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We theoretically propose and experimentally implement a method of measuring a qubit by driving it close
to the frequency of a dispersively coupled bosonic mode. The separation of the bosonic states corresponding
to different qubit states begins essentially immediately at maximum rate, leading to a speedup in the
measurement protocol. Also the bosonic mode can be simultaneously driven to optimize measurement speed
and fidelity. We experimentally test this measurement protocol using a superconducting qubit coupled to a
resonator mode. For a certain measurement time, we observe that the conventional dispersive readout yields
close to 100% higher average measurement error than our protocol. Finally, we use an additional resonator
drive to leave the resonator state to vacuum if the qubit is in the ground state during the measurement protocol.
This suggests that the proposed measurement technique may become useful in unconditionally resetting the
resonator to a vacuum state after the measurement pulse.
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Since the birth of quantum mechanics, quantum mea-
surements and the related collapse of the wave function has
puzzled scientists [1,2], culminating in various interpreta-
tions of quantum mechanics such as that of many worlds
[3]. With the recent rise of quantum technology [4–6],
the quantum measurement has become one of the most
important assets for practical applications. For example,
measurements of single qubits are the key in reading out the
results of quantum computations [7–10] and parity mea-
surements in multiqubit systems are frequently required in
quantum error correction codes such as the surface and
color codes [11–15]. Furthermore, single-qubit measure-
ment and feedback can be used to reset qubits [16–18] or
even solely provide the nonlinearity needed to implement
multiqubit gates [19–21].
One of the most widespread ways to measure qubits is to

couple them to one or several bosonic modes, such as those
of the electromagnetic field, and to measure their effect
on the radiation [22]. This method is currently used, for
example, in quantum processors based on superconducting
circuits [23–28], quantum dots [29–31], and trapped ions
[32]. Especially with the rise of circuit quantum electro-
dynamics [33,34], this measurement technique has become
available to many different hybrid systems such as
mechanical oscillators [35,36] and magnons [37].
Theoretically, the interacting system of a qubit and a

bosonic mode is surprisingly well described by the Jaynes–
Cummings model [38,39]. If the qubit frequency is far
detuned from the mode frequency, i.e., we operate in the
dispersive regime, the interaction term renders the mode
frequency to depend on the qubit state. Consequently, a

straightforward way to implement a nondemolition meas-
urement on the qubit state is to drive the mode at a certain
frequency close to the resonance and measure the phase
shift of the output field with respect to the driving field.
This kind of dispersive measurement has been extremely
successful, for example, in superconducting qubits [40]
with increasing accuracy and speed [24,41–43] currently
culminating in 99.2% fidelity in 88 ns [26].
In the dispersive measurement, one of the key issues has

been the ability to quickly populate the bosonic mode in
the beginning of the measurement protocol [24] without
surpassing the critical photon number, and to quickly
evacuate the excitations from the mode after the measure-
ment [17,44]. These requirements point to the need for a
fast, low-quality readout mode. However, this poses a
trade-off on the qubit lifetime, which to some extent can
be answered using Purcell filters [24,26,45] with the cost of
added circuit complexity. A simple and fast high-fidelity
measurement scheme is of great interest not only to the
field of superconducting qubits, but also to other quantum
technology platforms utilizing bosonic modes as the
measurement tool.
Inspired by our recent work [46] on quickly stabilizing

resonator states by a qubit drive, we propose in this Letter a
qubit measurement protocol that is based on driving the
qubit close to the frequency of the bosonic mode through
a nonresonant channel. Owing to the dispersive coupling,
the initial vacuum state of the resonator begins to rotate
selectively on the qubit state about a point controlled by the
strength and phase of the qubit drive. Importantly, this
rotation begins immediately after the drive pulse arrives at
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the qubit with no bandwidth limitation imposed by the
resonator. We demonstrate this nondemolition readout
scheme in planar superconducting qubits and observe that
it leads to a significant speedup. Furthermore, we discuss
how this method can be used to unconditionally reset the
resonator state into vacuum after the readout without the
need for feedback control. We experimentally demonstrate
a related effect where the resonator is left in the vacuum
state provided that the qubit was in the ground state.
Let us theoretically study a qubit coupled to a single

bosonic mode such as that of an electromagnetic resonator,
as shown in Fig. 1(a). Instead of using the conventional
readout by populating the resonator with a coherent pulse
[40,41], we measure the qubit state by driving the qubit at
the resonator frequency ωr. In addition, we can apply a
compensation pulse to the resonator to eliminate cross-
coupling effects with the qubit or otherwise control the
resonator state. The qubit and the resonator couple to their
respective driving fields with different strengths, which
together with the pulse envelopes constitute the effective
Rabi angular frequencies Ωq and Ωr, respectively. The
qubit may be first excited from the ground state jgi to the
excited state jei by a separate drive tone at the transition
angular frequency ωq ¼ ωr þ Δ, where Δ is the detuning.

