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ABSTRACT Speaking style conversion (SSC) is the technology of converting natural speech signals from
one style to another. In this study, we aim to provide a general SSC system for converting styles with varying
vocal effort and focus on normal-to-Lombard conversion as a case study of this problem. We propose a
parametric approach that uses a vocoder to extract speech features. These features are mapped using parallel
machine learning models from utterances spoken in normal style to the corresponding features of Lombard
speech. Finally, the mapped features are converted to a Lombard speech waveform with the vocoder. A total
of three vocoders (GlottDNN, STRAIGHT, and Pulse model in log domain (PML)) and three machine
learning mapping methods (standard GMM, Bayesian GMM, and feed-forward DNN) were compared in the
proposed normal-to-Lombard style conversion system. The conversion was evaluated using two subjective
listening tests measuring perceived Lombardness and quality of the converted speech signals, and by using
an instrumental measure called Speech Intelligibility in Bits (SIIB) for speech intelligibility evaluation under
various noise levels. The results of the subjective tests show that the system is able to convert normal speech
into Lombard speech and that there is a trade-off between quality and Lombardness of themapped utterances.
The GlottDNN and PML stand out as the best vocoders in terms of quality and Lombardness, respectively,
whereas the DNN is the best mapping method in terms of Lombardness. PMLwith the standard GMM seems
to give a good compromise between the two attributes. The SIIB experiments indicate that intelligibility of
converted speech compared to that of normal speech improved in noisy conditions most effectively when
DNN mapping was used with STRAIGHT and PML.

INDEX TERMS Bayesian GMM, DNN, GlottDNN, Lombard speech, pulse model in log domain, speaking
style conversion, vocal effort.

I. INTRODUCTION
Speaking style conversion (SSC) is the technology of con-
verting natural speech signals spoken in a particular style to
another (e.g. whisper-to-normal or normal-to-Lombard [1])
while retaining the linguistic and speaker-specific informa-
tion of the original speech signal. SSC has multiple poten-
tial applications, such as personalizing speech to the needs
of the end-listener and mapping speech that is difficult to
understand in such a way that the signal becomes more intel-
ligible. In the latter application, for example, normal speech
could be converted into clear speech [2], [3] for hearing-
impaired listeners. Similarly, people with normal hearing

The associate editor coordinating the review of this manuscript and
approving it for publication was Berdakh Abibullaev.

capacity could benefit from conversion of soft speech to a
more intelligible style, such as Lombard speech, in noisy
environments. It should be noted that in addition to keeping
the linguistic and speaker-specific information unchanged,
an SSC system should not sacrifice speech quality. Therefore,
this area of study calls for advanced technologies both in
signal processing and machine learning.

SSC is related to other areas of speech technology such
as statistical parametric speech synthesis (SPSS) [4], voice
conversion (VC) [5], and speech intelligibility enhancement
in speech transmission [6]. The topic can, however, be con-
sidered as a research area of its own because it differs from
all the above areas. For example, there is no linguistic-to-
acoustic mapping as in SPSS. Furthermore, the strict latency
requirements of speech intelligibility enhancement in speech
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transmission [7] are not necessarily present in SSC, where
offline processing is also possible for several potential use
scenarios. At the broadest level, SSC involves conversions of
any properties of speech that do not carry immediate lexical,
syntactic, or speaker identity related information without sac-
rificing the original quality of the signal.

An example of SSC is emotion conversion (e.g., [8]–[15]),
which is a topic in which the speaking style conversion is
conducted on affective, paralinguistic properties of speech.
Another key dimension of speaking style is related to the
vocal effort used by the speaker in different social and
communication contexts to meet the desired communicative
goals. These speaking style modifications are typically asso-
ciated with changes in signal intensity, loudness (that takes
into account spectral balance), and pitch with the aim of
maintaining speech intelligibility in different noise condi-
tions or at different spatial distances between the speaker and
the listener. Different levels of vocal effort can be seen as
forming a continuum consisting of whispered, normal, loud,
Lombard, and shouted speech (see also work on clear speech;
[16], [17]), even though there are several subtle articulatory
and acoustic differences between these styles that do not
follow simple linear relationships. Since speech recording
and reproduction environments (or the original and new target
listeners) may differ from each other, and since the differ-
ent styles on the above-mentioned continuum are directly
related to the spoken communication’s success and suitabil-
ity, it would be beneficial to be able to tailor the speech signal
along this continuum through the use of SSC technology.
While there has already been work in whispered-to-normal
speech conversion (e.g., [18]–[22]), SSC for other aspects
of vocal effort has only been studied in a small number of
previous works [23]–[27].

In the current study, we focus on converting normal speech
to Lombard speech. Lombard speech corresponds to a speak-
ing style that talkers naturally employ in noisy environments
to improve intelligibility, and it has been studied extensively
in other areas of speech technology such as SPSS [28],
speaker recognition [29] and intelligibility enhancement [30].
To our knowledge, the only previous studies on normal-to-
Lombard SSC were [23], which involved the use of non-
uniform time scalemodification, formant shifting, and energy
redistribution in the presence of car noise, and [25] that
involved a rule-based solution that converts singlewords from
normal to Lombard speech by modifying the natural speech
signal’s fundamental frequency (F0), spectrum, and phoneme
duration.

Modern speech technology systems are typically data
driven, where speech data needs to be collected to train
a machine learning mapping between source and target
representations. However, collection of a large quantity of
Lombard speech data (as well as data from some other
styles along the vocal effort continuum such as shouted
speech) is laborious and potentially injurious to health of the
speakers. This data sparsity limits the straightforward use of
approaches similar to the recent end-to-end TTS systems, that

are able to learn global style tokens for controlling the speak-
ing style [31]. These types of systems typically consist of
two highly data-hungry components: a sequence-to-sequence
mel-spectrogram predictor and a WaveNet vocoder [32].
While the Tacotron line of work [31], [32] has not reported
their training dataset size, for example [33] used 20 hours
of data for training a speaker dependent model. For training
WaveNets, [34] recommended at least 3 hours of data for
a single speaker TTS system, while [35] trained a multi-
speaker WaveNet vocoder with approximately one hour of
data per speaker. In the present study, we investigate a
scenario where we have access to only a few minutes of
recorded speech data in both normal and Lombard styles
(see Section VI-A). To handle the data sparsity, the present
normal-to-Lombard parametric SSC system relies on para-
metric vocoders (VOCs) for feature extraction and machine
learning models (MLMs) for speech modification. The sys-
tem utilizes parallel training where the MLMs are trained
with speech utterance pairs from source and target styles
having the same linguistic content and speaker.

The normal-to-Lombard SSC system of this study is
based on modifying the most important features between
the two styles: the fundamental frequency (F0), spectral
tilt, signal energy, and segment duration. For this purpose,
we investigate the use of three vocoders familiar from SPSS:
GlottDNN [36], STRAIGHT [37], and Pulse model in log
domain (PML) [38] (see Section III for details). Related
to MLMs, we compare standard Expectation-maximization
(EM) [39], [40] algorithm-based Gaussian mixture models
(SGMMs), Bayesian Gaussian mixture models (BGMMs),
and feed-forward deep neural nets (DNNs), as they provide
a range of approaches from the standard methods to more
recent and popular methods used in similar problems (see
Section IV for details). Hence, we explore in total 9 different
combinations of VOCs and MLMs in the present study.

The overall goal of this study is to first provide the general
framework for an SSC system, and then implement the par-
ticular case of a normal-Lombard SSC using VOCs, MLMs,
and parallel training. The system is trained on Finnish record-
ings from [41] and evaluated using subjective listening tests,
instrumental speech intelligibility experiments in noisy con-
ditions as well as with objective analysis of the distributions
of the mapped features.

