabilities
P(m,t), it is sufficient to determine the dynamics of the
populations only, which is possible because the dynamical
equations only couple populations to other populations, but
not to coherences. The population dynamics can be fully
solved by performing another Laplace transformation,

o0

G(s,q,0) =Y (nlp(s, 1)ln) ",

n=0

(A9)

where ¢ is the variable conjugate to the populations, and thus
recasting the system of dynamical equations into a single
partial differential equation,

3G (s,q.t) = Lf(s,q) + g(@)]0,G(s, q,1) + 8(q) G(s, g, 1),
(A10)
which is Eq. (2) in the main text. For the sake of brevity, we
have defined the functions

fG.g)=y@a+DE™ " —1), glg) =yl —1). (All)

3. Thermal equilibrium
At long times, after bringing the system in contact with the
reservoir, the system will assume the thermal equilibrium state
Peq = e P /Z, where Z = Tr e #H. The probability Peq(n) =
(n|Pegln) for the cavity to be populated with n photons is then
given by the Boltzmann distribution

1
Peg(n) = = e Bhon (n+1/2).

1

oo
— —Bhwo (n+1/2) _
Z= Z ¢ T eBliwn/2 _ p—Bliwy/2”

n=0

(A12)
For later convenience, we also calculate the Laplace transform

(A13)

Geq(q) = nX:(;Peq(n) el = Toad —en)’

APPENDIX B: DERIVATION OF THE MOMENT
GENERATING FUNCTION [Eq. (3)]

The general solution of Eq. (A10) has the form
g(S, qvt)zgo(sv q7t)g*(s’ qst)7 (Bl)

where Gy(s, ¢, t) is the general solution of the homogeneous
equation

0:G(s,q,1) =[f(s,q) + g(q)]9,G(s, q, 1), (B2)
and G, (s, g, t) is a particular solution of Eq. (A10).

1. Homogeneous solution

The homogeneous solution is obtained using the method of
characteristics [45]. We find the curves go(s, t) along which
the solutions Gy(s, ¢, t) are constant,

d
Eg()[sv QQ(SJ)J] = Oa (B3)

where O = gg(s, 0) specifies the initial condition of each
curve. The general homogeneous solution is then

g()(S, q!t) =F[Sv Q(S, Q$t)]s (B4)

where O(s, g, t) is the inverse to the equation ¢ = go(s, t) and
F (s, q) specifies the initial data.

From the condition Eq. (B3) of characteristics, we obtain
the ordinary differential equation

d
% = — (5. 40) — 8(q0)

=yRi+1—ne? — (i+ 1)e’ e 9] (B5)

for go(s, t), which can be solved by separation of variables:

t_/qQ dx
V= o 2+ 1—qer— (i+1)es e

1 _ 975 _ X |[¥=4e
_ sz tzand =l (B6)
£ E+1+2m(l— e,

where & = /1 — 4a(1 + i)(ef — 1). Solving this result for Q,
we arrive at the result

0(s,q,1)
o ftl &
_ln{ TR
(5 —1 =271 —e9]) — 7" (& + 1 +27[1 — 7))
&~ 1—2a[1 —et]) + 71 (E + 1+ 201 — eq])}’
(B7)

which, together with Eq. (B4), solves the homogeneous equa-
tion.

2. Particular solution

To find one particular solution, we make the ansatz of a
time-independent solution G, (s, g, t) = G.(s, q). Plugging the
ansatz into Eq. (A10) yields

7 —g(x)dx __Z/" dx
o fGx)+gx)  2Jo fls,x)+gx)

1/" 1/" dlf (s, x) + g(x)]
ldx— - | =210 2
0 0 dx

2

InG.(s,q) =

2
dx
X —
fs,x) + g(x)
vt 1. el[f(s, q) + g(q)]

Zl —Zmh , (B8)
20,0 20 f(s.0)+g(0)

where yt is short for the expression in Eq. (B6).

