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1 Introduction and results
In this article, we are interested in the self-improving property of higher integrability of weak solutions to
porous medium-type systems, whose prototype is

∂tu − ∆(|u|m−1u) = 0.

This problem has been open for some time. For non-negative solutions to porous medium-type equations it
has recently been solved by Gianazza and Schwarzacher [16]. Here, we are able to treat signed solutions and
the vectorial case. More precisely, we consider equations (the case N = 1) or systems (the case N ≥ 2) of the
form

∂tu − divA(x, t, u, Dum) = div F in ΩT , (1.1)

with u : ΩT → ℝN , in a space-time cylinder ΩT := Ω × (0, T), where Ω ⊂ ℝn is a bounded open domain, n ≥ 2,
T > 0, and we abbreviated um := |u|m−1u. The assumptions on the vector field A : ΩT × ℝN × ℝNn → ℝNn are
as follows. We assume that A is measurable with respect to (x, t) ∈ ΩT for all (u, ξ) ∈ ℝN × ℝNn, continu-
ous with respect to (u, ξ) for a.e. (x, t) ∈ ΩT , and moreover that A satisfies for some structural constants
0 < ν ≤ L < ∞ the following growth and ellipticity conditions:

{
A(x, t, u, ξ) ⋅ ξ ≥ ν|ξ|2,
|A(x, t, u, ξ)| ≤ L|ξ|

(1.2)

for a.e. (x, t) ∈ ΩT and any (u, ξ) ∈ ℝN × ℝNn. Note that these assumptions are compatible with the ones in [1]
and [11, Chapter 3.5] in the scalar case. For the inhomogeneity F : ΩT→ℝNn weassume that F ∈ L2(ΩT ,ℝNn).
As usual, we suppose that the solutions to (1.1) lie in a parabolic Sobolev space; the precise definition will
be given below in Definition 1.1.
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In the stationary elliptic case it is by now well known that weak solutions to elliptic systems of the type

−divA(x, t, u, Du) = div F in Ω,

locally belong to a slightly higher Sobolev space than a priori assumed. The so-called self-improving prop-
erty of higher integrability was first detected by Elcrat and Meyers [25]. Their proof is based, among other
things, on a reverse Hölder-type inequality – a direct consequence of a Caccioppoli-type inequality (also
called reverse Poincaré inequality) – and some adaptation of the famous Gehring Lemma [15]; the nowadays
standard interior version can be retrieved from [17, Chapter 11, Theorem 1.2], for the boundary version
we refer to [22] and [13, Theorem 2.4]. Originally, Gehring’s lemma was developed to establish the higher
integrability of the Jacobian of quasi-conformal mappings. Over time, the self-improving property of higher
integrability was first established for solutions of stationary elliptic systems [18] and later for minima of vari-
ational integrals [19] by Giaquinta andModica. A unified treatment in the language of quasi-minima is given
in [21, Theorem 6.7]. Corresponding global results for stationary elliptic problems with a Dirichlet boundary
condition were established in [21, Section 6.5], [13, Section 3].

The first higher integrability result for vectorial evolutionary problems goes back to Giaquinta and
Struwe [20, Theorem 2.1]. More precisely, quasilinear parabolic systems of the type

∂tu − div(a(x, t, u)Du) = div F in ΩT ,

whose coefficients a continuously depend on (x, t, u) have been investigated. The technique of Giaquinta and
Struwe does not carry over to the parabolic p-Laplacian system

∂tu − div(|Du|p−2Du) = div F in ΩT ,

or general parabolic systems with p-growth (the growth and coercivity condition from (1.2) have to be
replaced by a(x, t, u, ξ) ⋅ ξ ≥ ν|ξ|p and |a(x, t, u, ξ)| ≤ L(|ξ|p + 1)). The obstruction relies in the fact that the
parabolic p-Laplacian equation has a different homogeneity in the time and the diffusion term. In partic-
ular, multiples of a solution do not anymore solve the differential equation. This problem has finally been
solved by Kinnunen and Lewis [23] who proved the higher integrability result for general parabolic sys-
tems with p-growth. More precisely, they have shown that weak solutions from the natural energy space
C0([0, T]; L2(Ω,ℝN)) ∩ Lp(0, T;W1,p(Ω,ℝN)) have a more integrable spatial gradient, namely

Du ∈ Lp+εloc (ΩT ,ℝ
Nn) for some ε > 0.

This shows that also in the case of parabolic systemswith coefficients of p-growth and coercivity energy solu-
tions enjoy the self-improving property of higher integrability for the gradient. The key to the result was the
use of intrinsic cylinders in the sense of DiBenedetto and Friedman [7–10], i.e. cylinders of the form Qϱ,λ2−pϱ2
whose space-time scaling depends on the spatial gradient of the solution via

−∫−∫
Qϱ,λ2−pϱ2

|Du|p dx dt ≈ λp .

