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The standard equilibrium Green–Kubo and nonequilibrium molecular dynamics (MD) methods for computing
thermal transport coefficients in solids typically require relatively long simulation times and large system sizes.
To this end, we revisit here the homogeneous nonequilibrium MD method by Evans [Phys. Lett. A 91, 457
(1982)] and generalize it to many-body potentials that are required for more realistic materials modeling. We
also propose a method for obtaining spectral conductivity and phonon mean-free path from the simulation
data. This spectral decomposition method does not require lattice dynamics calculations and can find important
applications in spatially complex structures. We benchmark the method by calculating thermal conductivities of
three-dimensional silicon, two-dimensional graphene, and a quasi-one-dimensional carbon nanotube and show
that the method is about one to two orders of magnitude more efficient than the Green–Kubo method. We apply
the spectral decomposition method to examine the long-standing dispute over thermal conductivity convergence
vs divergence in carbon nanotubes.
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I. INTRODUCTION

Heat transport at the nanoscale [1,2] is vital for many
technological applications such as thermal management of
electronic devices, thermoelectric energy conversion, and
nanoparticle-mediated thermal therapy, just to name a few.
Molecular dynamics (MD) is the most complete classical
method to study heat transport at the nanoscale. All the MD-
based methods for computing the heat transport coefficient;
namely, the thermal conductivity, are fundamentally based on
Fourier’s law Qμ = −∑

ν κμν∂T/∂xν , where Qμ is the heat
flux in the μ direction, ∂T/∂xν is the temperature gradient
in the ν direction, and κμν is the μν component of the ther-
mal conductivity tensor. Methods directly based on this are
called nonequilibrium MD (NEMD) methods and have a few
variants [3–6]. When the purpose is to compute the length-
convergent thermal conductivity in the diffusive regime, the
NEMD methods are computationally inefficient for good ther-
mal conductors [7], because one needs to compute the thermal
conductivities of several systems with lengths exceeding the
effective phonon mean-free path for an accurate extrapola-
tion [8]. The approach-to-equilibrium MD (AEMD) method
proposed recently [9,10] has a similar disadvantage [11]. In
both the NEMD and the AEMD methods, the phonon trans-
port is affected by boundary scattering due to the inhomogene-
ity introduced by the high- and low-temperature regions.

There also exist homogeneous MD methods where bound-
ary scattering in the transport direction is absent. The equi-
librium MD (EMD) method [12] based on the Green–Kubo

*brucenju@gmail.com

relation [13–15] derived from linear-response theory is the
most popular one. Due to the absence of boundary scattering,
one only needs to use a simulation cell that is large enough
to accommodate the major phonon wavelengths [16]. In the
EMD method, the thermal conductivity is calculated as an
integral of the heat current autocorrelation function. It is well
known that accurate evaluation of time correlation functions
in MD is computationally demanding, due to the increasing
noise-to-signal ratio with increasing correlation time.

In 1982 Evans [17] proposed a different approach called
the homogeneous nonequilibrium MD (HNEMD) method. It
is a nonequilibrium method because external forces are added
to the system. It is also a homogeneous method because no
temperature gradient is generated. Evans’ original method was
derived for two-body potentials only. More recently, it was
used with the Tersoff [18] and Brenner potentials [19] to cal-
culate the thermal conductivity of carbon nanotubes [20,21].
However, these works do not derive an extension of the
method to many-body potentials. This is in fact a nontrivial
matter, as demonstrated by Mandadapu et al. [22–24]. Most
importantly, Refs. [20,21] used unphysically large external
forces such that the linear-response theory itself is no longer
valid, as we explicitly demonstrate here.

