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Power flow-conformal metamirrors for engineering

wave reflections

Ana Diaz-Rubio'*, Junfei Li?, Chen Shen?, Steven A. Cummer?, Sergei A. Tretyakov'

Recently, the complexity behind manipulations of reflected fields by metasurfaces has been addressed, showing
that, even in the simplest scenarios, nonlocal response and excitation of auxiliary evanescent fields are required
for perfect field control. In this work, we introduce purely local reflective metasurfaces for arbitrary manipulations
of the power distribution of reflected waves without excitation of any auxiliary evanescent field. The method is
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based on the analysis of the power flow distribution and the adaptation of the reflector shape to the desired
distribution of incident and reflected fields. As a result, we find that these power-conformal metamirrors can
be easily implemented with conventional passive unit cells. The results can be used for the design of reflecting
surfaces with multiple functionalities and for waves of different physical nature. In this work, we present the cases
of anomalous reflection and beam splitting for both acoustic and electromagnetic waves.

INTRODUCTION

Metasurfaces, the two-dimensional (2D) versions of metamaterials,
have opened new possibilities to control scattering of waves, with
many applications in thin-sheet polarizers, beam splitters, beam
steerers, lenses, and more (1-3). The interest in thin structures capa-
ble of controlling and transforming impinging waves increased after
the formulation of the generalized reflection and refraction law (GSL)
(4), which states that, by using small phase-shifting elements, it is
possible to control the directions of reflected and transmitted waves.
Among all possible scenarios where metasurfaces can be applied, this
work is focused on the analysis of reflective metasurfaces, so-called
metamirrors.

In this context, the simplest nontrivial functionality is probably the
anomalous reflection, which is the phenomenon of plane-wave
reflection in directions different from the specular one. Anomalous
reflection can be obtained by using conventional diffraction gratings
(blazed gratings), where the energy scattered into each propagating
Floquet harmonic is carefully engineered (5-7). The efficiency of these
systems, defined as the percentage of the incident power that is sent into
the desired direction, can be high only if there is not more than one or
two unwanted propagating Floquet modes or in the retroreflection case.
Recent studies of the physics of conventional gratings resulted in new
possibilities of controlling reflected waves (8, 9). In these systems, by
designing the period of the grating, the scattering properties of the con-
stituent inclusions, and the mutual coupling between them, one can en-
gineer the amount of power reflected into different directions. This
novel concept, the metagratings, has shown promising results for both
anomalous reflection and beam splitting (both systems allow propaga-
tion of only three Floquet harmonics). It is important to mention that
the unit cells of the inclusions are not necessarily small in comparison
with the wavelength and, for these examples, only one element per
period gives enough degrees of freedom for controlling the energy
distributed into the three harmonics allowed in the system. As the num-
ber of propagating harmonics increases, more inclusions have to be
considered, and the analytical solutions become too involved, as they
must account for interactions of many different inclusions in the unit
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cell. For this reason, it is difficult to extend this method to more general
and complex distributions of fields, where the amplitude, phase, and
direction of numerous reflected waves should be fully controlled, or
to nonperiodic systems, such as lenses.

Metasurfaces, which allow subwavelength-scale control of fields,
have been proposed as an alternative to gratings, potentially offering full
control over the reflection directions, when the number of potentially
propagating Floquet modes can be arbitrarily large. In the design of
metasurfaces, local response of the constitutive elements is commonly
assumed. This assumption has two important implications. First, for
a given application, the metasurface can be homogenized and the re-
quired properties of the constituent elements can be easily found.
Second, the constituent meta-atoms can be individually designed.
Despite the simplicity of the anomalous reflection problem, which
has been extensively studied for electromagnetic (4, 10, 11) and
acoustic (12-15) waves, it was only recently that the physics of this wave
transformation by metasurfaces was properly understood (16-23). In
particular, it was shown that phase-gradient metasurfaces designed on
the basis of the generalized reflection law (4) can have high efficiencies
only if the deflection angle does not exceed 40° to 45° (18, 21).