The paper is organized as follows: Section II describes the
general structure and outline of an SSC system. Sections III
and IV provide a basic framework for the VOCs and MLMs
used in the current study. Then Section V details our spe-
cific case of a normal-to-Lombard SSC system. Section VI
explains the experimental setup, including data used, model
adaptation techniques, and system specification details. And
finally Sections VII, VIII, and IX describe the evaluation,
results, and discussion and conclusions, respectively.

II. PARAMETRIC SPEAKING STYLE CONVERSION
In principle, the SSC problem could be approached as a
direct transformation (such as filtering) or as an end-to-end

VOLUME 7, 2019 17231



S. Seshadri et al.: Vocal Effort-Based SSC Using Vocoder Features and Parallel Learning

mapping problem where the original speech waveform or its
full-band spectral representation is directly transformed into
the target style. An example of the direct transformation
approach is [26], which uses adaptive pre-emphasis linear
prediction to transform the signal in terms of its vocal effort
and breathiness.

However, an alternative approach for SSC is to use a
parametric technique, hereby referred to as parametric
speaking style conversion, in which selected speech features
are first extracted, modified, and finally used to synthesize
the speech signal in the target style. The potential advantage
of the parametric approach over direct processing is that the
former enables the combination of machine learning methods
with a priori knowledge of the speech production system,
enabling parametrization and modification of key properties
of the signal that are related to the phenomenon of inter-
est while keeping other aspects of the signal intact. This
allows the training of SSC systems for conversion problems
where a limited amount of training data are available, as the
key parameters can be modeled (partially) independently
of the factors that are not related to the conversion task.
The parametric approach also provides better manual control
and interpretability of the conversion system behavior. The
obvious drawbacks are the potentially erroneous assumptions
about the independence of features w.r.t. the style dimension
of interest and erroneous extraction of speech features due
to, for example, high pitch or lack of voicing. In addition,
the parametric approach might suffer from challenges in fus-
ing the different features back into high-fidelity waveforms
when only some of them have been transformed, and from
the need for a priori knowledge for selecting the features of
interest for the mapping. This calls for efficient methods for
parametrizing and synthesizing the acoustic signal and for
robust methods for learning the feature mappings between the
styles of interest.

The general structure of a parametric SSC system is shown
in Figure 1. The input to the system is a speech utterance
spoken in the source style, and the output is the same utter-
ance in the desired target style. The system consists of three
main parts: feature extraction,mapping model, and synthesis.
In the first part, all the features that are necessary for the
speech synthesis part of the system are first extracted from
the input signal. The features that are known to contribute
most to the source-to-target style conversion in question are
then converted in the second part of the system using a map-
ping model. This mapping model can in principle be either

FIGURE 1. Block diagram of the parametric speaking style conversion
system.

supervised (i.e., previously trained on data from both of the
styles in question) or unsupervised. Finally, in the third part
of the system, the mapped as well as unmodified features are
fed to the synthesis system, which generates the speech signal
in the desired target style.

By referring to Figure 1, the SSC system implemented in
the current work utilizes VOCs for feature extraction and
synthesis, andMLMs in a supervised manner for the mapping
models. The technologies used in the current study to imple-
ment VOCs and MLMs are described next in more detail in
sections III and IV, respectively.

III. VOCODERS
Vocoders are widely used particularly in SPSS to express
speech in parametric forms. Based on the parameterization
scheme used, vocoders can be categorized to glottal vocoders
(e.g. GlottHMM [42], GlottDNN [36]), mixed/impulse
excited vocoders (e.g. STRAIGHT [37],WORLD [43]), sinu-
soidal vocoders (e.g. Quasiharmonic model [44] , dynamic
sinusoidal model [45]) and source-filter vocoders that use
sinusoidal signal analysis as a measure of harmonicity
(PML [38]). The glottal and mixed/impulse excited vocoders
utilize the source-filter model of speech production [46],
which assumes that speech is produced by a source signal
that is convolved with a filter conveying the vocal tract
formants. The mixed excitation approach assumes that the
excitation is spectrally flat and contains the pitch, noise, and
phase information, and the filter models the entire spectral
envelope of the signal. In glottal vocoders, the excitation
of voiced speech is a model of the true acoustical source
generated by the vocal folds, the glottal volume velocity
waveform. The spectral envelope of this excitation is not
flat but shows a tilt that varies, for example, based on the
vocal effort or phonation type. Finally, sinusoidal vocoders
represent speech as a sum of sinusoidal functions, evolv-
ing over time. In order to analyze the potential differences
between vocoders for the current task of SSC, we analyze
three vocoders from different categories: GlottDNN, which
was shown in a recent study [36] to be the most potential
glottal vocoder, STRAIGHT [37], which is the most widely
used vocoder in SPSS, and PML [38], which demonstrated
good performance in two recent vocoder studies [36], [38].
Sections III-A, III-B and III-C, provide a brief look and the
structures of each of these vocoders.

A. GLOTTDNN
The GlottDNN [36] (based on the earlier implementation
GlottHMM [42]), uses a quasi-closed phase (QCP) [47]
glottal inverse filtering to decompose speech into a vocal tract
filter and glottal flow excitation. During synthesis, GlottDNN
uses a feed-forward DNN trained on acoustic features to gen-
erate the glottal pulses (as proposed in [48]). GlottDNNmod-
els voiced segments of speech as a convolution of the glottal
flow excitation and vocal tract which are estimated using
the QCP glottal inverse filtering algorithm [47]. Unvoiced
segments are modeled with random noise excitation and
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conventional linear prediction (LP) model for the vocal tract.
To parametrize speech, the following features are extracted
in the current study when using GlottDNN as VOC: 1) log-
energy, 2) harmonic-to-noise ratio (HNR), 3) F0, 4) vocal
tract line spectral frequencies (LSFs), denoted here as LSFVT ,
and 5) glottal source envelope LSFs, denoted here as LSFglott .

B. STRAIGHT
STRAIGHT [37], [49] is a widely used source-filter vocoder
that models speech spectrum as a smooth envelope (filter)
that is excited with a spectrally flat excitation signal (source).
The spectral envelope is estimated using two pitch-adaptive
analysis windows (primary and complementary). The pri-
mary window consists of a Gaussian window convolved with
a triangular B-spline window, while an asymmetric com-
plementary window is created by multiplying the primary
window with a sine window [37]. Finally, the spectral esti-
mates obtained with these windows are combined by taking
a weighted quadratic mean, such that the chosen weight
minimizes the harmonic interference in the resulting time-
frequency envelope [37]. The aperiodicity spectrum is esti-
mated by comparing upper and lower spectral envelopes [49].
In synthesis stage, aperiodicity is used to modify a periodic
impulse train excitation to create a mixed excitation signal
for voiced speech, while white Gaussian noise excitation is
used for unvoiced speech. For parametric processing, we rep-
resent the envelope withmel-generalized cepstral coefficients
(MGCs, [50]) and the aperiodicity spectrum by log-averages
over equivalent rectangular bandwidth (ERB) auditory bands.
Thus, the features extracted for parameterization are: 1) the
aperiodicity band energies (BAP), 2) F0, and 3) the spectral
envelope MGCs.

C. PULSE MODEL IN LOG DOMAIN
The Pulse model in log-domain (PML) [38] is a recent
state-of-the art vocoder utilizing sinusoidal signal analysis
and pitch synchronous pulse-based synthesis. PML supports
using generic spectral envelopes, and Degottex et al. [38]
recommend using the STRAIGHT orWORLD envelope. The
vocoder’s distinctive property is its aperiodicity modeling via
a phase distortion deviation (PDD) spectrum, which gener-
alizes to modeling both voiced and unvoiced speech without
explicit voicing decisions. The PDD is thresholded to produce
a binary noise mask (BNM), which is averaged in mel-bands
for parametric processing. Here, the features extracted during
analysis are: 1) the binary noise mask (BNM), 2) F0, and
3) the spectral envelope.