The main purpose of the present paper is to rigorously
derive the HNEMD method for systems described by many-
body empirical potentials, to discuss various technical issues
on the proper use of this method in practice, and to propose
a spectral decomposition method for obtaining the spectral
conductivity κ (ω) and the phonon mean-free path λ(ω) in
the diffusive regime. The spectral decomposition method
does not need lattice dynamics calculations in contrast to
the existing ones [25–32] based on the EMD method. We
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note that the generalization of the HNEMD method from
two-body to many-body potentials has been previously con-
sidered by Mandadapu et al. [22–24], but their formalism
only applies to a special class of many-body potentials called
cluster potentials [33,34], including the Stillinger–Weber [35]
potential, but not to more general many-body potentials such
as the Tersoff potential. In the present work we present a
general derivation valid for all many-body potentials. We
then benchmark the method for various model systems and
demonstrate that it is about two orders of magnitude more
efficient than the EMD one.

II. HOMOGENEOUS NONEQUILIBRIUM MOLECULAR
DYNAMICS METHOD FOR GENERAL

MANY-BODY POTENTIALS

A. Derivations based on linear-response theory

We first derive the thermal conductivity expression in the
HNEMD method. Consider a system of N particles described
by the general Hamiltonian

H ({ri, pi}) =
∑

i

p2
i

2mi
+ U ({ri}), (1)

with the equations of motion dri/dt = pi/mi and d pi/dt =
F i. Here, ri, mi, and pi are the position, mass, and momentum
of particle i, and F i is the total force acting on it. In the linear-
response theory [36,37], one introduces a driving force and
the equations of motion are modified to

dri

dt
= pi

mi
+ Ci({ri, pi}) · Fe, (2)

d pi

dt
= F i + Di({ri, pi}) · Fe. (3)

Here Ci({ri, pi}) and Di({ri, pi}) are tensors of rank two and
Fe is a vector. The total time derivative of the Hamiltonian
can be written as [36,37]

dH ({ri, pi})

dt
= Jd · Fe, (4)

where Jd = Jd({ri, pi}) is called the dissipative flux vector.
In terms of the dissipative flux, the nonequilibrium ensemble
average 〈〉ne of a general vector physical quantity A({ri, pi})
at time t after switching on the external driving force can be
written as [36,37] (kBT is the thermal energy)

〈A(t )〉ne = 〈A(0)〉 +
(∫ t

0
dt ′ 〈A(t ′) ⊗ Jd(0)〉

kBT

)
· Fe. (5)

Here, 〈A(0)〉 is the usual equilibrium ensemble average of
A and 〈A(t ′) ⊗ Jd(0)〉 is the equilibrium time correlation
function between A and Jd.

The central idea of the HNEMD method by Evans [17] is
to set both A and Jd in Eq. (5) to the heat current operator Jq,
giving [note that 〈Jq(0)〉 = 0]

〈Jq(t )〉ne =
(

1

kBT

∫ t

0
dt ′〈Jq(t ′) ⊗ Jq(0)〉

)
· Fe, (6)

where 〈Jq(t ′) ⊗ Jq(0)〉 is the equilibrium heat current auto-
correlation function. Setting Jd to Jq fixes the equations of

motion, as we will discuss soon. According to the Green–
Kubo relation [13–15], the quantity in the parentheses is
related to the (running) thermal conductivity tensor,

κμν (t ) = 1

kBT 2V

∫ t

0
dt ′〈Jμ

q (t ′)Jν
q (0)

〉
, (7)

with V being the system volume. Therefore, Eq. (6) can be
interpreted as 〈

Jμ
q (t )

〉
ne

TV
=

∑
ν

κμν (t )F ν
e . (8)

Working with principal axes [38], the thermal conductivity
tensor is diagonal and the thermal conductivity κ in a given
direction is given by

κ (t ) = 〈Jq(t )〉ne

TV Fe
. (9)

The running thermal conductivity κ (t ) calculated by using this
equation will show large fluctuations and it is not easy to judge
when κ (t ) has converged. One can circumvent this difficulty
by redefining κ (t ) as the following cumulative average:

κ (t ) = 1

t

∫ t

0
ds

〈Jq(s)〉ne

TV Fe
. (10)

A similar definition has been implicitly used in previous
works [22,39] on the HNEMD method.