This important result has been generalized over time in various directions. The global result with a Dirichlet
boundary condition at the lateral boundary was established by Parviainen [26]. Interior higher integrabi-
lity for weak solutions of higher order degenerate parabolic systems has been shown by Bögelein [3],
while the corresponding global result was established in [6]. The case of parabolic equations with non-
standard p(x, t)-growth was treated by Antonsev and Zhikov [2], while systems were treated by Zhikov and
Pastukhova [29] and independently by Bögelein and Duzaar [4].

For the porous medium equation, the question of higher integrability of the gradient, even for non-nega-
tive solutions in the scalar case, remained an open problem for a while. The reason was that when proving
regularity of the gradient the degeneracywith respect to u is muchmore difficult to handle. This difficulty has
recently been overcome by Gianazza and Schwarzacher [16] who proved that non-negative weak solutions
to porous medium equations of the type (1.1) enjoy the self-improving property of higher integrability. More
precisely, this means that the integrability Du m+1

2 ∈ L2loc(ΩT ,ℝ
n) of weak solutions was improved to

Du
m+1
2 ∈ L2+εloc (ΩT ,ℝ

n) for some ε > 0.
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The main novelty with respect to the proof for the parabolic p-Laplacian in [23] is that Gianazza and
Schwarzacher work with cylinders which are intrinsically scaled with respect to u rather than the spatial
gradient Du. This means that they consider cylinders of the type Qϱ,θϱ2 whose space-time scaling is adapted
to the solution u via the coupling

−∫−∫
Qϱ,θϱ2

um+1 dx dt ≈ θ−
m+1
m−1 . (1.3)

This is exactly the intrinsic scalingwhich is typically used in the proof of regularity of u, as for instanceHölder
continuity of u, cf. [10]. At first glance it is quite surprising that this approach also yields regularity of the
spatial gradient. However, these cylinders are better adapted to the equation and this is crucial for the proof.
Nevertheless, the argument becomes much more involved than the one for the parabolic p-Laplacian. The
overall strategy can be outlined as follows. First, one has to prove a reverse Hölder-type inequality on certain
intrinsic cylinders. To achieve this, Gianazza and Schwarzacher distinguish whether a cylinder Q belongs to
the non-degenerate regime in which the inequality

−∫−∫
Q

|u − (u)Q|m+1 dx dt ≤ δ −∫−∫
Q

um+1 dx dt

holds true for someparticular 0 < δ ≪ 1, orQ belongs to thedegenerate regime inwhich the opposite inequal-
ity is valid. In the non-degenerate regime they rely on the expansion of positivity in order to guarantee that
the solution does not become too small on the cylinder. In a second step, one usually constructs a covering of
super-level sets of the spatial gradient with intrinsic cylinders. However, this is not possible for the cylinders
which are intrinsically scaled with respect to u. Gianazza and Schwarzacher overcame this problem by a very
elegant idea. They weakened this property to the so-called sub-intrinsic cylinders for which they succeeded
to prove the covering property. Thereby, they call a cylinder sub-intrinsic if (1.3) holds as an inequality, i.e.
the mean value integral is bounded from above by the right-hand side.

The methods of proof of this important result are only applicable in the scalar case for non-negative
solutions, because tools as the expansionof positivity areneither available in the vectorial case, nor for signed
solutions.

The present paper has its origin in the effort to extend the purely scalar result to the vector-valued case. As
a by-product of the vectorial case, we are able to deal also with signed solutions in the scalar case. Moreover,
contrary to Gianazza and Schwarzacher, we start from the definition of weak (energy) solutions introduced
in [28, Theorem 5.5], i.e. we start with solutions satisfying Dum ∈ L2loc(ΩT ,ℝ

Nn), see (1.6). As main result,
we prove that

Dum ∈ L2+εloc (ΩT ,ℝ
Nn) for some ε > 0.

Wenote that starting froma vectorial version of the energy estimate used in [16], amodification of ourmethod
also applies to the definition of weak solution as considered there. The key to the higher integrability result
in the vectorial case is to prove the reverse Hölder-type inequality just by the use of an energy estimate and
a gluing lemma as stated in Lemmas 3.1 and 3.2. In particular, it is important to omit the use of the expan-
sion of positivity. In fact, for the proof of the Sobolev–Poincaré-type inequality in Lemma 4.3 we only use the
Gluing Lemma 3.2, the standard Sobolev inequality and some algebraic lemmas. Here, we note that con-
trary to (1.3) we work with differently scaled cylinders which reflect more clearly the behavior of the
porous medium equation and which are adapted to the energy space (1.6) (for the heuristics see also
[16, Remark 5.6]). These cylinders are given by Q(θ)ϱ = Bϱ × (−θ1−mϱ