In the frame rotating at ωr with respect to the bare qubit
and resonator Hamiltonians, ℏωqσ̂þσ̂− and ℏωrâ†â, respec-
tively, the system is described by the Jaynes–Cummings
Hamiltonian

Ĥ=ℏ ¼ Δσ̂þσ̂− þ ðgσ̂þâþ Ωqσ̂þ þ iΩrâ† þ H:c:Þ; ð1Þ

where g denotes the qubit-resonator coupling strength, â†

and σ̂þ ≡ jeihgj are the creation operators of the resonator
mode and of the qubit, respectively. Above, we have
introduced the rotating-wave approximation justified by
g ≪ ωq, ωr.
To demonstrate the benefit of driving the qubit at the

frequency of the resonator, we employ the standard dis-
persive approximation [47] in the regime g ≪ jΔj. This
yields, up to constant energy terms, the Hamiltonian [48]

Ĥ00=ℏ ≈ ðΔþ χÞσ̂þσ̂− þ
��

Ωq þ iΩr
χ

g

�
σ̂þ þ H:c:

�

− χσ̂zâ†âþ
��

iΩr −Ωq
χ

g
σ̂z

�
â† þ H:c:

�
; ð2Þ

where χ ¼ g2=Δ is the dispersive shift for a two-level
system and σ̂z ¼ jgihgj − jeihej. The term proportional to
â† is a generator of a displacement operator that depends on
the state of the qubit. Thus, driving the qubit effectively
realizes longitudinal coupling [56,57] for the duration of
the readout, implying that the rate of state separation is not
limited by the rate at which the resonator is populated.
In our work, the resonator is accurately described by a

coherent state jαi such that âjαi ¼ αjαi, α ∈ C. The drive
amplitude Ωq may be turned on very fast, causing the
amplitudes αg=e corresponding to the eigenstates of the qubit,
jgi and jei, to separate in the complex plane at least with the
initial speed 2Ωqχ=g. This minimum speed is achieved with
Ωr ¼ 0 for an initial vacuum state in the resonator.
As the resonator becomes populated, the trajectories

begin to curve due to the dispersive term−χσ̂zâ†â in Eq. (2)
and, in fact, to rotate about the point αvo ≡ −Ωq=g. This
behavior is intuitively understood in a frame displaced by
αvo. Introducing a shifted annihilation operator b̂¼ â−αvo,
the last line of Eq. (2) yields

Ĥ00
r=ℏ ≈ −χσ̂zb̂†b̂þ ðiΩrb̂

† þ H:c:Þ: ð3Þ

The first term in Eq. (3) corresponds to a rotation of the
amplitude α in the complex plane about the virtual origin
αvo with an angular frequency χ in a direction determined
by the qubit state. Thus driving the qubit at the resonator
frequency ωr effectively shifts the origin of the resonator
phase space to a point αvo in the rotating frame.
The term ðΩq þ iΩrχ=gÞσ̂þ in Eq. (2) shows that the

drives slightly tilt the qubit Hamiltonian. The tilt of the
quantization axis determines the speed at which the drives

(a) readout
pulse

qubit resonator compen-
sation
pulse

(c)b)

FIG. 1. (a) Schematic presentation of the readout scheme where
the qubit is driven (blue color) at the frequency of a dispersively
coupled bosonic mode. A compensation tone (brown color) on
the resonator may be used to optimize the result. We consider the
case where the detuning Δ ¼ ωq − ωr is much greater than the
qubit-mode coupling strength g. (b) Evolution of the mean of the
resonator state in phase space for the conventional dispersive
readout starting from vacuum (cross) provided that the qubit was
prepared in jgi (blue) or jei (red). (c) As (b) but the readout pulse
is applied directly to the qubit. Thus, the resonator states start to
rotate about a new virtual origin αvo (circle) leading to a faster
separation. After measurement, we may reverse the sign of the
virtual origin and wait for the resonator states corresponding to
different qubit states to fully overlap (faint colors). A subsequent
shift (brown color) finalizes an unconditional reset of the
resonator.
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can be turned on while maintaining adiabaticity, the lowest-
order condition being approximately _Ωq ≪ Δ2=

ffiffiffi
2

p
. Since

Ωq ≪ Δ, the rise time of the qubit drive pulse can be
negligibly short compared with the relevant dynamics of
the resonator states. Thus, the qubit-state-dependent sep-
aration dynamics of the resonator state starts to take place
essentially instantly in this readout protocol.
In contrast to the multichannel readout visualized in