To complete the derivation of the generalized HNEMD
method, we need to determine the equations of motion, which
are the foundation of the MD simulations. They are closely
related to the heat current Jq when the dissipative flux Jd

defined in Eq. (4) is chosen to be the same as Jq. We discuss
the heat current and the equations of motion next.

The general heat current formulas in MD simulations are
discussed in Ref. [40] in great detail. For a general many-body
potential with the total potential energy U = ∑

i Ui({ri j} j �=i ),
the heat current can be written as [40]

Jq = Jkin
q + Jpot

q =
∑

i

pi

mi
Ei +

∑
i, j �=i

pi

mi
·
(

∂Uj

∂r ji
⊗ ri j

)
,

(11)

where Ei = p2
i /2mi + Ui is the total energy of particle i and

Ui is the potential energy. The position difference is defined as
ri j ≡ r j − ri. The equations of motion are constructed to make
the dissipative flux Jd identical to the heat current Jq. Evans
chose the term Ci({ri, pi}) = 0. Then, the time derivative of
the Hamiltonian (1) can be derived from the equations of
motion (2) and (3) to be

dH

dt
=

∑
i

pi

mi
· (Di · Fe ). (12)

Comparing this with Eqs. (4) and (11) and setting Jd = Jq,
we have

Di · Fe = EiFe +
∑
j �=i

(
∂Uj

∂r ji
⊗ ri j

)
· Fe. (13)

This driving force will be added to the total force for particle i.
Because the summation

∑
i Di · Fe �= 0, the total momentum

of the system will not be conserved under this driving force.
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To restore momentum conservation, one needs to subtract the
mean force of the total system from the force on each particle.
Formally, this is equivalent to modifying the driving force to

Di · Fe = EiFe − 1

N

∑
j

E jFe +
∑
j �=i

(
∂Uj

∂r ji
⊗ ri j

)
· Fe

− 1

N

∑
j

∑
k �= j

(
∂Uk

∂rk j
⊗ r jk

)
· Fe. (14)

One can easily verify that, for two-body potentials, Eq. (14)
reduces to that by Evans [17]. However, we emphasize that the
heat current formula for two-body potentials does not apply to
many-body potentials [40]. One also needs to apply a thermo-
stat to keep the temperature of the system at the target. To this
end, we use the Nosé–Hoover chain thermostat [37] here.

B. Explicit algorithm

After deriving the formalism of the HNEMD method for
thermal conductivity calculations by using general many-body
potentials, we present an explicit algorithm which can be
readily implemented in a computer.

A HNEMD simulation consists of the following steps:
(1) Equilibration. First, as in any MD simulation, we

equilibrate the system in the NV T or the N pT ensemble to
reach thermal equilibrium. Note that, as in the EMD method,
periodic boundary conditions must be applied to the transport
direction.

(2) Production. Second, we generate the homogeneous heat
current by adding a driving force as given by Eq. (13) on top
of the interatomic force [40]

F i =
∑
j �=i

(
∂Ui

∂ri j
− ∂Uj

∂r ji

)
, (15)

to get the total force

F tot
i = F i + Di · Fe. (16)

One has to subtract the mean force of the total system from
the force on each particle such that the total momentum of the
system is conserved. Specifically, we make the correction:

F tot
i → F tot

i − 1

N

∑
i

F tot
i . (17)

At this stage, one also needs to apply a thermostat to keep the
temperature of the system at the target; otherwise the system
will be heated up by the driving force.

(3) Postprocessing. Finally, we sample the heat current
as given by Eq. (11) and calculate the thermal conductivity
according to Eq. (10).