To understand the difficulties related to control of reflections from
metasurfaces, one can consider power flow in the vicinity of anomalous
reflectors. Here, multiple propagating waves with different transverse
wave numbers coexist in one medium, and the interference between
them results in inhomogeneous power flow profiles, where the power
flow vector crosses the metasurface plane. In other words, there will be
regions where the power carried by the desired distribution of the inci-
dent and reflected waves “enters” the metasurface and other regions
where the power “emerges” from the surface. It means that the metasur-
face requires periodically distributed gain/loss response (17) or strongly
nonlocal behavior (9, 16, 18, 20).

It was shown theoretically that the nonlocal properties, required for
high-efficiency reflections into arbitrary directions, can be, in principle,
realized by carefully engineering the surface reactance profile (20). The
first known experimental realizations of perfect anomalous reflectors
were based on numerical optimizations (18, 21), because the intrinsical-
ly nonlocal behavior of any meta-atom combined with the goal to en-
gineer the nonlocal properties of many interacting meta-atoms
complicates the implementation of all nonlocal solutions. The next step
toward full engineering of wave reflection is the simultaneous control of
two reflected waves. As it was demonstrated in (24), flat beam splitting
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metasurfaces also require strong nonlocal responses and, consequently,
the use of numerical optimizations. Finding possibilities for controlling
multiple reflected waves without parasitic reflections using local meta-
surfaces can open new avenues for the design of highly efficient devices
such as holograms or lenses. To recover the local response of the meta-
surface, Epstein and Eleftheriades proposed the use of auxiliary evanes-
cent fields behind the metasurface as a power-guiding mechanism (19).
In this scenario, the required nonlocal interactions between meta-atoms
are realized using carefully engineered evanescent fields behind the sur-
face. This solution requires full control of the bianisotropic response of
the meta-atoms that can complicate the implementation, especially at
high frequencies. In addition, the complexity of the evanescent fields
that ensure the nonlocal coupling of meta-atoms will increase for more
sophisticated applications.

Here, we study the possibility of creating metamirrors that are
capable of reflecting waves into arbitrary directions without parasitic
scattering and without the need for any evanescent fields close to the
metasurface. In this scenario, the fields in front of the metamirror are
perfect combinations of the desired propagating plane waves in the
far zone and in the vicinity of the metasurface. Absence of evanescent
fields in front of the metamirror implies that the response is local and
that it is possible to design metamirrors using analytical formulas, with-
out any further numerical optimization of complex nonlocal structures.
We approach the problem by analyzing the distributions of propagat-
ing power flow in the desired set of plane waves, not restricting the study
to waves of a specific physical nature. Previously, analysis of the power
flow distribution has been used for studying surface-relief gratings
(6), where the metallic (or dielectric) shape of the grating can be de-
signed to control the energy scattered into a specific diffraction mode.
However, these solutions do not ensure exact fulfillment of the bound-
ary conditions on the surface. The method proposed here allows us
to design theoretically perfect anomalous reflectors with rather gen-
eral functionalities. Illustrations are provided for anomalous reflec-
tors and beam splitters. The derivations are made for acoustic and
electromagnetic (see the Supplementary Materials) scenarios.

RESULTS

Design methodology

In this section, we provide a systematic methodology for the design of
theoretically perfect metamirrors. The approach comprises four steps:
(i) definition of the fields for the desired functionality, satistying the
global power balance (all the incident energy is reflected by the metasur-
face); (ii) analysis of the power flow distribution and definition of the
conformal surface; (iii) surface impedance calculation; and (iv) imple-
mentation with passive elements.

Anomalous reflective metamirror

We begin by considering the anomalous reflection scenario where, requir-
ing the absence of any parasitic reflections, we define an incident sound
plane wave and a reflected plane wave with the directions of propagation
6; and 0,, respectively. Figure 1A shows a schematic representation of the
problem when 6; = 0°. Pressure field in this scenario can be expressed as

plr) = po[e " 4 Re 7] (1)

where k; = k(sin6;x — cos6,¥), k, = k(sin8,X + c0s8,¥), k = w/c is
the wave number in the medium, p, is the amplitude of the incident plane
wave, and R = |R|é® is the reflection coefficient. The components of
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the velocity vector v(r) = v,(r)X -+ v,(r)y associated with this pres-
sure field read

ve(r) = Iﬂ)_Z {sin@ie_jk“r + Rsinere_jk“r} (2)
vy(r) :‘2—2 { — cosBye T 4 RcosGre_jk"‘} (3)

with 1 = pc being the characteristic impedance of the medium. As it
was demonstrated in (16, 17, 20), to ensure perfect conversion be-
tween the incident and the reflected plane waves, avoiding scattering
of energy into any other direction, the amplitude of the reflection
coefficient has to satisfy |R| = 4/cos6;/cos6;.