IV. MACHINE LEARNING MAPPING METHODS
As for MLMs, three different techniques are explored in
the current study: an SGMM, a BGMM, and a feed-
forward DNN. SGMMs are used frequently in related fields
such as VC (e.g. [51]) and intelligibility enhancement
(e.g. [52], [53]). The BGMMs are a Bayesian extension to
the SGMMs, which could be potentially beneficial in scenar-
ios with limited data due to their capability to scale model

complexity to the structure of the data. To the best of our
knowledge, Bayesian extensions to standard GMMs have
been applied previously in voice-conversion related research
only in [54]. DNNs, on the other hand, are some of the most
widely used MLMs in recent years across a large number
of domains. DNNs, although extremely powerful, may also
suffer more from limited training data in comparison to the
classical mixture models that typically have much fewer
parameters to estimate. Hence, the current problem of SSC
offers a good opportunity to compare these methods.

The technical difference between SGMMs and BGMMs is
discussed in detail in the following Sections IV-A and IV-B,
while the practical implementation details of those and the
DNN can be found in Section VI-C4. The source codes of the
three MLMs used in this paper are available under an open
source license1 for reference and reproducibility.

A. STANDARD GAUSSIAN MIXTURE MODELS (SGMM)
A mapping model is trained on the data set consisting of
vocoder features from both the source and target style. Let
us consider the training set consisting of N vocoder feature
vectors of dimensionality D/2 from the source style xs and
target style xt . During application, the new source data, ys,
needs to be mapped to the target, yt , using the trained map-
ping model.

In the standard GMM approach, the training set of the
source, xs, and target data, xt , is concatenated as x =
[xTs , x

T
t ]
T to obtain N samples of D-dimensional training

data X = [x1, . . . , xN ] for the SGMMmodel. Let X be mod-
eled by an SGMM with K full covariance Gaussians, each
having parameters {θk}Ki=1 and weights {πk}Ki=1. In the cur-
rent, frequentist interpretation of the GMM, the parameters
are considered as fixed values to be estimated by maximizing
the likelihood of X defined as

p(X; θ ,π ) =
K∑
k=1

πkN (θk ) (1)

where the parameters, θk = {µk , 6k}, are the mean and
covariance of the kth Gaussian and the weights, πk , sum to
one. The values of the parameters that maximize the likeli-
hood are found using the EM [39], [40] algorithm.

Let us consider the parameters of the kth Gaussian as
block matrices corresponding to the source, s, and target, t ,
features as µk = [µs|k , µt|k ]

T and 6k =

[
6ss|k 6st|k
6ts|k 6tt|k

]
. Now,

during application, the minimummean square error (MMSE)
estimate of target features yt , ŷt can be calculated as

ŷt =
K∑
k=1

p(k|ys,X)[µt|k +6ts|k6
−1
ss|k (ys − µs|k )] (2)

where p(k|ys,X) is the probability of the kth component
calculated based on πk and marginal likelihood of the
kth Gaussian; and the other term is the mean of conditional
likelihood of the kth Gaussian. (See [55] for a detailed

1https://github.com/shreyas253/speech_regression
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derivation and [52], [53], [55] for other use-cases of SGMM
mapping.)

In case of additional training data for both source style as
and target style at after we have trained the original SGMM
model, model adaptation can be applied to update the model.
This is often used in speaker verification [56]. Again the new
training data is concatenated as a = [as, at ]T to get N ′ new
training data samples A = [a1, . . . , aN ′ ]. We first calculate
a set of sufficient statistics for each Gaussian component, k ,
of the original SGMM

n′k =
N ′∑
i=1

P(k|ai)

Ek (a) =
1
n′k

N ′∑
i=1

P(k|ai)ai

Ek (a2) =
1
n′k

N ′∑
i=1

P(k|ai)aiaTi (3)

The parameters for each component, k , of the adapted SGMM
are now calculated as

π̂k = δk
n′k
K
+ (1− δk )πk

µ̂k = δkEk (a)+ (1− δk )µk
6̂k = δkEk (a2)+ (1− δk )(6k6

T
k + µkµ

T
k )− µkµ

T
k (4)

where δk is the kth weighting factor influencing the effect
of the old model. The weighting factor is chosen as δk =
n′k/(n

′
k + nk ), where nk =

∑N
i=1 P(k|xi), calculated from the

original SGMM model.

B. BAYESIAN GAUSSIAN MIXTURE MODELS (BGMM)
Similar to the SGMM, we concatenate x = [xTs , x

T
t ]
T and let

X = [x1, . . . , xN ] be modeled by a BGMMwithK Gaussians
with parameters {θk}Ki=1 and weights {πk}Ki=1. The likelihood
of X is defined as

p(X|θ ,π ) =
K∑
k=1

πkN (θk ) (5)

In the Bayesian setting, we consider the model parameters
as random variables with a prior distribution. We aim to
infer their posterior distribution once we have observed the
data. The prior on the weights was chosen as the Dirichlet
distribution, i.e., π ∼ Dir(α0), where α0 is a K -dimensional
parameter. We consider full covariance Gaussians parameter-
ized by the mean µ and precision 3, i.e., θk = {µk ,3k}.
The conjugate prior is chosen for θ as the Normal-Wishart
distribution, i.e., θk ∼ NW(m0, β0,W0, ν0), where mean
m0, scale matrix W0, real values β0 > 0, and ν0 > D − 1
are parameters of theNW distribution [40]. Latent variables
{zi}Ni=1 denote the Gaussian to which each of theN data points
{xi}Ni=1 are assigned.

There is no direct analytic solution for the posterior
distribution of the BGMM parameters. This paper uses the

variational inference method [40] that approximates the ana-
lytically intractable posterior with a tractable distribution
called the variational distribution q(z,π ,µ,3). This is done
by making the following independence assumption:

q(z,π ,µ,3) ≈ q(z)q(π, µ,3) = q(z)q(π )
K∏
k=1

q(µk ,3k )

(6)

Kullback–Leibler (KL) divergence to the true posterior is
then minimized to find the variational distribution. Since we
use conjugate priors, q(π ) is another Dirichlet distribution
Dir(α), and q(µk ,3k ) is another Normal-Wishart distribu-
tion NW(mk , βk ,Wk , νk ) (see [40] for details). In practice,
the final update equations are similar to the EM algorithm
[39], [40] used for the SGMM that iterates between finding
the probabilities q(z) (called responsibilities) based on the
current model q(π )q(µ,3), and updating model parameters
based on the current responsibilities.

During application, in order to make predictions of the
target features ys from the source features yt , we need to
consider the posterior predictive distribution of the BGMM.
The posterior predictive distribution, p(y|X), of the data
y = [ys, yt ]T given data X is given by

p(y|X) =
1
α̂

K∑
k=1

αkSt (y|mk ,6k , νk + 1− D)

where, 6k =
1+ βk

(νk + 1− D)βk
W−1k (7)

That is, a mixture of multivariate Student’s t-distributions St
with kth component having means mk and covariance 6k ;
and αk is the kth term in α and α̂ =

∑
k αk [40].

Now let us consider the parameters of the kth multivariate
Student’s t in Eq. (7) as block matricesmk = [ms, mt ]T and

6k =

[
6ss 6st
6ts 6tt

]
. Now the MMSE estimate of yt , ŷt , can be

calculated as in the SGMM

ŷt =
K∑
k=1

p(k|ys,X)[mt +6ts6
−1
ss (ys −ms)] (8)

where p(k|ys,X) is the marginal probability of the kth com-
ponent in Eq. (7), and the other term is the mean of the kth
component in the conditional over the posterior predictive in
Eq. (7) (see [57, Sec. 10.7]). MATLAB codes for the BGMM
mapping are available under an open source license.2

C. FEED-FORWARD DNN
As the third MLM alternative, standard feed-forward multi-
layer perceptron (MLP) DNNs [58] were used to train the
mapping model with xs as the inputs and xt as the target.
Technical details of the implementation are described in
Section VI-C4, and an interested reader is referred to [58] for
a basic description of MLPs.