III. VALIDATION AND BENCHMARK

A. Details on the molecular dynamics simulations

The HNEMD method as described above has been im-
plemented in the open source Graphics Processing Units
Molecular Dynamics (GPUMD) package [41,42]. We use it
to benchmark the HNEMD method by computing the thermal
conductivities of three materials at 300 K and zero pres-
sure: three-dimensional (3D) silicon, two-dimensional (2D)

graphene, and a quasi-one-dimensional (Q1D) (10,10) CNT
(carbon nanotube). The system in the HNEMD method is
in a homogeneous nonequilibrium state because there is no
explicit heat source and sink and heat flows circularly under
the driving force. Because of the absence of heat source and
sink, no boundary scattering occurs for the phonons and the
HNEMD method is similar to the EMD method in terms of
finite-size effects. Usually, a relatively small simulation cell
is thus enough to eliminate them. We use a cubic simulation
cell with 1728 atoms for silicon, an almost-square-shaped
cell with 24 000 atoms for graphene, and a cell with 16 000
atoms for the (10, 10) CNT, all of which are sufficiently large.
See Fig. 1 for an illustration of the atomic structures and
lattice orientations in these model systems. Periodic boundary
conditions are applied in all the directions for silicon, the
planar directions (the xy plane) for graphene and the axial
direction (the x direction) for CNTs. For all the systems, the
velocity-Verlet integration scheme [37] with a time step of
1 fs is used. We first equilibrate each system for 2 ns and then
apply the external force for 20 ns. The Tersoff potential with
parameters from Ref. [18] is used for silicon and the Tersoff
potential with parameters from Ref. [43] is used for graphene
and CNT. An effective thickness of 0.335 nm for the atom
layer in graphene and CNT is used in calculating the volume
in these systems.

B. Cumulative average of the running thermal conductivity

The running thermal conductivity κ (t ) calculated using
Eq. (9) for silicon with Fe = 0.3 μm−1 is shown as the
solid line (with large fluctuations) in Fig. 2. Because of
the large fluctuations, it is not easy to determine when κ (t )
has converged. To circumvent this, we redefine κ (t ) as the
cumulative average of the running thermal conductivity, as
given by Eq. (10). The cumulative average of the running
thermal conductivity is shown as the dashed line in Fig. 2 and
converges well in the long-time limit. This simply means that
the ensemble average 〈〉ne can be represented as a time average
in the MD simulation.

C. Choice of driving force

It is known from previous works [17,22,39] that the pa-
rameter Fe (of dimension inverse length) is crucial: it has
to be small enough to keep the system within the linear-
response regime and large enough to retain a sufficiently large
signal-to-noise ratio. Mandadapu et al. [22] have given a
rule-of-thumb to determine appropriate values of Fe: it should
be much smaller than 1/λ, where λ can be regarded as a
characteristic phonon mean-free path (MFP) of the system.
From our spectral decomposition results (see below), linear
response is completely assured when Feλmax � 1, where λmax

is the maximum phonon MFP.

D. Results for silicon

For silicon crystal described by the Tersoff potential at
300 K, Figs. 3(a) and 3(b) show that κ (t ) behaves unex-
pectedly when Fe > 0.4 μm−1 and converges to reasonable
values when Fe � 0.4 μm−1. If we consider a simulation
time up to t = 2.5 ns, which is comparable to the simulation
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FIG. 1. Schematic illustration of the model systems studied in this work: (a) 3D bulk silicon; (b) 2D graphene; (c) Q1D (10,10) CNT. The
cell size shown here for silicon is the same as that used in the MD simulations but, for clarity, the cell sizes for graphene and CNT shown here
are smaller than those used in the MD simulations.