3. General solution and initial value

The last remaining step is to express the function F
appearing in the homogeneous solution Eq. (B4) in terms
of the initial condition py or, equivalently, the generating
function G(s, g, 0) (which does not depend on s). Evaluating
Eq. (B1) at time ¢t = 0, we find that F' is given as F (s, q) =
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G(s,q,0)/G.(s, q). Therefore, we can write
Gi(s, q)
Gi(s, Q)

where Q is short for the function Q(s, g, t) given in Eq. (B7).
Plugging in Eq. (B8), we obtain the full solution

G(s,q.1) =G(s,Q,0)

(B9)

eC[f (s, Q)+ g(Q)]
e1f(s,q)+ 8@

G(s,q,1) =G(s,0,0) ey’/z\/ (B10)

4. Moment generating function

The moment generating function (MGF) M(s,t) =
Tr p(s,t) = G(s,0,¢) is directly obtained from Eq. (B10).
Plugging in g = 0 gives [here Qp = Q(s, 0, 1)]

2a+1 issinh[ézﬂ]ﬂosh[m]

2
27 27 & cosh[ 2] + sinh[ 2]

Qozln{ } (B11)

and

%- eyt/Z

M 5 == 5 ,O )
(5.1) = G(s. O )Scosh[s—}z"] —{—sinh[%]

(B12)

where § = /1 —4n(1 + n)(e® — 1) as above.
If the system is initially thermalized, we can plug in
G(s,q,0) = Gey(g) as given in Eq. (A13) and readily obtain

26 7'/
26 cosh[£1] + (1 + £2) sinh[£1]

M(s, t) = (B13)

This equation is identical to Eq. (3) in the main text.
From the MGF, we can, for example, determine the aver-
age emission current (J,) = 9, M(s, 1)|,_,/t. Using £ =1 —

27(1 + i)s + O(s?), we expand the MGF in powers of s,
M(s, 1) =1 + ya(l + a)st + O(s?) and read off

(Je) = yn(l +n). (B14)
5. Long-time limit
For long times yt >> 1, we can approximate cosh[s—)z”] ~
sinh[££%] > ¢57'/2, Applying this to Eq. (B13) yields the MGF
in the long-time limit,

45
M(s, 1) = —— ¢ V'ETD/Z B15
GO Trey (B1)
as well as the cumulant generating function:
1 .t
O(s) = lim % = _Z(g -1

100 t 2

- %(1—\/1—4(6“— Da(l + 7). (B16)

APPENDIX C: UNDERSTANDING THE WAITING TIME
DISTRIBUTION [Eq. (4)] WITH BAYES’ THEOREM

We use the MGF in Eq. (B13) to calculate the waiting time
distribution (WTD),

W(z) = (7) 9T1(7), (C1)

where (t) = 1/(J,) is the mean waiting time and [1(7) =

M(—00,t) = P(n =0, t) is the so-called idle-time probabil-
ity. With (J,) = yn(l +n) = I', we obtain

6r 2I")cosh[yt] 4+ sinh[yT] s

W(z) =ry7 Lt +(y +20) coshlyz] +7 s [3/ 1,5

(7 cosh[ 5] 4 (¥ + 2I) sinh[ 57 ])°

E)

(C2)
for the WTD, where we have defined y = y (1 + 2n). This is
the same equation as Eq. (4) in the main text.

Expanding the WTD in 7, we find that it equals

W(T) —2r e—y[ﬁfl(l_H-lH-l]T/z + 0(1,2) (C3)

for small waiting times. The leading order at long times is

4Tyy
(y +7 +2IN?

—ynt

W(r) =~ (C4)

1. Consecutive emissions atf = 0

From Eq. (C3), we find that the probability for a second
photon emission immediately after the first is

W(0)dr = 2T dr. (C5)

Note that W(0) = I'g®(0) as shown in Ref. [29], where
g () is Glauber’s second degree of coherence which we will
calculate in Appendix D. The functions WW(z) and I'g®®)(7) do
not agree at first order in 7, however.