2https://github.com/shreyas253/BGMM_Mapping
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FIGURE 2. Block diagram of the proposed normal-to-Lombard SSC system. Prior to the conversion, the mapping models are trained using DTW aligned
pairs of normal and Lombard speech utterances.

V. NORMAL-TO-LOMBARD SSC SYSTEM
Our normal-to-Lombard parametric SSC system is detailed
in Figure 2. Prior to the actual conversion, the training of the
MLMs is carried out. Firstly, a VOC is used to extract select
speech features that are known to contribute to the specific
style conversion in question (denoted as VOC features) at
frame-level from both the source and target styles. Then,
anMLM is trained between the source and corresponding tar-
get features for the pre-processed set of the selected vocoder
features (see Section VI-C4 for details). Parallel training is
employed here, i.e., a pair of source and target style utterances
is used that have the same linguistic content and speaker.
During the actual conversion: 1) all the VOC features nec-
essary for synthesis are extracted from the given source-
style speech signal, 2) duration modification is done for all
features, 3) the selected features are mapped to the target style
using the trained MLM, and 4) with all the modified VOC
features, VOC synthesizes a speech signal in the required
target style.

Several variations of features were tried for mapping.
It was found that mapping all spectral features resulted in
very poor perceptual quality of the generated speech signals
for all the three vocoders considered in the present study.
This is likely due to the very limited size of the training data
that we have access to. Hence, the mapping was restricted
to modifications of the features that are known to be most
important to the Lombard style. The following attributes of
the speech signal are modified to achieve the conversion from
normal to Lombard style: 1) spectral tilt, 2) F0, 3) energy,
and 4) duration. Vocoder features representing the first three
are mapped using a trained model for voiced frames. For par-
allel training, the alignment of normal and Lombard speech
frames is first performed using dynamic timewarping (DTW)
[59]. The voicing decision is made based on F0, while
silent frames are detected using F0 and an energy threshold
criterion.

Duration conversion of the utterances is done by scaling
the duration of the voiced and unvoiced regions by a constant
factor that is separately estimated for voiced and unvoiced
segments. This is a simplistic approach and does not perfectly
encapsulate the real world mechanism where the linguistic
information influences the duration of segments (see [29] for
an analysis of the duration of different phoneme-classes in
Lombard speech). Ideally the durationmodification of speech
segments would also be modeled by an MLM that takes into

account the linguistic identity and context of these units.
However, training such a duration model would also require a
notable increase in the amount of training data and diversity.
Therefore, a constant-factor duration conversion is a good
approximation applicable to a limited-data scenario such as
the present study.

It should also be noted that, in addition to the four attributes
described above, vocal tract modifications may also con-
tribute to Lombard speech through a shifting of the for-
mant frequencies and a narrowing of their bandwidths. Initial
experiments were conducted by trying to directly map all
vocoder features required for synthesis with the same pro-
cedure, but the perceptual quality of the resulting mapped
utterances was either poor or the Lombard effect was much
weaker than in case of the final feature set, depending on the
model configuration. This is likely due to the limited data
currently available for training the MLMs. The vocal tract
information is inherently dependent on the speaker and the
linguistic content of speech, requiring more data to learn a
high-quality mapping without audible artifacts. Therefore,
vocal tract mapping is not included in the present system, and
new, more advanced parameterization methods of the vocal
tract needs to be considered for SSC in the future.

VI. EXPERIMENTAL SETUP
A. DATA
Speech recordings from 10 Finnish speakers, 4 female and
6 male, were used to train the system and to carry out
evaluations. The recordings (see [41] for details) involved
each speaker reading a text of 90 words, approximately
one minute in duration. The same text was produced in
two speaking styles, normal and Lombard. In order to elicit
Lombard speech, background noise (highly unstationary pub
noise [60], with A-weighted sound pressure level (SPL) of
approximately 80 dB) was played to the speakers’ ears with
headphones while they were being recorded [41]. The record-
ings of each speaker were split into 11 lexically unique utter-
ances (same utterances for each talker), which will from now
on be referred to as sentences. The duration of the sentences
in the two speaking styles varied between 2 and 9 seconds.
Hence, our dataset consisted of 10 speakers, each speaking
11 sentences in both speaking styles, corresponding to a
total of 220 utterances. These data were down-sampled from
48 kHz to 16 kHz to be used in the experiments of the current
study.
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B. MODEL ADAPTATION
In the experiments, a separate MLMwas trained for each test
speaker by using the utterances of the 9 other speakers in
the dataset (both females and males). Since there was large
variance in the degree of Lombardness in the speech of the
talkers in our corpus, training equally on data from all talkers
would have led to a perceptually mediocre Lombard effect in
the synthesized speech. To avoid this, model adaptation was
applied to the MLMs by first training them on the full set
of talkers, and then further adapting these models to a subset
of the original data from two handpicked talkers of the same
gender with a larger and more pronounced Lombard effect
(never using the same talker for adaptation and testing). This
approach enabled us to train the models on the best subset of
the training data (in terms of Lombardness) without risking
substantial overfitting of the models.

Model adaptation for the SGMMdescribed in Section IV-A
is based on techniques used in speaker verification [56].
Adaptation is much simpler in the Bayesian setting. The
posterior distribution of X calculated earlier for the weight
distribution q(π ) and for the kth Gaussian q(µk ,3k ) are now
used as the priors for the new training data, A. The adapted
BGMM posteriors are calculated as usual (see Section IV-B).
During the model adaptation for DNNs, a new feed-forward
DNN was trained with the same structure and specifications
as the original having as as the inputs and at as the target.
However, the weights were initialized to those optimized by
the original DNN (see Section VI-C4 for details).

C. SYSTEM SPECIFICATIONS
This section details the hyper-parameters and specifications
used for each step of the normal-to-Lombard SSC system
shown in Figure 2. These values were set based on brief
evaluations of the RMS errors and perceived quality of the
final synthesized speech signals

1) VOCODERS
During feature extraction, analysis frames of 25 ms with a
5-ms frame shift were employed. F0 was computed using
the RAPT algorithm from the SPTK toolkit [61], with
the range of allowed frequencies set to 50–500 Hz. For
GlottDNN, the LSFglott and LSFVT features were 10- and
30-dimensional, respectively. The HNR feature consisted
of 5 frequency channels. The glottal closure instants used in
QCP were computed using the REAPER tool [62] with the
same allowed frequency range as F0. A 3-hidden layer feed-
forward DNNwith sigmoid activations and layer sizes of 150,
250, and 300 was trained for each speaker to generate the
400-dimensional glottal pulse waveform. The training was
donewith theGlottDNN features from the remaining 9 speak-
ers. The DNNs were optimized based on mean squared error
(MSE) using stochastic gradient descent with a mini-batch
size of 100, learning rate of 0.01 and early stopping criterion
with patience of 10 epochs, and maximum number of epochs
set to 50. As mentioned in Section V, the features mapped

are the F0, energy, and spectral tilt. These features correspond
to frame-wise F0, energy, and LSFglott features, respectively,
extracted for GlottDNN. Ideally, the spectrum of theVTfilter,
represented by LSFVT , shows local peaks, formants, but the
overall spectral envelope of the filter is flat and the spectral
tilt of the speech signal is modeled by the glottal filter, repre-
sented by LSFglott . However, QCP analysis has a tendency
to include some tilt in its VT estimate. This effect varies
between speakers and may cause inconsistency issues when
the MLMs are trained in cross-speaker fashion. To compen-
sate, we parameterized the spectral tilt of the VT filter with
a first order LP filter, removed the estimated tilt from the
VT filter, and transferred it to the corresponding glottal filter.