times used in previous works [22,39], κ (t = 2.5 ns) gradually
increases with increasing Fe, similar to the observations in
previous works [22,39]. When considering a long simulation
time of t = 20 ns, κ (t = 20 ns) first jumps to a very large
value at Fe = 0.5 μm−1 and then decreases with increasing
Fe. The abrupt jump is helpful for quickly identifying the
linear-response regime. When the system is in the linear-
response regime, κ (t ) converges in the long time limit and
the converged value does not depend on Fe in a systematic
way. Using the κ (t = 20 ns) values with Fe � 0.4 μm−1,
the thermal conductivity of silicon at 300 K is determined
to be κ = 252 ± 7 W/mK. This is in excellent agreement
with the value κ = 250 ± 10 W/mK obtained using the EMD
method [44]. It should be noted that 50 independent simula-
tions (each with a production time of 20 ns) were used in the
EMD calculations [44], while we only need a few simulations
in the HNEMD method to achieve comparable accuracy.
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FIG. 2. Running thermal conductivity as defined in Eq. (9) and
its cumulative average as defined in Eq. (10) as a function of time
t in the nonequilibrium production stage of the MD simulation. The
system is a silicon crystal at 300 K and the driving-force parameter
is Fe = 0.3 μm−1.

E. Results for graphene

For graphene [cf. Fig. 3(c)], we separately calculate [45,46]
the thermal conductivity contributed by the in-plane and out-
of-plane (flexural) phonons. The in-plane contribution comes
from the terms with vx and vy in Jpot

q and the out-of-plane
contribution comes from the terms with vz. For details on
the thermal conductivity decomposition, see Appendix A. We
have checked that the system is in the linear-response regime
when Fe � 0.1 μm−1. The converged thermal conductivity is
estimated to be 815 ± 23 W/mK for the in-plane phonons
and 2032 ± 26 W/mK for the out-of-plane phonons. In total,
the thermal conductivity of graphene at 300 K is 2847 ±
49 W/mK, which is in excellent agreement with the EMD
value of 2900 ± 100 W/mK from Ref. [46]. The EMD results
from Ref. [46] were obtained by using a total production
time of 5000 ns. In contrast, the HNEMD results here were
obtained by using a total production time of 40 ns—about two
orders of magnitude shorter.

FIG. 3. Running average κ (t ) of the thermal conductivity as
defined in Eq. (10) of (a), (b) bulk silicon, (c) graphene, and
(d) (10,10) CNT at 300 K as a function of time t . In each panel, the
dashed lines are from individual runs with a given Fe and the solid
line is their average.
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FIG. 4. Running thermal conductivity κ (t ) from the EMD
method for (10,10) CNT at 300 K as a function of the correlation
time t . The thick solid line represents the average of the 100 thin
solid lines (corresponding to 100 independent runs; each with a
different set of initial velocities). The dashed lines represent the
running statistical error bounds.

F. Results for (10,10) carbon nanotube

We finally consider the (10,10) CNT [cf. Fig. 3(d)]. The
system is in the linear response regime when Fe � 0.04 μm−1,
where κ (t ) with different Fe values converge to comparable
values in the long-time limit. The converged thermal conduc-
tivity is estimated to be 2230 ± 60 W/mK.

To validate our HNEMD results for the (10, 10) CNT, we
performed EMD simulations for the same system. We per-
formed 100 independent runs, each with 20 ns of production
time. All the other simulation parameters are the same as those
for the HNEMD method. Figure 4 shows the running thermal
conductivity κ (t ) as a function of the correlation time. The
averaged κ (t ) (thick solid line) converges well in the range
of [1 ns, 2 ns] and we thus calculated 100 mean values in
this range, from which we get a mean value and a standard
statistical error (i.e., the standard deviation divided by the
square root of the number of independent runs): κ = 2200 ±
130 W/mK. This is consistent with our HNEMD value.

In Refs. [20,21], the driving forces were chosen to be in the
range of Fe = 500–4000 μm−1, which are several orders of
magnitude larger than the threshold value above which linear-
response breaks down. Using these unphysically large driving
forces, they [20,21] found that κ (t ) of (10,10) CNT converges
to about 100 W/mK within a couple of ps and the converged
value increases with decreasing driving force. All these results
deviate significantly from our results obtained in the linear-
response regime.