The finite value at T = 0 stems from the fact that the photon
cavity can contain many photons at the same time and thus
emit several photons within an arbitrarily short time, without
a need for particle absorption in between each event. The
WTD does therefore not display the suppression at short times
that WTDs typically display for the emission statistics from
single fermionic modes, such as a quantum dot with a single
resonance level.

In fact, the cavity has an emission rate that is enhanced by
a factor of 2 at 7 = 0 compared to the average emission rate
(Je) = T'. This enhancement can be understood from Bayes’
theorem. The conditional probability P(n|Ep) of having n
photons in the cavity directly after a photon emission event
Ey at time r = 0 is given by

Peq(n+1)_n+1
Tdt @

P(n|Ey) = P(Eo|n+ 1) Peg(n + 1),

(Co)
where Pq(n) is the probability for the cavity to be filled with
n photons in thermal equilibrium given in Eq. (A12). We
here used that the probability P(Ey|n + 1) for the emission
event Ey, given that there are n + 1 photons in the cavity just
before, is

P(Eoln+ 1) = y(@@+ D) Trlaln + 1)n + 1|a" ] dt

=y@+1)(n+ 1)dt. (C7)

From Eq. (C6), it follows that the expected number of photons
in the cavity after an emission event is exactly twice as large
compared to the steady state:

> nP(n|Eg) = 27.

n=0

(C8)
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This result explains our previous observation of the emission
rate enhancement, since the emission rate can be calculated as

Fe(0) =Y y(a+ 1)nP(n|Ey) = 2T, (C9)
n=0

where, as in the main text, I'.(7) is the conditional emission
rate at a time 7 after the last emission.

2. Conditional emission at finite times

The conditional emission rate I'.(7) is generally defined
as the conditioned rate for emission events E; at time ¢ = T,
given that there was an emission event Ej at time t = 0 and
no other emissions in between. By the Kolmogorov definition
of conditional probability, this means that

W(r)
1— [y W)du

As shown in Fig. 2(c) in the main text, the emission rate
exhibits an enhancement at short times and a suppression at
long times compared to its average value I'.

From this emission rate, we can calculate the conditional
probabilities P(n|Ey, T) of having n photons in the cavity
at a time 7 after the last emission event. The probabilities
P(n|Ey, 0) are equal to the previously derived P(n|Ey), see
Eq. (C6). To find the dynamics of these probabilities, we again
use the definition of conditional probability, obtaining
I1,(dt|Ey, T)
M(dt|Ey, T)
Here T1(dt|Ep, T) =1 —T.(r)dt is the conditioned idle-
time probability for no emission events during the time
dt, given the emission event Ey; and that there was no
other emission between times + = 0 and ¢ = . The quantity
IT,(dt|Ey, T) is the conditioned idle-time probability for no
emission events during dt and for the cavity to contain n
photons at time t = t + dt. It can be calculated as

Hn(dflEOv T) = P(n|Ep, T)[l — Vn—n+1 dt — Yn—n—1 dt]
+ P(” - 1|E(), 'L') Yn—1—n d‘L’, (ClZ)

Fe(r) = (C10)

P(n|Ey, T +dt) = (C11)

since dt is an infinitesimally short time and there can be at
most only one emission or absorption event during this time.
Here y,_., denotes the rate at which the number of cavity
photons changes from n to n’. More specifically, y,_,11 =
yia(l +n) and y,,— = y (i + 1)n. Together, we obtain a
system

0. P(nlEy, t) = ' (r)P(n|Ey, T) + ynnP(n — 1|Ey, T)
—y[a(l +n) + @+ DnlP(n|Ey, ) (C13)

of differential equations for the conditional probabilities that
can be solved at least numerically, see Fig. 2(d). As a consis-
tency check, we can calculate I'.(t) as well as the WTD W(r1)
from the probabilities P(n|Ey, T) and get back the previous
results:

e(r) =)y @+ 1)nPlEy, ),
n=0

W(t) = e o Te@dup (1),

(C14)