The STRAIGHT features consisted of 21 aperiodicity
energy bands and a spectral envelope represented as
40-dimensional MGC coefficients [50], extracted from
2048-point FFTs, a frequency warping factor of 0.42, and a
power parameter of generalized cepstrum of 0. Apart fromF0,
the energy and spectral tilt weremodified bymapping the first
three Mel cepstrum coefficients (c0, c1 and c2) of the MGC
feature, and keeping the other coefficients unchanged (similar
to [63]). In PML, the binary noise mask was 25-dimensional.
The spectral envelope was extracted using STRAIGHT anal-
ysis and represented with exactly the same 40-dimensional
MGC feature as in STRAIGHT. Again the same features as
in STRAIGHT were mapped for PML.

2) DURATION MODIFICATION
The scaling ratios for the duration conversion of the voiced
and unvoiced segments of speech were calculated as the mean
ratio of the corresponding durations in the aligned segments
from the two speaking-styles, measured across all (un)voiced
segments in the data. These were found to be 1.08 and 0.88,
i.e. the voiced and unvoiced regions were stretched and com-
pressed, respectively (in line with the study of the duration of
phonemic classes in Lombard speech in [29]). The durations
were modified by applying cubic spline interpolation to the
resulting feature time-series.

3) PRE-PROCESSING
In our earlier work on SSC [64], we modeled each feature
separately for the sake of simplicity. However, since vocoder
features are correlated, the MLM could potentially make use
of these inter-relationships. Hence, feature concatenation was
explored and found to improve results. A certain amount of
contextual information in the feature domain could also be
potentially useful to the mapping model. We explored three
options for including contextual information: 1) deltas and
delta-deltas of the concatenated features, 2) directly concate-
nating ±1 adjacent frames (i.e. on either side of the current
frame, with a total window size of 3 adjacent frames), and
3) concatenating ±3 adjacent frames. By including contex-
tual information, no noticeable differences were found when
comparing the delta and delta-delta and ±1 adjacent frames.
Including ±3 adjacent frames resulted in smoother feature
contours, slightly better perceived quality (fewer distortions),
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but a slightly lower Lombardness effect. Finally, we chose the
±1 adjacent frames for the current study. Hence, the dimen-
sionality of the mapped features was 36 for GlottDNN and
12 for PML and STRAIGHT.

Speaker-specific mean and variance normalization was
applied to the features. This leads to a more balanced rep-
resentation of the data in the feature space, such that the
speaker-specific traits are averaged out and style-specific
traits are retained to be modeled. Finally, in post mapping,
the features were calculated using overlap-add over the adja-
cent frames with a flat window. The estimated features were
then smoothed with median filtering using a window length
of 30 for F0 and a window length of 3 for the MGC from
STRAIGHT and PML and Gain from GlottDNN. In order
to counter the potential differences in the total gains of
the different vocoders in the listening tests, the utterance-
level RMS values were normalized to that of the reference
Lombard speech utterance.

4) MAPPING MODELS
The SGMMs were trained with K chosen from a range
of 10 to 50 (in steps of 10) Gaussians, using 5-fold cross-
validation. The EM algorithm was initialized randomly. For
the BGMMs, K was set to 100, since BGMMs do not suffer
from over-fitting with even a large number of Gaussians.
(A separate 10-fold cross-validation test showed that the
errors did not reduce significantly for larger values of K .)
Furthermore, the BGMM component means and precisions
were modeled with prior distribution NW(µ0, β0,W0, ν0),
whose parameters were set similar to those recommended
in [65]: µ0 andW0 were set to the dataset mean and diagonal
precision, β0 = 1, and ν0 = D + 2. The concentration
parameter α0 was set to the all ones vector.

The feed-forward DNN [58] had 4 hidden layers with
250 hidden rectified linear unit (ReLu) neurons each. During
optimization, the validation set was chosen as a random 20%
sampling of the training set. The DNNs were optimized with
RMSprop [58], [66] based on mean squared error and a mini-
batch size of 100. Dropout regularization (15% of all the
hidden layer units) and early stopping (maximum number of
epochs and patience of 250 and 10, respectively, for the initial
training, and 30 and 2 during model adaptation) were used to
limit overfitting to the training data. DNNswere implemented
using Keras (https://keras.io/).

VII. SYSTEM EVALUATION
The performance of the speaking style conversion system
was evaluated using subjective listening tests comparing all
9 combinations of the 3 VOCs and 3 MLMs chosen in this
study. Two separate tests were conducted to evaluate degree
of Lombardness and quality of the converted speech samples,
detailed below in Sections VII-A and VII-B respectively.
Altogether 21 (11 male and 10 female) native talkers of
Finnish took part in the listening tests, participating in both
tests (with a short break in between the tests). Eleven of the
listeners took the Lombardness test first and the rest started

with the quality test. The listening tests were conducted in
single-walled listening booths with a background noise level
of less than 10 dB in the frequency range of the test samples
using circumaural Sennheiser HD650 headphones. The tests
were implemented using MATLAB’s GUI (the Lombardness
test system was adapted from [67]).

As one of the potential use cases, Lombard speech is
desirable for the purpose of speech intelligibility enhance-
ment research [30], [68], and therefore we also evaluated
the intelligibility of the mapped speech. However, running
subjective intelligibility tests for all the 9 different system
configurations was not practically feasible. Instead intelligi-
bility of our system was studied using a recently developed
instrumental intelligibility metric called speech intelligibility
in bits (SIIB, [69]). This measure is based on the mutual
information between a clean reference and a noisy signal,
and it performed well in a recent survey that compared sev-
eral instrumental methods for measuring speech intelligibil-
ity [70]. In the current study, SIIBGauss [70], a variation of
SIIB that uses the information capacity of a Gaussian channel
for mutual information calculation, was used. Babble noise
was used to degrade the signals.

Finally, the proposed normal-to-Lombard conversion sys-
tem was analyzed by i) visualizing the long term average
spectra of the mapped utterances and by ii) objectively ana-
lyzing the distributions of themapped key features F0, energy,
and spectral tilt by comparing them to the same features from
the natural normal and Lombard speech.

A. LOMBARDNESS TEST
This test was set up as a MUSHRA-like (MUltiple Stimuli
with Hidden Reference and Anchor, [71]) test. Each trial
aimed to evaluate the Lombardness of the mapped utterances
from different VOC and MLM combinations of a single sen-
tence (same speaker and linguistic content). In a single trial,
the listeners were given reference samples consisting of the
original utterance spoken in both normal and Lombard styles
and a set of unlabeled samples with the same speaker and lex-
ical content to be rated on a Lombardness scale from 0 to 100.
The utterances to be rated included a set of mapped utterances
and two hidden references of the original natural utterances
in normal and Lombard styles (which were instructed to be
rated as 0 and 100, respectively) to test the attentiveness of
the listeners.

In standardMUSHRA, the listeners would have been asked
to rate all nine possible VOC×MLM combinations in each
trial together with the two hidden references, which is too
much to compare at once. Instead, the listeners rated a subset
of four unique combinations in each trial, which were created
by always sampling two out of three VOC and MLM options
for the trial and presenting all their combinations. To include
all possible pair-wise comparisons between different VOC
and MLM variants for each test utterance, three different
trials with the same utterance were required. As a result,
the listeners were subjected to a total of 18 trials consisting
of 6 different utterances (3 lexically unique sentences each
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spoken by one male and female talker), with each trial having
2 reference utterances and 6 utterances to be rated (4 mapped
and 2 hidden reference). The listeners were allowed to listen
to the utterances as many times as they wished. The utter-
ances and the two speakers were chosen randomly for the
listening test after discarding the longest sentences (to mini-
mize listening test duration) and excluding speakers that had
produced very low perceived Lombardness as judged by the
authors.

Before taking the test, the listeners were given a brief
written description of Lombard speech, translated as:
‘‘In Lombard speech, the speech becomes more pressed and
energetic to remain intelligible in a noisy environment’’. The
listeners were also asked to focus on the style and try to
ignore the speech quality. Each listener then had a training
session in order to familiarize himself/herself with Lombard
speech. In this training session, the listeners were able to
listen to utterances in both styles. The utterances used in the
training session were randomly chosen from speakers and
sentences not used in either of the subjective tests. Further-
more, the listeners were asked to adjust the sound volume to
a loud yet comfortable level during the training session, after
which the volume was kept fixed for the duration of the actual
test.