For proper understanding of the problem, we need to examine
the intensity vector distribution. The x and y components of the
intensity vector can be written as

I, = Ih[A + |R|(sin6; + sin6,)cos(Ak-r + ¢,)] (4)

I, = Ip|R|(cosB; — cosB;)cos(Ak-r + ¢,) (5)

where A = sin 6; + |R|* sin 0,, Ak = k[(sin6; — sinf,)x — (cos6; +

1P

cos0,)y], and Iy = 2%. The first term in Eq. 4 can be interpreted as

the contributions of the incident and reflected plane waves. The
second term describes the spatial modulations of the power flow
due to the interference of these two waves. Equation 5 shows that
there is a periodically varying power flow in the normal direction
due to the interference of the incident and reflected waves. The
physical meaning and consequences of the power modulation have
been studied in (16-23).

Figure 1B shows the distribution of the intensity vector when ¢, =0,
6; = 0° and 6, = 70°. Detailed inspection reveals that for any horizontal
line, for example, y = 0, where one can position a flat metamirror, the
intensity vector crosses the surface. This behavior can be described in
terms of a complex surface impedance (16, 20), where the real part takes
positive and negative values, corresponding to “loss” or “gain” inside the
metamirror. It is worth noting that the value of the reflection coefficient
has been chosen to ensure the overall power balance between the inci-
dent and reflected energies. Thus, loss and gain compensate each other
when averaged over the metasurface period. If the surface is passive and
lossless, the periodic modulation of the energy crossing the boundary
can be possibly realized, arranging some channeling of energy along
the metasurface plane, which requires strongly nonlocal (spatially dis-
persive) properties.

Locally responding lossless metasurfaces can be realized only if the
real part of the surface impedance is zero, which means that the power is
allowed to flow only along the surface without crossing the metasurface
boundary. This condition can be satisfied by defining a specific spatial
profile of the metasurface, which would be at all points tangential to the
power flow of the desired set of the incident and reflected fields. In this
case, energy neither enters nor emerges from the metasurface. To find
these spatial profiles, we introduce a vector field, which is everywhere tan-
gential to the power flow. First, we define a vector perpendicular to the
intensity vector as N = —I,X + I,.y. Then, we define a scalar function
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Fig. 1. Anomalous reflective metamirror. The study is carried out for ¢, = 0, 6; = 0°, and 6, = 70°. (A) Schematic representation of the problem. (B) Distribution of the
intensity vector dictated by Eqgs. 4 and 5. The period of the metasurface can be calculated as D = Xo/| sin 6; — sin 6,|, where 4, is the wavelength at the operation
frequency. (C) The normalized curve level function g,(x, y) = g(x, ¥)/lo. White lines represent the level curves, i.e., the curves parallel to the intensity vector at every point.
(D) Surface impedance. The corresponding level curve associated with this impedance is marked with the dashed line in (C). Numerical simulation of the response of a
power-conformal metasurface: (E) Metasurface modeled as an inhomogeneous reactive boundary. The green line shows the boundary surface. (F) Actual implemen-
tation using rigidly ended tubes. Red lines indicate surfaces modeled as hard boundaries.

g(x, y) such that Vg(x, y) = N. Note that, because of the properties of
the gradient, the level curves of the function g(x, y) are tangential to the
intensity vector. Hence, the function g(x, y) represents the power
potential so that the energy does not flow along its level curves. In
the particular case of anomalous reflection, g(x, y) reads

g(x,y) = Ij[Ay + Bsin(Ak-r) + C] (6)
where B = %% and C is a constant. By analyzing the spatial
distribution of the function g(x, ), we identify the level curves of the
function g(x, y), which can be described as y = f(x). Figure 1C represents
the function g(x, y) and the curves at which it is constant for our exam-
ple of ¢, =0, 8; =0° and 6, = 70°. At any curve given by Eq. 6, the power
flow is tangential to this curve. Thus, at these curves, we can terminate
the field domain by a boundary modeled by a purely imaginary, reactive
input impedance.