(C15)

3. Long-time behavior

In the long-time limit, we expect the probability distribu-
tion to reach a steady state. Looking for such a solution, we
set 9. P(n|Eyp, t) to zero in Eq. (C13) and obtain

Peq(n|E0a ) o n
Pog(n —1|Ep, ) 1420

(C16)

for the steady state. We used that the waiting time distribution
for long times [see Eq. (C4)] resembles a Poissonian process
with emission rate y 7,

lim I.(t) = yn. (C17)
T—>00
Noting that for a Boltzmann distribution % = 15, we

find that the conditional probability distribution for long times
is a Boltzmann distribution as well, albeit with modified 77 =
1% In other words, 7 is the expected number of photons in
the cavity a long time after the last emission event. As one
would expect, 7 is always between O (for 7 = 0) and 1 (for
71 — 00): If there has not been any emission for a very long
time, we expect the average number of photons in the cavity
to be less than one. Note also that 77 = 7 for low temperatures.

APPENDIX D: CALCULATION OF THE g?-FUNCTION
[Eq. (5)]

From the MGF in Eq. (B13), we calculate the noise spec-
trum S(w) of the emission current using MacDonald’s formula
[701,

S(w) /wdt'(t)d« Ne)y=T(142 Ly
w)=w sin(wt)— {(m = —— ),
0 dt )/2 —+ (,()2
(D1

where
d2
(M) (1) = —=M(s,0)| = (1 +m)[2A(1 + R)e”"
ds s=0

+yt +n(l +n)(yt[2+ yt] —2)].

The first part in Eq. (D1) is due to self-correlations. From the
definitions of S(w) and g(z)(l’), it follows that [56] g(z)(r) is
related to the inverse Fourier transform of the noise spectrum
without the self-correlation part as

(D2)

o0
() =1+ / doe @ [S(w) —T] =14 ¢,

—00

(D3)
which provides the result given in Eq. (5) in the main text. An
important observation is that the g®-function does not depend
on the bath temperature. Therefore, it cannot be possible, in
general, to derive the waiting time distribution from the g®-
function alone.

2n T2

Photon emission is not a renewal process

For renewal processes, for which subsequent waiting times
are uncorrelated, the WTD can be derived from the g(z)-
function and I = (/) using the relation

I g?(s) = W(s)/[1 = W(s)]
for the Laplace transformed g® (s) and W(s) [29].

(D4)
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Here, we compute the WTD W, () that one obtains from
applying this formula to the present case, therefore assuming
that the photon emission process is a renewal process. We
show that this distribution is different from the correct WTD
given in Eq. (C2), thus showing explicitly that the process is
not a renewal process.

The Laplace transform of the g®-function given in
Eq. (D3)is g¥(s) = 1 + #, using Eq. (D4) we get

I g®(s) r2s+vy)
1+TgP(s)  sts+y)+TQ2s+y)

Performing an inverse Laplace transform, we obtain

Wee(s) =

(D5)

M@a%:%W@”+n—zné*—nkﬁw“”“2
(D6)
with [' = /y2 4+ 42 = y/1 + 4n2(1 + n)2. This WTD is
evidently different from the one given in Eq. (C2), showing
that the emission statistics is a nonrenewal process. At short
waiting times 7, the expression Eq. (D6) reduces to

Wie(T) > 2T ¢ V410D +11r/2

D7)

which can be compared to the short-time WTD given in
Eq. (C3), W(t) ~ 2T ¢~ 762G+ D+117/2 The WTD of the cav-
ity decays faster as a result of the bunching effect. We see that
for low temperatures, for which 7 — 0, the two distributions
give the same result. In that case, it is very unlikely that there
is more than one photon in the cavity and thus the cavity
returns to the same state after every emission; this is a renewal
process.