Since a standard paired t-test was not directly applicable
to our data due to the deviation from standard MUSHRA,
a repeated-measures ANOVA (RMANOVA) was carried out
to test the main effects and interactions for VOCs and MLs
while controlling for the effects of distributing the compar-
isons across three different trials, and also to see whether
the utterance contents or speaker ID had any impact on the
Lombardness ratings. The RMANOVA model therefore con-
sisted of five factors: VOC×MLM×SEN×SP×REP, where
SEN and SP represent the lexically unique sentence and
speaker ID, while REP represents the number of times the
SEN×SP combination had been presented to the listener at
the time of rating, adding up to a total of 3×3×3×2×3 = 162
samples for each listener. The five missing VOC×MLM
combinations from each of the 18 trials were treated as
missing data, resulting in 72 samples with actual ratings per
subject. Within-subject correlations were modeled using a
first-order autoregressive model and the reported degrees of
freedom in results correspond to the corrected dfs.
All main effects of the five factors and the interactions

including MLM, VOC, or both, were tested, followed by
pair-wise comparisons between the alternative MLM or VOC
methods using Bonferroni-correction for unnormalized
significance of p < 0.05 and using the RMANOVA model
-based estimates of means for the comparisons. The mixed-
model routine (‘‘MIXED’’) of SPSS (v 24.0) was used to
carry out the analyses due to its capability for properly
handlingmissing data. Data from 2male and 1 female listener
were rejected from the analyses, as they had marked the
hidden references incorrectly on more than one of the trials
(indicating below 90% accuracy).

B. QUALITY TEST
The quality test was performed using the comparison cate-
gory rating (CCR) test [72]. In this test, for a particular trial
the listeners were presented with pairs of speech utterances.
They were asked to rate the perceived quality of the second
utterance in comparison to the first one using a continuous
rating scale that translates to English as: −3, much worse;
−2, worse; −1, slightly worse; 0, almost similar; 1, slightly
better, 2, better; 3, much better. The listeners could listen to
the utterance pairs as many times as they wished. In a single
trial, each utterance pair consisted of a mapped utterance
and its corresponding natural Lombard utterance. This was
presented in both orders and also including null pairs where
both utterances in the pair were from the natural Lombard
reference (expected to be rated as 0; in order to test the
attentiveness of the listeners). For each utterance, there were
19 trials (including both CCR utterance pair orders for
the 9 VOC×MLM combinations and 1 null pair). Ideally,
it would have been preferable to include all 36 possible pairs
from the 9VOC×MLMcombinations to better compare them
directly against each other, but this would have made the test
unfeasible due to the large number of trials. Similarly to the
Lombardness test, we used 6 utterances, consisting of 3 lex-
ically unique sentences spoken by one talker of both genders
(randomly chosen and different from the Lombardness test
and the training sessions). The listeners were exposed to a
total of 114 trials, and were allowed to take a short break
after rating the first 57 CCR utterance pairs.

Prior to the actual test, the listeners had a training session
where they had to rate 4 CCR utterance pairs (including a
null pair). These training utterances were randomly chosen
from the same set that was used for the training session in the
Lombardness test. As in the Lombardness test, the listeners
were asked to adjust the volume during the training session,
after which it was unchangeable.

The average of the scores for each unique utterance pair
from the CCR test, i.e. from the pairs of the utterances pre-
sented in both orders, known as the comparison mean opinion
score (CMOS) [72], was first calculated. The corresponding
marginal means for each VOC×MLM combination was then
derived from these. Hence, the CMOS score in our current
study corresponds to how much better the reference natural
Lombard utterance is in comparison to the mapped Lombard.
Therefore, a lower CMOS score indicates higher quality.
A male listener was rejected from the analyses since he had
marked all scores as either+3 or−3 which did not carry any
information with respect to the relative quality of different
methods. The rest of the listeners marked the null pairs with
a score of close to 0 and were hence considered for analysis.
As noted in [73], there is a significant listener specific bias in
the CMOS scores. To counter this, we mean-normalized the
CMOS scores across each listener (to zero mean across all
comparisons) before aggregating the results across the differ-
ent system variants. Since variance of the responses was not
normalized, this approach allows us to study the magnitude of
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differences in quality ratings for different system variants. All
VOCs, MLMs and their combinations were then compared
using the two-sided Mann-Whitney U-test (as in [73]).

VIII. RESULTS
A. LOMBARDNESS TEST
The main results from the Lombardness listening test are
shown in Figure 3, where the horizontal lines and asterisks
indicate significant differences as obtained from the mixed
effects model for the VOC and ML comparison and from the
two sided pairwise t-test for the VOC×ML comparison. The
statistical analyses indicate that there were significant main
effects of VOC (F(1064.53) = 73.86, p < 0.001) and ML
(F(500.16) = 4.73, p = 0.009), and significant interactions
of VOC×MLM (F(1095.21) = 4.34, p = 0.002) and
VOC*REP (F(906.76) = 3.97, p = 0.003). The main effects
of utterance, repetition, or speaker ID, or any other interac-
tions between the factors were not significant. This means
that the ratings were affected by the choice of a vocoder and

FIGURE 3. The mean Lombardness scores over all the 9 VOC×ML
combinations (top) and separately for each VOC and MLM (bottom).
Standard errors across all subjects are shown in red. The horizontal lines
and asterisks indicate the significant differences (p < 0.05 after
Bonferroni correction for multiple comparisons). A score of 0 and
100 correspond to the mapped utterances having as much Lombardness
as the reference normal and Lombard utterances respectively.

a mapping method, but not by the linguistic contents or the
speaker. The number of times the same utterance had been
heard earlier had a slight impact on the relative ratings of
different vocoders (see below).

Comparing the RMANOVA model-based means of
Lombardness scores of the VOCs, all differences between
the vocoders are significant with PML having higher average
Lombardness rating (M = 61.22, standard error SE = 2.92)
than GlottDNN (M = 43.48, SE = 2.93; p < 0.001) and
STRAIGHT (M = 57.14, SE = 2.91; p = 0.008), and
STRAIGHT is also rated higher than GlottDNN (p < 0.001).
As for the MLMs, DNN has a significantly higher average
Lombardness (M = 59.21, SE = 3.28) than BGMM (M =
49.39, SE = 3.42; p = 0.008), whereas there is no significant
difference between SGMM (M = 53.24, SE = 3.33) and
DNN or between SGMM and BGMM.

As for the interaction between vocoders and repetitions,
pairwise comparisons revealed that the Lombardness dif-
ference between STRAIGHT and PML increased grad-
ually across the three repetitions of the same utterance,
reaching significance only at the third repetition (as mea-
sured with a highly conservative Bonferroni correction).
Closer analysis revealed that the Lombardness-ratings of
STRAIGHT decreased systematically from the first repeti-
tion (mean 62.73) to the third repetition of the same utter-
ance (mean 52.02) while GlottDNN and PML were more
consistent across all repetitions (GlottDNN having 45.15 on
the first repetition and 45.60 on the last repetition while the
corresponding numbers for PML are 63.50 and 60.50, respec-
tively) even though the presentation and comparison orders
were fully randomized across all participants. The reason for
this finding is currently unclear, although the result suggests
that the listeners somehow started to consider STRAIGHT
as less Lombard-like the more they heard the vocoder with
the same utterance. On the other hand, the first impressions
of the Lombardness in STRAIGHT-vocoded samples were
comparable to those of PML on every new utterance.