G. Quantitative analysis of the computational efficiency and
statistical errors

From our benchmark in terms of silicon, graphene, and
CNT, it is clear that the HNEMD method is much more
efficient than the EMD method. The superior efficiency of
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FIG. 5. Distribution (number of counts) of the κ values from the
EMD and HNEMD methods. Each κ value in the EMD method is
calculated based on a production time of 20 ns, while each κ value
in the HNEMD method is calculated from a production time of only
0.2 ns.

this method over the EMD and NEMD methods has also been
recently demonstrated in several studies [47–49]. To make it
more quantitative, we take the case of CNT as an example and
compare the relative computational efficiency of the HNEMD
and EMD methods by examining the statistical errors in more
detail.

To this end, we first determine the statistically independent
data in each method. For the EMD method, we already have
100 statistically independent κ values from the 100 inde-
pendent runs. For the HNEMD method, because we directly
measure the nonequilibrium heat current, we can divide the
whole production time into small blocks and take the κ

values calculated within different time blocks as independent
values. Here, we consider a single HNEMD simulation with
a production run of 20 ns (the same as that for a single
EMD simulation) and divide the total production time into 100
blocks, calculating 100 independent κ values.

Figure 5 shows that the distributions of both sets of κ

values have comparable variances and therefore comparable
statistical errors. Because the total production time in the
EMD method is 100 times as long as that in the HNEMD
method, we see that the HNEMD method is about two orders
of magnitude more efficient than the EMD method. The
reason for the superior efficiency of the HNEMD method
over the EMD method is related to the fact that, in the EMD
method, one measures the heat current autocorrelation func-
tion (HCACF), while in the HNEMD method, one directly
measures the heat current. Because the noise-to-signal ratio
in the decaying HCACF increases with increasing correlation
time, the integrated running thermal conductivity has large
variations in the limit of long correlation time where the
averaged thermal conductivity converges. In contrast, the heat
current measured in the HNEMD simulation has a constant
noise-to-signal ratio (because it is not decaying) and the
running average of the heat current converges quickly.
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Because we usually only need to perform a few inde-
pendent simulations (or even a single one with relatively
long production time) for a given system when using the
HNEMD method, it is more practical to use the above time-
block method to define the statistical error. That is, we first
divide the total production time into a number of time blocks
and obtain mean κ values for all the time blocks. Then we
calculate the statistical error as the standard deviation divided
by the square root of the number of time blocks. We use this
method to estimate the statistical errors as reported above.

IV. SPECTRAL DECOMPOSITION

A. Formalism

An additional advantage of the HNEMD method is that the
nonequilibrium heat current can be spectrally decomposed,
similar to the case of the NEMD method [46,50,51]. To this
end, we define the following steady-state time correlation
function:

K(t ) =
∑

i

∑
j �=i

ri j (0)

〈(
∂Uj

∂r ji
(0) · pi(t )

mi

)〉
ne

, (18)

which reduces to the nonequilibrium heat current (the po-
tential part) when t = 0. Then one can define the following
Fourier transforms:

K̃(ω) =
∫ ∞

−∞
dteiωt K(t ), K(t ) =

∫ ∞

−∞

dω

2π
e−iωt K̃(ω).

(19)

Setting t = 0 in the second equation above yields the follow-
ing spectral heat current (SHC):

Jq(ω) = 2K̃(ω), 〈Jq〉ne =
∫ ∞

0

dω

2π
Jq(ω). (20)

From the SHC, one can naturally get the spectral thermal
conductivity (the vector κ denotes the diagonal part of the
conductivity tensor):

κ(ω) = 2K̃(ω)

TV Fe
, κ =

∫ ∞

0

dω

2π
κ(ω). (21)

To our knowledge this is the only spectral decomposition
method that works in the diffusive regime and does not require
lattice dynamics calculations, which makes it applicable to
spatially complex structures. The spectral decomposition also
allows one to include quantum statistical corrections when
appropriate [32,52]. Below, we demonstrate the usefulness of
this method by applying it to graphene and the (10,10) CNT.