APPENDIX E: LARGE-DEVIATION STATISTICS
OF THE EMISSION CURRENT

Here we discuss the long-time statistics of the emis-
sion current, described by the cumulant generating function
O(s) = lim,_, » w As shown in Appendix B, it has the
form

@@ﬁ:%ﬂ—vﬂ—«w—lﬁﬂ+@) (E1)
for the emission current. This is the same equation as Eq. (7)
in the main text.

We recall that the MGF M(s, t) ~ ¢®®) is defined as

M(s.t) =Y P(m.1)e™, (E2)

where P(m,t) is the probability to have emitted m photons
at time ¢. This relation allows us to extract the probability
P(J.,t) for having an average emission current J, = m/t
during a measurement time ¢ as a Fourier coefficient of the
MGTF; it is

in

1
HE”ZEE/<

1 i
_ ds et[(-‘)(s)—slg].

2mi —ir

ds M(s,t)e ™

(E3)

In the long-time limit, this integral can be solved using the
saddle-point approximation. Let sy be the solution to the

saddle-point equation,

O'(s0) = Je, (E4)

then the exponent of the integral equals ¢[®(sy) — soJ. +
%@”(so)(s — 50)?] to second order. The integral can be per-
formed explicitly, and after taking the limit of large + we are
only left with

In[P(Je, 1)]

p ~ @(So) — S()Je

(E5)

up to terms of order In[z]/t, note that sy does not de-

pend on ¢. This is Eq. (8) in the main text. The quantity

lim,_, o In[P(J,, t)]/t is called the large deviation function.
Solving Eq. (E4), we obtain

Je
sozln[;Fg/4e-+y2+4yr-zkﬂ, (E6)

and plugging this back into Eq. (ES) gives the final result:
In[P(J, )] ¥y

==+ —11/ J2+y2 44yl
t 2 ¢ 2V e

r
+km[ Y

. (E7)
J.(JAZ+ 2 +4yT —2J,)

For examples illustrating this distribution, see Fig. 3(a).

1. Large J, limit
For J, > y, I', we obtain from Eq. (E6) that

m:%zmp+l} (ES)

4T

where s. is the locus of the square-root singularity of
the cumulant-generating function O(s) with O(s.) = y /2.
Plugging back into Eq. (E5), we obtain

InPUe0] Y

14
n |1+ % ]2, E9
' > U Tar (=)
Thus the tail of the probability distribution decays exponen-

tially.

In the limit of high or low temperatures, this expres-
sion can be simplified further. For high temperatures i 2>
1, we approximate the slope as In[l+ Jj<]~ (Bhaw)? /4,
resulting in

[P, )] _y (Bhwo)
—_— Je, E10
t 2 4 ¢ E10)
whereas for low temperatures 7 < 1, we use that

In[1+ %] ~ Bhwy —In4. At even lower temperatures,
we can neglect also the constant offset, obtaining

In[P(Je, )] ¥

~ = — Bhwy J., Ell
; 3 Bhao (E11)
which is Eq. (9) in the main text.
2. Poissonian limit
In the other limit, J, < y, we obtain from Eq. (E7)
In[P(J,,t %
ELL—JJZCQ—yﬁ%mkm[LlL} (E12)
t yI
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For n <« 1, this is a Poissonian distribution corresponding to
the CGF

®poiss(s) =TI —1), (E13)

which is exactly what Eq. (E1) reduces to in this limit.

APPENDIX F: GENERALIZATION TO MULTIPLE
HEAT BATHS

Here we generalize the previous results to multiple heat
baths. We consider a cavity coupled to N heat baths, each
with a coupling constant y; and an inverse temperature §;. The
Lindblad equation is

| Y
>
Il
|
St o~
m
>
I M =
i
=
=
E
—_
N
N
»
e}l
S

which is a direct generalization of Eq. (A2). As before, i; =
W is the Bose-Einstein factor corresponding to the mode
wy of the ith reservoir.