To realize a perfectly reflecting metamirror, we select one of these
curves and calculate the corresponding impedance. To do that, we de-
fine the normalized normal vector to such power-conformal metasur-
faceasfi = N/|N| (see the inset in Fig. 1D). In terms of this vector, the
surface impedance is defined as

plx,y.)

) )

(7)

This impedance is represented in Fig. 1D, where we can see that the
real part is identically zero, meaning that a local and lossless design is
possible. We have numerically corroborated this finding using a numer-
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ical simulation, where the metasurface is modeled as a boundary imped-
ance (25). The results are shown in Fig. 1E, where the scattered pressure
is plotted. The green line shows the position of the impedance boundary
that models the metasurface. The efficiency of the design is 99%. It is
important to mention that the maximum amplitude (defined as the dis-
tance between the maximum and minimum position) of the contour
modulation, ¢, is small in terms of the wavelength ¢ = 1/7.

Owing to the local, passive, and lossless nature of the impedance
shown in Fig. 1D, we can easily design and realize a curved metamirror
providing the desired response. As a proof of concept, we use the sim-
plest phase shifters, rigidly ended tubes. The input impedance of each
tube can be found as Z; = —ngcot(kl;), where /; is the length of each tube
(26). It is important to mention that such treatment as a purely imag-
inary impedance is justified if the tubes are thick enough so that losses
can be neglected. In practice, this condition limits the maximum num-
ber of elements per period. We select the length of each tube according
to Eq. 7, and this completes the design. For the particular example of an
anomalous reflector for 8; = 0° and 6, = 70°, Fig. 1F shows the scattered
pressure of the final design implemented with terminated tubes. Red
lines show the tube walls modeled as hard boundary conditions. Specif-
ically, in each period, we use 15 tubes with the following lengths:
0.0524%, 0.0699%0, 0.0874A0, 0.0961A4, 0.0349A¢, 0.41561,, 0.4068A,
04243\, 0.4418), 0.4563Mg, 0.4738,, 0.48842,, 0.00292,, 0.0204,,
and 0.0349,. The efficiency of the anomalous reflector is n;i;fiodjc =
99%, without any numerical optimization. Notice that viscous and
thermal losses are not considered in this calculation (more in-
formation about the losses is given in the analysis of the experimental
results).
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Such a simple design based on analytical expressions becomes pos-
sible because power-conformal metamirrors do not need excitation and
careful engineering of reactive, evanescent fields in the vicinity of the
metasurface. Each small portion of the surface responds locally to the
fields at its location. It is important to mention that, to reduce the overall
thickness of the device, any other phase shifter, such as labyrinthine cells
(12, 15), can potentially be used without affecting the performance. The
same approach can be used as a systematic design method for anoma-
lous reflectors for any desired incidence and reflection directions, or
even more complicated fields.

Beam splitting metamirror

The introduced method can be used for the creation of more complex
field distributions and for other functionalities. Here, we provide an ex-
ample of a metasurface capable of splitting waves coming from a certain
direction into two reflected waves, propagating along two different
desired directions. As it was shown in (24), this functionality also re-
quires nonlocal response or additional evanescent fields. In this case,
the pressure field can be expressed as

p(r) = py [e_jk"‘ + Rie T Ry ke } (8)

whereR; = |R;|¢® and R, = |R,|¢/* represent the relative complex
amplitudes of the reflected waves. As an example, we assume that
the metasurface is illuminated normally, 8; = 0°, and the reflected
beams are sent into +6, (see Fig. 2A). In this case, the corresponding
wave numbers read k; = k¥, k,; = k(sin6,x + cos6,y), and k,, =
k(—sin6,x + cos6,y). This notation allows us to not only model and
design symmetric splitters where the incident power is equally divided
between the two reflected waves but also realize any other distribution
of power between the two waves that fulfills the power conservation
condition (|Ry|* + |Ry|*)cos 8, = 1. As it has been shown in (16), flat
metasurfaces for implementing this functionality also require strong
nonlocal response. Our aim here is to find a local, passive, and lossless
realization by using a power flow—conformal metamirror. Following the
same approach as above, we need to find a surface profile y = f(x), where
the corresponding surface impedance Z; is purely imaginary.