B. Applications to graphene

Figure 6(a) shows the calculated spectral thermal conduc-
tivity κ (ω) of graphene at 300 K, for both the in-plane and
the out-of-plane (flexural) phonons. It is clearly seen that the
thermal conductivity of graphene is dominated by the flexural
modes [46,53]. Moreover, we can also calculate the ballistic
conductance G(ω) using the NEMD-based SHC [46,50,51]
and then obtain the spectral phonon MFP λ(ω) from [see
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FIG. 6. (a) The spectral thermal conductivity κ (ω), (b) the spec-
tral ballistic conductance G(ω), and (c) the phonon mean-free path
λ(ω) of graphene at 300 K as a function of the phonon frequency
ω/2π . (d) The length-dependent thermal conductivity κ (L).

Appendix B for a derivation of Eqs. (22) and (24)]

λ(ω) = κ (ω)

G(ω)
. (22)

The calculated G(ω) and λ(ω) are shown in Figs. 6(b)
and 6(c), respectively. From the spectral decomposition

κ (L) =
∫ ∞

0

dω

2π
κ (ω, L) (23)

and the ballistic-to-diffusive relation

1

κ (ω, L)
= 1

κ (ω)

(
1 + λ(ω)

L

)
, (24)

we can obtain the length-dependent thermal conductivity
κ (L), as shown in Fig. 6(d). The large phonon MFP (a few
microns) for the acoustic flexural (ZA) modes is responsible
for the slow length convergence of the thermal conductivity of
graphene, as observed experimentally [54].

C. Applications to carbon nanotubes

Last, we employ the HNEMD-based spectral decompo-
sition method to examine the long-standing dispute over
the thermal conductivity convergence vs divergence in
CNTs [50,55–63]. Figure 7(a) shows that the phonon MFP
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FIG. 7. (a) The phonon MFP λ(ω) of the (10,10) CNT at 300 K
and (b) the length-dependent thermal conductivity κ (L). The NEMD
data are from Ref. [50].
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scales as λ(ω) ∼ ω−1 for ω/2π > 0.25 THz but saturates to
about λmax = 25 μm in the ω → 0 limit. This large value
of λmax dictates the small threshold value of Fe � 0.04 in
accordance with the criteria Feλmax � 1. The conductivity
κ (L) only fully converges when L ≈ 1 mm, as shown in
Fig. 7(b). Our κ (L) values agree well with the NEMD data
with L � 4 μm by Sääskilahti et al. [50]. However, because
the large simulation-cell sizes required in the NEMD method,
it is computationally prohibitive to use this method to reach
longer systems and they failed to obtain the λ(ω) values
with ω/2π < 0.25 THz and could not resolve the issue of
thermal conductivity convergence and divergence in CNTs. In
contrast, our HNEMD-based spectral decomposition method
can easily reach the diffusive regime and our results clearly
demonstrate that κ (L) in CNTs is upper bounded.

V. SUMMARY AND CONCLUSIONS

In summary, we have extended the HNEMD method for
lattice thermal conductivity calculations with general many-
body potentials. The method is about two orders of magnitude
more efficient than EMD. A method for obtaining the spectral
thermal conductivity and phonon mean-free path is also devel-
oped based on HNEMD. This method works in the diffusive
regime and does not require lattice dynamics calculations,
making it suitable for studying spatially complex structures.
Applying the spectral decomposition method, we find that the
thermal conductivities of graphene and CNTs converge with
increasing length, but very slowly.
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APPENDIX A: THERMAL
CONDUCTIVITY DECOMPOSITION

The heat current (11) is an extensive quantity consisting
of many individual contributions. Therefore, it can be decom-
posed as

Jq = J (1)
q + J (2)

q + · · · . (A1)

This decomposition can be in terms of either real space [45] or
reciprocal space [32]. According to Eq. (9), this directly leads
to a decomposition of the thermal conductivity:

κ (t ) = κ (1)(t ) + κ (2)(t ) + · · · =
〈
J (1)

q

〉
ne

TV Fe
+

〈
J (2)

q

〉
ne

TV Fe
+ · · · .