To keep track of the number m;" (mi’) of photons emit-
ted into (absorbed from) heat bath i,

: mE-resolved density matrices ,o(m
Tr ,o(m , 1) is the probability of having emitted/absorbed m
photons to/from heat bath i. Analogously to the single- bath

case, we then perform a Laplace transformation,

o0

Pstoty =D plmf )=t (R

mft =0

with two counting fields per bath, s for absorption and
s; for emission. We then introduce the generating function
g(s, L q,t) = 0(n|p(sl ,1)|n) €™ and obtain the partial
differential equation,

HG(sE, q.0) = [f(s, @)+ g(si, P19,G(s5, g, 1)

+8(s7. ) G(si. q. 1), (F3)

with
fistq) = Zy,(n, + 1) 1) (F4)

and
8si . q) = Zm ("% —1). (F5)

From the method of characteristics, we get the solution,

g(S?:, q,t) = g(sl?‘:7 0,0) e}/):[/z

0(s,q,t) =In {

Similar to  before, & is defined as &=
V@412 —4n—(n* + 1), where 7= val ;” ii; is the
average number of photons in the cavity in the steady state,
and n~ = Y, Lae™ and n* 4+ 1= Y0 L+ e
We focus on the case where the initial state is the steady state,
i.e., G(sT, ¢, 0) = Geq(q), see Eq. (A13).

1. Emission current statistics

To generalize the previous results for the emission
statistics, we compute the MGF for photon emission from
the cavity to heat bath i = 1. To this end, we set all counting
fields to zero except s = s7, the counting field corresponding
to emission into heat bath i = 1. The MGF M(s,t) =
Tr p(s,t) = G(s,0,¢) can be calculated from Eq. (F6),
1t1s

2¢ evst/?

M0 = ]+ (1 +&2)sinh[ £

g
\/1_4;’_;71(1-1-;‘11)(@—1). We see that the

MGF resembles the one of a single heat bath given
in Eq. (B13).

28 cosh[g’g’

where & =

we introduce the Q[ f(sF. Q)+ g(s7, 0)] F6
,1), so that P(ml 1) = X eq[f(s;r,q)—i-g(sf,q)] ’ (F6)
with yg = YV | yi and
J
21 & (E—[1+20]+2n el) — 7 (E + [1 + 2] — 2n”e)) } )
2n~ 2n= (€ —[1 4 2a] + 2n—e9) + esvet (£ +[1 + 2] — 2n—ed]) |

[
From the MGF, we obtain the waiting time distribution,
_ys + 6T + (ys +2IN) cosh[yT] + ¥ sinh[y 7]
()7 cosh[%] + (yz +2IN) sinh[%])3
xe?, (F9)

with § = y5 /1 +4;’—;;’1(1 + 7). Here, T' = y1ia(1 +ny) is

the average emission rate into the first reservoir and the mean
waiting time is (t) = '
Similarly, we get the g®-function

W()=T

g2 =1+l (F10)
which, again, is temperature independent in contrast to the
WTD.

2. Net current statistics

We consider the net current statistics between the cavity
and a heat bath with average occupation number 7, and
coupling strength y,. The cavity is assumed to be coupled
to another heat bath with occupation number 7;, and cou-
pling strength y;,. The MGF of the net current is obtained
as M(s,t) = Tr p(s, 1) = G(s,0,¢) (where s = s = s and
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sf =5, =0), yielding
2 ev=t/?
]+ (1 + x?)sinh[ 2]

M(s, 1) = (F11)

2§ cosh[é’;‘:t

where

£ = \/1 —4Y s
145
x=\/

If the temperature of the cold reservoir is very low, the photon
current from the cold reservoir into the system goes to zero
and this result reduces to the previously derived emission cur-
rent statistics. More precisely, if 7. is set to zero in Eq. (F11),
we obtain back the MGF in Eq. (B13) describing the emission
current into a single heat bath with the decay rate y = y. + y;
and an effective temperature given by

_ 1 YW )
fogp = — (1 + 47, —"— —1}).
2 <\/ Ve + )

Moreover, for y. > y, these expressions simplify to y >~ y.

and 7legr 2 (Vi/Ve)ith.
In the long-time limit, we find the cumulant generating
function O(s) = lim;_, o w for the net current,

_Yetvnf, | YeVn
O(s) = > (1 \/1 4—(% n yh)zl((s)) (F14)

with k(s) = (e’ — D) + n)a, + (e=* — Dia(1 + i),
which is Eq. (10) in the main text.