First, we find a suitable surface that is tangential to the power flow in
the desired set of three plane waves. In this case, the intensity
distribution I(x,y) = 1[Re(pv,)X + Re(pv,)y] depends on the
reflection angle 6, and on the amplitudes ofj the reflected waves R;
and R,. As an example, we design a metamirror that sends 70 and
30% of the incident power into £70° and ¢; = ¢, = 0. The corresponding
amplitudes of the reflection coefficients are |R,| = 1.43 and |R,| = 0.94.
The power flow distribution for this case is shown in Fig. 2B, where we
see the intensity modulations produced by interfering incident and re-
flected waves. The function whose level curves will define the tangential
contours to the intensity vector can be expressed as

g(x,y) = IoG(x) + LiF(y) +
cos, — 1

Fsind, [Rysin(Ak™-r) — Rysin(Ak ™ .r)] (9)

0

where Ak™ = k[+sinf,% — (1 + cos6;,)§] measures the intensity
modulation strength. The expressions for functions G(x) and F(y)
can be written as

F(y) = (R — R3)sindyy (10)
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RiR; cosO; .

— 1 _ (R2R2 _
G(x) = [1 — (R} + R3)cosb,]x K sind, sin(2k.x)

(11)

where k, = ksin®,. The function g(x, y) is plotted in Fig. 2C. Now, we
can define possible profiles of local metamirrors, shown by white
lines. Among all the possible surfaces, we chose the one marked with
the dashed line. We can see that the amplitude of the surface modula-
tion is larger than that in the anomalous reflective metamirror: t = 0.3A.
The impedance associated with this curve is presented in Fig. 2D.

Figure 2E shows the real part of the scattered field obtained with
numerical simulations, where the metasurface is modeled as a reactive
impedance boundary. The field map shows the interface pattern of
plane waves. The amplitudes of the reflection coefficients in this numer-
ical study are |R,| = 1.43 and |R,| = 0.92. This result is in agreement with
the design criteria. For the actual implementation, we can use the same
configuration where the desired impedance is fulfilled by rigidly ended
tubes of different lengths. Figure 2F shows the results of a numerical
simulation of a real structure that produces the desired response. The
two reflected waves carry 70 and 29% of the incident power. The small
discrepancy is caused by the discretization of the ideally continuous sur-
face, as in any other metasurface designs. For improvement, we need to
ensure that the impedance profile is smoothly represented by an array of
discrete phase shifters.

Experimental verification

The theory is then verified by experiments. As a proof-of-concept
demonstration, we choose an acoustic metamirror capable of reflecting
normally incident acoustic waves into the 70° direction. The metamir-
ror is composed of 3D-printed closed-end tubes, where the surface ge-
ometry follows the conformal contour perpendicular to the power flow
direction, as illustrated in Fig. 1F. The operational frequency is chosen
to be 3000 Hz, and the width of each tube is 8 mm, smaller than 0.1A.
The length of a period of the fabricated sample is 12 cm, with a thickness
of 6.3 cm, around half of the operational wavelength. A photo of one
segment of the fabricated sample with three periods is shown Fig. 3A.
The final sample consists of 12 periods.

In the experimental verification, we use a spatially modulated Gaussian
beam to illuminate the sample (see Methods for more details about the
simulation and the experimental beam generation). To obtain the
scattered fields, we perform two measurements. First, the sample is placed
in the setup, and the total field is acquired, ie., the sum of incident and
scattered fields. The incident field and parasitic scattering from the setup
are removed by subtracting the fields measured in the absence of the sam-
ple. The left panels of Fig. 3 (C and D) show the real part and magnitude of
the scattered fields by the metamirror when the width of the beam is w, =
40 cm. In these results, we can see that more energy goes into the desired
direction; however, there is a residual amount of energy scattered
into other directions.