Finally, we carried out exhaustive pair-wise comparisons
between all the 9 combinations of MLMs and VOCs using
two-tailed t-tests for the subject mean ratings with Bonfer-
roni corrected significance levels (p < 0.05). The signifi-
cant comparisons are: STRAIGHT/SGMM (M = −55.82,
SE = −1.69) is better than GlottDNN/SGMM (M =

−44.03, SE = −2.52; p = −0.016 and df = 18 for all
t-tests) and better than GlottDNN/BGMM (M = −42.83,
SE = −2.17; p = −0.001); STRAIGHT/BGMM (M =
−55.33, SE = −2.09) is better than GlottDNN/BGMM (p =
−0.008); STRAIGHT/DNN (M = −56.87, SE = −1.95)
is better than GlottDNN/SGMM (p = −0.011) and better
than GlottDNN/BGMM (p = −0.001); PML/SGMM (M =
−61.68, SE = −2.27) is better than GlottDNN/SGMM
(p < 0.001), better than GlottDNN/BGMM (p < 0.001),
and better than GlottDNN/DNN (M = −46.77, SE =
−2.87; p = −0.009); PML/BGMM (M = −57.29,
SE = −1.99) is better than GlottDNN/SGMM (p =
−0.008), and better than GlottDNN/BGMM (p = −0.001);
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and finally PML/DNN (M = −64.87, SE = −2.13)
is better than GlottDNN/SGMM (p < 0.001), better
than GlottDNN/BGMM (p < 0.001), and better than
GlottDNN/DNN (p = −0.001). The top panel in Figure 3
shows the results for all 9 VOC×ML combinations.

B. QUALITY TEST
Figure 4 shows the results of the average and standard errors
of mean-normalized CMOS scores from the VOC,MLM, and
VOC×MLM categories. The lines and asterisks indicate the
significant differences (Bonferroni corrected with p < 0.05
and obtained from the two-sided Mann-Whitney U-test). The
overall mean CMOS score over all the methods was 1.9.

Comparing the aggregated mean-normalized CMOS
scores of the VOCs, the following significant results were
observed (the values are calculated as the difference in
the average mean-normalized CMOS scores): GlottDNN
(M = −0.064, SE = 0.02) is better than PML (M = 0.06,
SE = 0.01; p < 0.001) and STRAIGHT (M = 0.00,
SE = 0.02) is better than PML (p = 0.043). There is no
significant difference between GlottDNN and STRAIGHT.

FIGURE 4. Bar plots indicated the mean of the listener specific
mean-normalized CMOS scores over all the 9 VOC×ML combinations,
3 VOCs, and 3 MLMs (lower is better). Standard errors are shown in red.
The horizontal lines and asterisks indicate the significant differences
(Bonferroni corrected for unnormalized p < 0.05).

Similarly comparing the results for the MLMs, only one
significant result was found: SGMM (M = −0.05, SE =
0.01) is better than DNN (M = 0.06, SE = 0.02; p = 0.001).
BGMM (M = −0.01, SE = 0.02) does not have any
significant differences from the other MLMs.

Finally, comparing the results for all 9 VOC×MLM,
the following significant results were found: GlottDNN/
SGMM (M = −0.07, SE = 0.03) is better than
STRAIGHT/DNN (M = 0.09, SE = 0.03; p = 0.049) and
better than PML/DNN (M = 0.11, SE = 0.04; p = 0.040);
GlottDNN/BGMM (M = −0.09, SE = 0.03) is better than
STRAIGHT/DNN (p = 0.009), better than PML/BGMM
(M = 0.08, SE = 0.02; p = 0.004), and better than
PML/DNN (p = 0.006); and finally STRAIGHT/SGMM
(M = −0.07, SE = 0.04) is better than PML/DNN
(p = 0.044). GlottDNN/DNN (M = −0.03, SE = 0.05),
STRAIGHT/BGMM (M = −0.02, SE = 0.04) and
PML/SGMM (M = 0.00, SE = 0.03) were not significantly
different from any other methods.

C. INSTRUMENTAL INTELLIGIBILITY TEST
We first verified that the SIIB produces meaningful results
for natural and copy synthesized normal and Lombard speech
with different vocoders (i.e., vocoding and synthesis without
mapping) at different SNRs. As can be observed from Fig. 5,
copy synthesis with STRAIGHT maintained intelligibility
comparable to natural utterances. However, intelligibility
scores of PML and even more so of GlottDNN do not reach
the scores of the natural utterances, and this difference also
holds for very high SNRs (not shown separately). Although
the reason for this discrepancy is unclear, one potential reason
could be that SIIBGauss metric favours the prominent har-
monic structure in STRAIGHT-vocoded speech caused by
the vocoder’s impulse-type excitation waveform. Compared
to STRAIGHT, PML and GlottDNN use more complicated
excitation waveforms which results in less prominent har-
monics in synthesized speech. Even though this feature has
been found to reduce ‘‘buzziness’’ in speech synthesis [38],
the use of more complicated excitation waveforms in PML
and GlottDNN get penalized by SIIBGauss for some reason
(see also Section VIII-D).
Since SIIBGauss does not treat different vocoders in the

same manner in the copy synthesis conditions, it is not possi-
ble to directly compare different VOCs against each other in
themapping process. It is possible, however, to analyze differ-
ent MLMs by using a selected vocoder and by comparing the
SIIB scores of converted speech to those computed from copy
synthesized utterances generated with the same VOC from
natural normal and Lombard speech. These results are shown
in Figure 6 in terms of the intelligibility gains (bits/s) in noise
for different system configurations when compared to copy-
synthesized normal speech. As can be observed, feature map-
ping improves the SIIBGauss score with reference to the copy
synthesis normal style utterance using that sameVOC (except
for GlottDNN with SGMM and VBGMM at 5 dB SNR).
Increase in estimated intelligibility is higher for STRAIGHT
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FIGURE 5. SIIBGauss intelligibility scores at different SNRs, comparing the
natural utterances and the copy synthesized utterances generated with
GlottDNN, STRAIGHT and PML. Top panel: copy synthesis of normal
utterances. Bottom panel: copy synthesis of Lombard utterances.

and PML compared to GlottDNN. Comparing the MLMs,
the DNN leads to the highest intelligibility gain among the
MLMs. The SGMM and VBGMMhave similar intelligibility
gains. These observations are in line with the results of the
subjective Lombardness test in Section VIII-A, thereby also
confirming that the subjective ratings of Lombardness by our
subjects are closely related to instrumental measure of speech
intelligibility.

D. FEATURE ANALYSIS
Figure 7 shows the long term average spectra (LTAS) of
the natural utterances in both styles along with the copy
synthesis utterances for each VOC. Utterances mapped with
the DNN—the method that was found to produce highest
Lombardness in both subjective listening and instrumental
intelligibility tests—are also plotted for each VOC. It can be
seen that the LTAS of the copy synthesis utterances in both
styles follow those of the natural utterances. This suggests

FIGURE 6. The improvement in SIIBGauss intelligibility scores at different
SNRs compared to the copy synthesized normal style utterance in the
same noise conditions. For each VOC, intelligibility after mapping with
each of the different MLMs is shown. Intelligibility gains for copy
synthesized Lombard utterances are shown as a reference.

that the differences in SIIBGauss among the VOCs do not
arise from inherent differences in the spectral shape of the
VOC outputs. The third plot in Figure 7, corresponding
to LTAS after the normal-to-Lombard mapping, shows that
PML is closest to the target natural Lombard spectrum,
followed by STRAIGHT. In contrast, GlottDNN deviates
from the other two with a much smaller effect of the mapping,
especially at <2 kHz where the spectrum remains largely
unmodified from normal speaking style. In total, the average
spectra are in line with the results observed in the subjective
Lombardness (Section VIII-A) and objective intelligibillity
(Section VIII-C) tests where the DNN had the highest Lom-
bardness and SIIBGauss scores respectively. They also reveal
that the mapping of the GlottDNN parameters has not been
as successful as for the other two vocoders, either due to the
higher dimensionality of the source features in GlottDNN,
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FIGURE 7. Long term average spectra (LTAS) in normal and Lombard styles. LTAS of natural normal and natural Lombard speech are shown in all panels.
Panels from left to right show (a) LTAS of copy synthesis normal speech generated with three VOCs, (b) LTAS of copy synthesis Lombard speech generated
with three VOCs, and (c) LTAS of DNN-mapped speech.