Fig. 1(c), the usual dispersive readout relies solely on the
term −χσ̂zâ†â, which implies that one needs to use the
resonator drive to populate the resonator for the state
separation to take place, see Fig. 1(b). The characteristic
timescale for the population dynamics 1=κ is determined by
the internal and external damping rates of the resonator κi
and κx, respectively, as κ ¼ κi þ κx.
In addition to the potentially faster readout, our scheme

offers more control over the evolution of the states than the
usual dispersive readout. For example, we may continu-
ously drive the resonator such that either αe or αg end in any
desired position at the end of the readout. For example,
choosing iΩr ¼ Ωqχ=g in Eq. (2) causes αg to remain in
vacuum while αe is displaced. Interestingly, we may also
reset the resonator to the vacuum state unconditionally on
the qubit state and without feedback control. As illustrated
in Fig. 1(c), one may shift the phase of αvo by π after the
actual measurement pulse and wait for both of the ampli-
tudes αe and αg to rotate on top of each other. Subsequently,
both distributions may be shifted to the vacuum state using
a single pulse on the resonator.
Note that due to the finite resonator bandwidth, the

resonator will slowly saturate towards a steady state. We
obtain the steady states by solving the standard Lindblad
master equation _̂ρ ¼ −i½Ĥ; ρ̂�=ℏþ κL½â�ρ̂=2, where L½â�
is the Lindblad superoperator and ρ̂ is the density operator
of the qubit-resonator system. Forcing the states to
remain coherent, the steady states jαsg=ei are given by
αsg=e ¼ ðiΩr ∓ Ωqχ=gÞ=ðiκ=2� χÞ. Above, we have
restricted our theory to the case of a two-level system.
However, the scheme also works in the case of many
nonequidistant levels [48] such as those of a superconduct-
ing transmon qubit [58] studied below. Here, the driving
frequency needs to be slightly offset from that of the
resonator and an additional resonator drive is needed to
obtain essentially Eq. (2) for the transmon. Note that qubit
nonlinearity is pivotal to obtain a nonvanishing dispersive
shift χ.
To implement our theoretical scheme we have fabricated

[48] a superconducting Xmon qubit [59] shown in Fig. 2(a).
It is coupled with strength g ¼ 2π × 130 MHz to a coplanar
waveguide resonator of frequency ωr=2π ¼ 6.02 GHz. The
resonator has internal and external loss rates κi ¼ 2π × 0.5
and κx ¼ 2π × 1.5 MHz, respectively. We tune the qubit to
the point of optimal phase coherence [48], ωq=2π ¼
7.86 GHz, where it is characterized by the energy relaxation

time T1 ¼ 3.0 μs. This leads to a dispersive shift
χ ¼ −2π × 1.6 MHz. We mount the sample to the base
temperature stage, T ¼ 20 mK, of a dilution refrigerator
and extract the effective qubit temperature Teff ¼ 73 mK
from histograms of single-shot measurements [48]. For this
purpose, we use a traveling-wave parametric amplifier [60]
and a heterodyne detection setup to measure the two
quadratures Re â and Im â of the resonator field.
Figures 2(b) and 2(c) present the experimentally mea-

sured temporal trajectories of ensemble-averaged expect-
ation values αðtÞ ¼ hâðtÞi for the conventional readout
and our method, respectively. The trajectories show quali-
tative agreement with our theory: In the conventional
readout, the states move in the general direction of the
drive and separate as the distance to the origin increases.
In our scheme, the states move to opposite directions owing
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FIG. 2. (a) Simplified measurement setup and scanning electron
micrographs of the experimental sample realizing the theoretical
scheme. We employ an Xmon qubit [59], the frequency of which
may be tuned by applying an external magnetic flux to the
accompanying dc SQUID. The qubit is capacitively coupled to a
voltage drive line and to a coplanar waveguide resonator which is,
in turn, coupled to a transmission line. After amplification, we
measure the two quadratures Re â and Im â of the resonator field.
(b) Evolution of the amplitudes of the coherent states corre-
sponding to the ground (blue line) and excited (red line) states of
the qubit during a 420-ns conventional dispersive readout.
Corresponding results of single-shot measurements are shown
by dots (see text for details). The dotted line indicates the
threshold for assigning the measurement outcome. (c) As (b),
but the drive tone is applied to both the qubit and the resonator
with an optimized relative phase. The single-shot measurement
fidelities are 96.4% and 96.6% for (b) and (c), respectively.
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to precession about the virtual origin lying on the negative
real axis. The dominating differences between Figs. 1(b),
1(c) and 2(b), 2(c) can be explained by the higher levels of
the transmon [48].
To characterize the performance of our method, we