This imperfection is a consequence of the finite width of the beam. It
is important to notice that the sample has been designed for a plane
wave-to—plane wave transformation and it is not optimized for the
transformation of beams. For wider beams, the performance of the me-
tamirror is better. For a deeper analysis of this feature, one can compare
the performance of the metamirror when it is illuminated with different
beams. Specifically, we compare the simulated response of the con-
formal metamirror when the beam width is 40 and 60 cm. We further
analyze the efficiency by performing Fourier transform on the fields
along the line exiting the metamirror, and the results are shown in
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Fig. 2. Asymmetric beam splitter (70 and 30%). The analysis is carried out for ¢; = ¢, = 0, 8; = 0°, and 8, = £70°. (A) Schematic representation of the problem.
(B) Distribution of the intensity. The period of the metasurface equals D = A¢/| sin 6; — sin 8|, where 1, is the wavelength at the operation frequency. (C) The
normalized curve level function g,(x, y) = g(x, y)/lo. White lines represent the level curves, i.e., the curves parallel to the intensity vector. (D) Surface impedance.
The corresponding level curve associated with this impedance is marked with the dashed line in (C). Numerical results for the power-conformal metasurface: (E) Metasurface
modeled as an impedance boundary. The green line shows the position of the boundary. (F) Actual implementation using rigidly ended tubes. Red lines show tube walls
modeled as hard boundaries.
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Fig. 3B. From this analysis, we can see that the energy scattered into an
undesired direction is markedly reduced when the width of the beam
increases. To compare these results with our theoretical predictions, we
calculate the efficiency with the energy confined only in three plane
waves with k, = kgsin(70°), k, = 0, and k, = —ksin(70°) (see Methods
for more details about this calculation). With this definition, the simu-
lated efficiencies are nj" = 97% and ni* = 98%. For comparison
purposes, the simulated results of a GSL-based metamirror implemen-
ted with the same number of elements are also included. The efficiency
of this design isn4G0SL = 77% (the theoretical limit for GSL-based designs
with this configuration is 76%, and the small disagreement is attributed
to numerical errors in the simulation and the calculation of the efficien-
cy). We can conclude that the efficiency of the conformal metamirror is
higher than that of the corresponding conventional design.

The sample is secured in a 2D waveguide for field mapping; the
detailed experimental setup is described in Methods. Figure 3 (C and
D) shows the simulated and measured acoustic fields at 3000 Hz. Ex-
cellent agreement can be observed, and it can be seen that the reflected
field mainly contains the 70° wave component. The small discrepancies
may be attributed to nonperfect Gaussian beam generation, fabrication
errors, and inevitable dissipation loss. The Fourier analysis result is
shown in Fig. 3B, where we can confirm the agreement with the simula-
tions. In both simulations and experiments, almost all of the energy is
confined in k, = ksin(70°), which is the desired direction of the
outgoing wave. The measured efficiency of the metamirror is 96.9%,
which validates our approach. This efficiency is calculated from the
scattered energy; ie., the absorption produced in the narrow channels
of the structure is not taken into account.

The losses of the system can be quantified using corresponding finite
element method simulations. For this purpose, the linearized Navier-
Stokes description is used. The results of this simulation show that vis-
cothermal effects reduce the efficiency to 92.2%. The rest of the energy
is either scattered into other directions (2.9%) or absorbed at the boundary
layers (4.9%). It is important to mention that the normalization of this
result to the scattered power supports our experimental findings. The ef-
fect of losses can be mitigated by reducing the number of phase shifters per
period, which yields wider channels (see the Supplementary Materials).

DISCUSSION

Here, we have introduced a multiphysics design method for the creation
of acoustic or electromagnetic metamirrors for general shaping of re-
flected waves. Examples of anomalous reflectors and beam splitters have
been provided. The proposed local, passive, and lossless structures en-
sure theoretically perfect performance for arbitrary deflection angles,
extending the range of accessible functionalities of both diffraction
gratings and phase-gradient reflective metasurfaces. It is important to
stress that the introduced design approach does not require any numer-
ical optimizations, offering full physical insight into complex reflection
and diffraction phenomena and giving a clear advantage in practical de-
vice design. The experimental validation reported in this work is the first
implementation of an anomalous reflective acoustic metamirror that
overcomes the efficiency limitations of GSL-based designs.

Conformal metasurfaces have been used to create cloaking devices,
optical or acoustic illusions, and lenses. In all these examples, conformal
metasurfaces are thought to adapt to the shape of scattering or reflecting
bodies (27). Here, we have proposed a concept of conformal metasur-
faces that adapt to the desired power distribution of the fields. Since this
concept is applicable in all scenarios where the gradient of the desired
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field structure is continuous, it can be used to realize various complex
field transformations with high efficiency, such as focusing or beam
shaping. In addition, the use of this general method in the transmission
scenario has yet to be investigated. To this end, conformal metasurfaces
with double modulation (two sides of the metasurface can be engi-
neered) and bianisotropic response could provide “boundary
conditions” that warrant passivity and locality (continuity of the normal
component of the intensity vector along the metasurface) (16, 20, 28, 29).