— DA +ac)n, +(e= — Dic(1+n,)],

Vc 12>

Sl =D+ (€ =D (14,

(F12)

(F13)

APPENDIX G: DERIVATION OF THE FLUCTUATION
RELATION [Eq. (11)]

To derive a fluctuation relation for the net current in the
long-time limit, we note that the CGF in Eq. (F14) fulfills the
symmetry property,

O(s) = O(—s — o), (G1)

with 0 = hwy (B, — Br) determining the entropy increase per
transferred photon. We then obtain the following result for the
probability distribution:

1 [ 1 [
P(J, I) — _/ e(—)(s)ef.vltds — _/ e(—)(fsfa)eﬁv.ltds
27 ) s 27 ) s

1

o O(s) (S-HT)JldS _ P( J t)edtJ (G2)
271
We have thus derived the fluctuation relation:
1 P(J,t
—1In # = (G3)
t P(—J,1)

This is Eq. (11) in the main text.
APPENDIX H: RELATIONS BETWEEN EQUILIBRIUM
NOISE AND RESPONSE COEFFICIENTS

From the symmetry property ®(s) = ®(—s — o), we now
also derive the fluctuation-dissipation theorem. For clarity,

we will below let ®(s, o) have a second argument indicating
the dimensionless temperature difference o of the cavity. The
average particle current between two heat baths with different
temperatures, o /(hwy) = B. — Bu, is then given by

(I) = 3,0(s, 0)|5=0 = 0;O(—s — 0, 0)|s5=0

019 (—q, 0), (H1)

where the superscripts refers to the number of derivatives
with respect to the first and the second argument, respectively.
All quantities are evaluated at s = 0 after the differentiations.
Expanding (/) in o to second order, we obtain

(1 ~ —019(0,0) + [0, 0) — @110, 0)]o

2
+[=039(0,0) + 202D(0, 0) — ©12(0, 0)]‘77

(H2)

Using that all odd cumulants are zero in equilibrium,
©"9(0,0) =0forn =1,3,5, ..., and identifying each pref-
actor of o /n! with 33:") leg = ©1(0, 0), we obtain the fol-

lowing relations:

©"1(0,0) = 10>2(0,0), ©"2(0,0)=0>"(0,0).
(H3)
1. Linear regime
‘We consider the linear thermal conductance,
Lo L au) A do
hwo © Ty OAT |yp_y 00 |y—gdAT | xp—p
= e 1)(0 0)
AT |a7—o
1
-0*9, 0) (H4)
2 AT | \r—o
where (J) = hwo(l) is the heat current. Using that
8AT|AT 0= kh“;;, we obtain
Gy = (hwp)* =——=0>9(0,0 H5
(en)” 3 T2 (0,0), (H5)
or
Se? = 2kpT?GY), (H6)

where we have introduced the equilibrium heat noise S(Qeq) =
(hwo)*©>9(0, 0). This is the fluctuation-dissipation theorem
for heat currents, relating the equilibrium noise to the linear
thermal conductance.
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2. Weakly nonlinear regime

For the weakly nonlinear regime, we get

()
IAT?

9% (1)

= hwy——
DGAT?