implement single-shot measurements S, of the observable
Ŝ ¼ R

τ
0 ½WReðtÞRe âðtÞ þ iWImðtÞIm âðtÞ�dt by temporal

integration of the readout signal. Here, the normalized
weight functions are determined from the previously
measured trajectories as WReðtÞ ∝ jRe½αeðtÞ − αgðtÞ�j and
WImðtÞ ∝ jIm½αeðtÞ − αgðtÞ�j. Thus the most weight is
given to the signal when the state separation is known to
be the largest. We also determine reference points αrefj by
averaging shots conditioned on the qubit being in state
j ∈ fg; eg. For a single measurement shot S, we infer that
the qubit was in state jgi if jS − αrefg j < jS − αrefe j, see
Figs. 2(b) and 2(c).
The error probability of assigning an incorrect label for

the intended qubit state is calculated as ϵtotal ¼ ½pðejgÞþ
pðgjeÞ�=2, where pðjjkÞ is the sampled probability to
assign the label j to a state supposedly prepared in jki.
To extract the error due to readout, we independently
measure the state preparation errors caused by faulty gate
operations, spontaneous decay, and thermal excitation. We
estimate that these sources account for ϵprep ¼ 2.6% of the
total error, mainly limited by T1 decay of our sample (see
Ref. [48] for details).
We benchmark the speed and fidelity of our readout

scheme against the conventional method in Fig. 3, which
demonstrates that driving the qubit directly, with or without
the compensation tone on the resonator, yields considerably
lower errors for integration times τ ≤ 350 ns. Thus, meas-
uring the qubit state by direct or multichannel driving
results in a noticeable speedup over driving only the
resonator. For each readout scheme, the drive power is
independently maximized with the condition that the third
level of the transmon is negligibly excited during readout,
to ensure that the readout realizes a non-demolition
measurement. For the multichannel readout, the relative
phase between the resonator and qubit drives ϕr − ϕq is
also optimized to achieve the fastest decrease in error. We
observe that for a given integration time, the conventional
readout bears close to 100% larger measurement error than
the multichannel driving scheme.
Combining the two drive channels provides versatile

tools for controlling the state of the resonator. In Fig. 4(a),
we show that as a function of the phase ϕq, the steady states
draw circles in the complex plane, the centers and radii of
which depend on the qubit state. This behavior is in
agreement with the above result αsg=e ¼ ðiΩr ∓ Ωqχ=gÞ=
ðiκ=2� χÞ. It appears possible to choose the phase of Ωq

such that the resonator state corresponding to one of the
qubit states remains in the vacuum state (gray arrows), a
situation inaccessible by driving only the resonator. In

Fig. 4(b), we show that with the multichannel method we
can indeed leave αg near the origin while significantly
displacing αe. As discussed above, a related mechanism
may be utilized to unconditionally reset the resonator after
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FIG. 3. Average measurement error ϵtotal − ϵprep as a function of
integration time for the conventional readout (blue markers), qubit
driving (red markers), and multichannel driving (yellow markers).
Each data point shows the average and the standard deviation of 10
measurement runs consisting of 104 single-shot measurements.
The stars indicate the time for which the lowest error is obtained for
each method. The inset shows the relative increase in the
measurement error when the readout method is changed from
the multichannel scheme to the conventional readout. When we
drive the resonator only, the experimental parameters are identical
to those in Fig. 2(b) and with multichannel driving to those in
Fig. 2(c). For the multichannel readout, the drive powers to the
resonator and to the qubit are decreased by 2 and 1 dB compared
with single-channel driving, respectively.
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FIG. 4. (a) Measured means of the steady states corresponding
to jgi (αg) and jei (αe) in the multichannel readout as functions
of the phase ϕq of the qubit drive pulse, as indicated by the
different colors of the markers. The black arrows denote phase-
independent contributions to the steady state owing to the
resonator drive. With a particular choice of ϕq, indicated by
the gray arrows, one of the resonator states returns to vacuum
during the measurement. (b) Evolution of the amplitude of the
coherent state (solid lines) for qubit ground (blue color) and
excited (red color) states in the partial reset scheme. The phase ϕq
is chosen such that the steady state for jgi lies at the origin.
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the readout to further reduce the duration of the overall
measurement protocol.
In conclusion, we have proposed and experimentally

demonstrated a readout scheme for a qubit dispersively
coupled to a bosonic mode. By driving both the qubit and
the mode close to the mode frequency, the readout can be
turned on much faster than any other relevant timescale in
the system and the resonator can be unconditionally
brought back to the vacuum state without the need for
feedback control. Our experiments with a superconducting
qubit demonstrate resonator control through the qubit. For a
given readout time in our sample, we experimentally
observe that the conventional readout may lead to more
than 100% larger error than that of the proposed scheme.
In the future, we aim to realize the unconditional reset

protocol and to optimize the sample design such that
we improve on the present state-of-the-art readout [26].
Furthermore, our proposal could be implemented in a variety
of systems such as qubits coupled to nanomechanical reso-
nators [35,36]. We expect that in addition to qubit readout,
an extension of our protocol may also be beneficial for
resonator state control such as the creation of cat states [61].
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independent of this reference.
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