METHODS
Numerical simulations
The simulations were performed with the commercial finite element
analysis solver COMSOL Multiphysics. The infinite systems were
modeled by one period using Floquet periodic conditions. The
simulation shown in Figs. 1E and 2E was calculated with impedance
boundaries, defining the values according to impedances shown in Figs.
1D and 2D. The simulation of the proposed designs (see Figs. 1F and
2F) was calculated using sound hard boundary conditions. In these sim-
ulations, the illumination is a perfect plane wave implemented using
background pressure field domain conditions.

For the simulations of the experiment, we used a finite number of
periods and Gaussian beam illumination. The Gaussian beam propagat-
ing in y direction is expressed as

—x2 aox2 .
WO_ o7 o757 K —10) =)

Pi =Py (12)

w(y)

where py is the beam amplitude, w, is the spot radius,
2
w(y) = woy 1+ (%) defines the spot size variation as a function
R
of the distance from the beam waist, y; = nw} /A is the Rayleigh range,

2
Ry)=0U—y) |1+ (j%}ﬂ) is the curvature radius, and n(y) =
(}’*)’o)
IR

aries of the metasurface were set as hard walls. The background medium
was modeled as a semicircle with a radius of 1.2 m using plane wave
radiation conditions. The excitation was implemented using back-
ground pressure field domain conditions. The wall of the metasurface
was modeled using sound hard boundary conditions.

arctan

is the phase change close to the beam waist. The bound-

Field mapping measurements

The samples tested were fabricated with fused deposition modeling 3D
printing where the printed material is acrylonitrile butadiene styrene
plastic with a density of 1180 kg/m’ and a speed of sound of 2700 m/s.
The walls were considered to be acoustically rigid since the characteristic
impedance of the material was much larger than that of air. A
loudspeaker array with 28 speakers sends a Gaussian-modulated beam
normally to the metasurface, and the field was scanned using a moving
microphone at a step of 2 cm. The acoustic field at each spot was then
calculated using Fourier transform (30). The reflected field was calculated
by filtering out the incident using 2D Fourier transform. The overall
scanned area was 100 cm by 40 cm, and the signal at each position
was averaged out of four measurements to reduce noise.

Measurement of the efficiency
The efficiency of the metasurface when the metasurface is illuminated

by a Gaussian beam cannot be extracted directly from the amplitude of
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the reflected beam. Because of the multiple wave numbers associated
with the finite size beam, this amplitude can be distorted. For an ac-
curate calculation of the efficiency, we used the Fourier transform of
the pressure fields along a line over the metasurface (see Fig. 3B).

This analysis gives the amplitude of all the Fourier components.
However, to calculate the efficiency, we only used the amplitudes of
the n = -1, 0, 1 harmonics, which corresponded to the propagating
waves at 70°, 0°, and —70°. The power carried by each component
was calculated as P,, = Aicosen, where A, is the amplitude of the n
harmonic and 8,, defines the direction of propagation. Last, the ef-
ficiency of the metasurface can be calculated as

P

n=v—— (13)
anflﬁO,lpn

It is important to notice that in this definition of the efficiency,
the dissipation losses are not included.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/2/eaau7288/DC1

Section S1. Formulation for electromagnetic fields

Section S2. Discretization analysis

Fig. S1. Schematic representation of the scenarios under study.

Fig. S2. Power flow-conformal metamirror for an electromagnetic anomalous reflection when
6; = 0° and 6, = 70°.

Fig. S3. Power flow-conformal metamirror for an electromagnetic beam splitter when 6; = 0°,
6,1 = 70° 6,, = -70° and &1 = ¢,» = 0 and 70 and 30% of the energy are sent into 6.

Fig. S4. Scattered fields for different numbers of elements per period when 6; = 0° and 6, = 70°.
Table S1. Efficiency of the conformal anomalous reflector for different numbers of elements
per period when 6; = 0° and 6, = 70°.
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