(A2)

According to an identity derived in the main text

〈Jq(t )〉ne =
(

1

kBT

∫ t

0
dt ′〈Jq(t ′) ⊗ Jq(0)〉

)
· Fe, (A3)

we can write an expression for the thermal conductivity
decomposition in the EMD method:

κ (i)(t ) = 1

kBT 2V

∫ t

0
dt ′〈J (i)

q (t ′)Jq(0)
〉
. (A4)

This is the same result proved in Ref. [45].
In the main text, we considered an in-out decomposition of

the potential part of the heat current:

Jin
q =

∑
i

∑
j �=i

ri j

(
∂Uj

∂x ji

pix

mi
+ ∂Uj

∂y ji

piy

mi

)
, (A5)

Jout
q =

∑
i

∑
j �=i

ri j

(
∂Uj

∂z ji

piz

mi

)
. (A6)

The in-plane heat current only involves in-plane phonons
and the out-of-plane heat current only involves out-of-plane
(flexural) phonons. This heat current decomposition leads to a
decomposition of the thermal conductivity

κ (t ) = κ in(t ) + κout (t ) =
〈
J in

q

〉
ne

TV Fe
+

〈
Jout

q

〉
ne

TV Fe
. (A7)

According to Eq. (A4), we see that the “cross term” defined
in Ref. [46] should be evenly attributed to the in-plane and
out-of-plane parts defined there.

APPENDIX B: SPECTRAL CONDUCTIVITY AND
SPECTRAL MEAN-FREE PATH

In macroscopic transport, thermal conductance G (per unit
area) is related to thermal conductivity κ by

G = κ

L
, (B1)

where L is the system length. Usually, the thermal conduc-
tivity is an intrinsic property of a material. At the nanoscale,
however, the conventional concept of the conductivity can be-
come invalid [64] and the conductivity as defined in Eq. (B1)
is length dependent; κ = κ (L). We therefore write

G(L) = κ (L)

L
. (B2)

This length dependence can be captured by noticing that there
is a resistance 1/G0 even in the ballistic limit due to the finite
number of conducting channels. For a system of length L,
the total resistance comes from the ballistic resistance and a
length-dependent resistance [64]:

1

G(L)
= 1

G0
+ L

κdiff
. (B3)

Here, κdiff is the conductivity in the diffusive limit, i.e., κdiff =
κ (L → ∞). By comparing Eqs. (B2) and (B3), we have the
following relation between the length-dependent thermal con-
ductivity κ (L) and the length-independent diffusive thermal
conductivity κdiff :

L

κ (L)
= 1

G0
+ L

κdiff
, (B4)

or equivalently,

1

κ (L)
= 1

κdiff

(
1 + κdiff/G0

L

)
. (B5)
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Comparing this with the standard length-scaling formula of
conductivity,

1

κ (L)
= 1

κdiff

(
1 + λ

L

)
, (B6)

we see that the ratio between the diffusive conductivity and the
ballistic conductance defines a phonon mean-free path (MFP)
in an infinite system:

λ = κdiff

G0
. (B7)

The length-scaling formula (B6) can be derived from
Matthiessen’s rule,

1

λ(L)
= 1

λ
+ 1

L
, (B8)

and the relation
κdiff

κ (L)
= λ

λ(L)
. (B9)

Here, λ(L) is the effective MFP in a finite system of length L
whose conductivity is κ (L).

The above discussion is simplified in the sense that no
frequency dependence of the thermal transport has been taken
into account. Different frequencies usually have different
MFPs and diffusive conductivities. In general, both the con-
ductivity and the MFP are frequency dependent and we can
generalize Eqs. (B6) and (B7) to

1

κ (ω, L)
= 1

κdiff (ω)

(
1 + λ(ω)

L

)
, (B10)

λ(ω) ≡ κdiff (ω)

G0(ω)
. (B11)

Note that κdiff (ω) and G0(ω) were respectively written as κ (ω)
and G(ω) in the main text. We thus have derived Eqs. (22)
and (24).
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