AT=0
— i [ FED (0, 0y| 2 ’
= hwy O o2

where we have used

) _
G, =

1

AT=0

dATz [ar—o = 0. We thus arrive at the

relation
S
s = 22¢ 1 _ 126, HS
1] IAT w0 B 0 ( )

APPENDIX I: NOISE POWER SPECTRUM AND THE
FLUCTUATION-DISSIPATION THEOREM
AT FINITE FREQUENCY

We now consider a setup with a cavity coupled to two heat
baths with the same temperature, i.e., the average photon oc-
cupation number is 71 = i, = i1;,. From the MGF in Eq. (F11),
we then obtain

(m2,)@)  y2, 1= e Y L ryey(yve + i)

2a(1 +7) (Ve + )2 ’
(mem) (@) yeynll — e~ — 1y + )] an
2n(1 +n) Ve + vn)? ’

where m, (m;,) denotes the number of particles transferred into
heat bath c (k) over a time 7. Using MacDonald’s formula [see
Eq. (D1)], we obtain the following expression for the spectral
densities Sop(w), sk o(®) and SCh(a)) of the particle currents (to
the cold and hot baths and the cross term, respectively),

2
Ye,h w
S5 (@) = s“q)(l + = —)
© © Ve (Ve + vi)? + @2
2

()
(Ve + yu)* + wz)’ (12

where S(eq) = 2a(1 + )3 Ve V)’; =2kgT?G (1) . These equations
are 1dentlca1 to Egs. (12) and (13) in the mam text.

Using the continuity equation, U@) = —[JQ(t) + Jg(t)]
for the cavity energy and the outgoing heat currents, we write
the energy fluctuations as

@Sy (@) = $5(@) + Sh(@) + 2RelSG(@)].  (13)

From this equation, we get

Re[55'(w)] = S5 (-1 +

(Ve + V)

— 25 n)————
Su (@) = 2(hawo) n(1 + ) Vet 7P + @2

14)

Linear response

We consider a perturbed oscillator, with Hamiltonian
H(@t) = Hy + H,(t), where Hy = liwo(h + %) is the unper-
turbed Hamiltonian and A, (t) = HyK (t) is a weak perturba-
tion, where K(¢) determines the modulation. Below we find
the susceptibility that relates the response in the cavity energy
U (t) = hwydn(t) to the modulation K (¢).

Jo 2 %0
= haol| FE2(0, 0)| —— FD,0
L wo< ©0,0) o | +F )MT2

3So

T=0

AT 1

" T AT |

do ’ 7

Fla)o 2_ BSQ
ar—oLksT?] — OAT

AT=0 kBT2

(

To this end, we first introduce the mean number of cavity
photons (n(t)) = Y, nP(n,t) as a function of time. From the
Lindblad equation we have

d(n(1))
dt

= Yelne(t) — (n@)] + yulnn(t) — (n(®))].  A5)

We consider equal temperatures, n.(t) =n,(t) =
n— Mn(l +n)K(¢t) to first order in K(¢). Introducing
(Sn(t) = (n(t)) — n, we get

dén(t)
dt

Fla)o _ _
= —(Ye +yu)on(t) — (ve + Vh)kB_T”(l +n)K(1).
{16)

In the Fourier domain, this gives

hawo (Ye + yr)i(1 + 1)
b =—— K(w). 17
n(w) P (w) aI7)

or

fiw)? (Ve n(l +n
AU (@) = hoydn(w) = _ ()" (v + i) .—i_n)K(w)-
kgT Vet Vnt1io

(I8)
From this, we find the susceptibility:
AU hiwg)? (e a(l + 7
oy 2 AU@ __Goof et yn+m)
K(w) ksT — ve+yn+io
In particular, we have
(hax)* _ (Ve + v
Im[x(w)] = 1+n)——FF————. 110
[X(@)] = S oA+ e See s 10)

Comparing Eqgs. (I4) and (I10), we then find the fluctuation-
dissipation theorem

Sy(w) = 2k TM, (I11)
w
or
Sy (@) + Sh(®) + 2Re[Sg (w)] = 2ksTwIm[x (w)], (112)

which is Eq. (14) in the main text.
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