FIGURE 8. Histogram plots showing the distribution of the key features mapped in this study: F0, frame-wise energy (c0), and spectral tilt (c1) (calculated
using the SPTK toolkit [61]). The black and green solid lines show the feature distributions of the reference normal and reference Lombard speech data,
respectively. The rest of the colored and dashed lines show the distributions of these features after the mapping with different methods. The distributions
for different VOCs are obtained by averaging across all MLMs (top row), and distributions for MLMs are obtained by averaging across all VOCs
(bottom row).

or due the distributional properties of the source
features (LSFs).

Finally, the distributions of the mapped features (i.e.
F0, frame-wise energy, and spectral tilt from the voiced
frames) were also analyzed using the overall histogram
distributions of the features corresponding to the natural
normal, natural Lombard and mapped Lombard utterances.
The F0 was extracted similarly to all vocoders using the
SPTK toolkit [61]. The frame-wise energy and spectral tilt
features were calculated as the zeroth (c0) and first (c1)
standard MFCC coefficient, respectively, and independently
of any vocoder-specific feature extractors. The histograms
were calculated using the same 100 bins for all VOC and
MLM variants and were normalized to sum up to 1. The
resulting histogram distributions are shown in Figure 8,
where F0 is shown separately for male and female talkers.

Ideally, the distributions of the mapped features should be far
away from the distribution of the natural normal and close to
those of the natural Lombard. This trend is clearly visible in
the mapped features.

For a quantitative analysis of the feature distributions,
the net divergence, dnet , measures in Table 1 show the relative

TABLE 1. Net Divergence, dnet , of the feature distributions calculated as
shown in 9. The features shown are F0, energy (C0), and spectral tilt (C1).
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distance of the feature distributions to the natural normal
and natural Lombard speech. dnet is calculated with the
Jenson-Shannon divergence (JSD), the symmetric version of
the Kullback-Leibler divergence (KLD) as

dnet = JSD(mapped||natural normal)

− JSD(mapped||natural Lombard)

where, JSD(p||q) =
1
2
KLD(p||

p+ q
2

)+
1
2
KLD(q||

p+ q
2

)

(9)

where a higher dnet means that the features of the mapped
utterances are, on average, further away from those of the
natural normal and closer to the Lombard speech. dnet values
above 0 indicate that the mapped feature distribution is closer
to the natural Lombard speech than normal speech, which is
seen for all the features except frame-wise energy. As a refer-
ence for the scale of the dnetvalues, the values of JSD(natural
normal||natural Lombard), JSD(mapped||natural normal)
and JSD(mapped||natural Lombard) averaged over all the
features are 0.039, 0.054 and 0.018 respectively. An inter-
esting finding here is that the divergence between natural
normal and natural Lombard speech is smaller than between
the natural normal and the mapped utterances, i.e. some of
the features in the mapped utterances are further away from
normal speech than those of natural Lombard. This is in
fact desired, as several of the original speakers had rather
mild Lombard effect and model adaptation to a subset of
speakers was carried out to increase the Lombardness effect
(see Section VI-B). However, it is difficult to accurately
summarize the changes on a one-dimensional continuum due
to the non-normality of the distributions.

Among the VOCs, GlottDNN has the highest net diver-
gence in terms of male F0 and frame-wise energy, whereas
PML has high separability for the female F0 and spectral
tilt. Comparing the MLMs, DNN has the highest separation
for spectral tilt, whereas the use of SGMM leads to the
largest divergence in the rest of the features. These results are
roughly in line with the results of the subjective Lombardness
test from Section VIII-A, where DNN, SGMM, and PML had
the highest levels of perceived Lombardness.

IX. DISCUSSION AND CONCLUSION
This work described a general parametric system that is
capable of achieving style conversion of speech utterances.
The specific case of a vocal effort based style conversion,
normal-to-Lombard, was detailed for a scenario with limited
parallel Finnish data. The system consists of vocoders for
feature extraction and speech synthesis, and machine learn-
ing models with parallel learning for mapping the selected
features. Three well-known vocoders and mapping methods
were compared in the experiments. The system was tested
with two subjective tests measuring Lombardness and quality
and with an instrumental speech intelligibility metric. It was
noted that all methods achieve a significant shift in the speak-
ing style towards Lombard in the speech utterances with some
degradation in the perceived quality.

The results from the listening tests and the instrumen-
tal intelligibility tests show that DNNs created the largest
Lombardness effect, although at the cost of perceived signal
quality. In addition, SGMMs and BGMMs performed very
similarly. This is an indication that the BGMMs are capable of
handling overfitting without the expensive hyper-parameter
tuning that is required for SGMMs (e.g., the 5-fold cross
validation used here; see Section VI-C4). Comparing the
different vocoders, it was observed that GlottDNN is one of
the best performing VOCs in terms of perceived quality but
also leads to the smallest Lombardness score. This effect is
also observable in the instrumental intelligibility tests where
the GlottDNN has the smallest improvement in comparison to
the natural normal reference. STRAIGHT has a good balance
between these two measures, and PML is the best in terms
of Lombardness and the worst in terms of perceived quality.
The reduced Lombardness effect of the utterances mapped
with GlottDNN could be because of feature dimensionality
(36 mapped features for GlottDNN and 12 for the other two
VOCs) combined with MLMs being designed to avoid over-
fitting, where estimation of feature covariances (explicitly
in GMMs or implicitly in DNNs) is difficult due to limited
training data. Another possibility is that the high-dimensional
parametrization of the glottal source, when mapped together
with F0 and energy, constrains the shift in the Lombardness,
as not all aspects of the source undergo as substantial a change
between styles as the mere tilt parameters (c1 and c2 MGC
coefficients of spectral envelope) mapped in the other two
VOCs. Overall, PML with SGMM mapping appears as one
of the best compromises, with a high Lombardness score and
a comparatively low quality degradation. The findings of the
Lombardness listening tests were supported by the feature
analysis, which shows that the features of the normal speech
are indeed being mapped closer to the Lombard reference.

From the above results, it is clear that there is an inverse
relationship between how well each of the methods performs
in terms of Lombardness and perceived quality, suggesting
that there is currently a trade-off between these two evaluating
parameters. If the current parametric SSC system were to be
used in a real-world application, this trade-off would limit
the style conversion effect we are capable of achieving in the
target style (currently Lombard) while still maintaining an
acceptable level of quality. However, such a trade-off should
not be an inherent property of the SSC problem, but is likely
related to our limited training data and shortcomings in the
current technical solutions and could be therefore addressed
in the future work.

Considering this, one direction for future research could
be working with non-parallel learning schemes, which will
allow using considerably more training data from conversa-
tional recordings in natural settings that may have different
speaking styles along the vocal effort continuum. This would
allow either inclusion of more features to be mapped between
the speaking styles (e.g., vocal tract parametrizations as well),
more precise context- or content-dependent mapping of the
current relatively small set of key features, or all of these at
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the same time. Another approach to work around the data
scarcity problem of the current SSC system would be the
use of components pre-trained on large corpora, and then
adapting these for different styles with the data available.
For instance, a WaveNet with pre-trained weights could have
been potentially used as a vocoder in the current system,
but an open source implementation was not available at the
time of experimentation and was hence not explored in the
current tests. It would be interesting to see how the WaveNet
compares with the standard parametric vocoders in this set-
ting in future experiments. Once the basic recipe for high
Lombardness and high-quality SSC has been established,
a future study should investigate how the Lombardness scores
from the subjective listening tests and the SIIB scores from
the objective intelligibility evaluation actually translate in
subjective speech intelligibility in different noise conditions.
The implications of the current and future systems of SSC
on different styles along the vocal effort continuum should
be also explored. In this respect, the present study should be
taken as the first steps towards this direction.
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