m+1
m , θ1−mϱ m+1

m ) with an intrinsic scaling
of the form

−∫−∫

Q(θ)
ϱ

|um|2

ϱ2
dx dt ≈ θ2m , (1.4)

so that in case that the mean value of um on the cylinder Q(θ)ϱ is zero, the scaling parameter θ is compa-
rable to |Dum|. A cylinder Q(θ)ϱ is called sub-intrinsic if (1.4) holds as an inequality, where the mean value
integral is bounded from above by the right-hand side. Contrary to [16] we present a unified proof of the
Sobolev–Poincaré-type inequalities on sub-intrinsic cylinders that works likewise in the non-degenerate and
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degenerate regime. These inequalities are subsequently used to derive reverse Hölder-type inequalities on
intrinsic cylinders and sub-intrinsic cylinders additionally satisfying

−∫−∫

Q(θ)
ϱ

|Dum|2 dx dt ≳ θ2m . (1.5)

For the final proof of the higher integrability we cover the super-level-sets of |Dum| by sub-intrinsic cylinders.
Here, we rely on the construction by Gianazza and Schwarzacher. The idea is to choose with the help of the
intermediate value theorem for a given center zo and radius ϱ > 0 the scaling parameter θ̃zo;ϱ in such a way
that

−∫−∫

Q(θ̃zo ;ϱ )
ϱ (zo)

|um|2

ϱ2
dx dt = θ̃2mzo;ϱ

is satisfied, where
Q(θ̃zo ;ϱ)ϱ (zo) = zo + Q

(θ̃zo ;ϱ)
ϱ .

Unfortunately, the mapping ϱ 󳨃→ θ̃zo;ϱ is not monotone. Therefore, we modify the parameter θ̃zo;ϱ by a rising
sun-type construction, i.e. we define

θzo;ϱ := max
r≥ϱ

θ̃zo;r .

Then the mapping ϱ 󳨃→ θzo;ϱ is monotonically decreasing and furthermore one can show that the cylinders
Q(θzo ;ϱ)ϱ (zo) are still sub-intrinsic. A crucial observation at this point is that by construction either the cylinders
are intrinsic or satisfy (1.5). This allows to apply our reverse Hölder inequality. As in [16] our cylinders satisfy
a Vitali covering property which allows to cover the super-level-sets of |Dum| by countably many of these
cylinders. In this way, we obtain a reverse Hölder inequality on the super-level-sets of |Dum|. In a standard
way, this implies the higher integrability by a Fubini-type argument.

1.1 General setting and results

In this subsectionwefix thenotations, describe the general setup andpresent ourmain result. First,wedefine
what we mean by a weak energy solution to the porous medium-type system.

Definition 1.1. Assume that the vector field A : ΩT × ℝN × ℝNn → ℝNn satisfies the conditions in (1.2) and
that F ∈ L2loc(ΩT ,ℝ

Nn). We identify a measurable map u : ΩT → ℝN in the class

u ∈ C0((0, T); Lm+1loc (Ω,ℝ
N)) with um ∈ L2loc(0, T;W

1,2
loc (Ω,ℝ

N)) (1.6)

as a weak solution to the porous medium-type system (1.1) if and only if the identity

∬
ΩT

[u ⋅ ∂tφ − A(x, t, u, Dum) ⋅ Dφ]dx dt = ∬
ΩT

F ⋅ Dφ dx dt (1.7)

holds true, for any testing function φ ∈ C∞0 (ΩT ,ℝN).

Existence of weak solutions can be deduced from [1] after the transformation v = |u|m−1u; see also [5] for a
different approach in the case of non-negative solutions.

Throughout the paper we work with parabolic cylinders of the type

QR(zo) = BR(xo) × (to − R
m+1
m , to + R

m+1
m ) ⋐ ΩT ,

whose associated parabolic dimension is

d := n + 1 + 1
m
.

Our main result reads now as follows.

Brought to you by | Aalto University
Authenticated

Download Date | 3/15/19 8:42 AM



1008 | V. Bögelein et al., The higher integrability of weak solutions of porous medium systems

Theorem 1.2. Let m ≥ 1 and σ > 2. There exist constants εo = εo(n,m, ν, L) ∈ (0, 1] and c = c(n,m, ν, L) ≥ 1
such that the following holds true: Whenever F ∈ Lσloc(ΩT ,ℝ

Nn) and

u ∈ C0((0, T); Lm+1loc (Ω,ℝ
N)) with um ∈ L2loc(0, T;W

1,2
loc (Ω,ℝ

N))

is a weak solution of equation (1.1) under the assumptions (1.2) in the sense of Definition 1.1, there holds

Dum ∈ L2+ε1loc (ΩT ,ℝ
Nn),

where ε1 := min{εo , σ − 2}. Moreover, for every ε ∈ (0, ε1] and every cylinder Q2R(zo) ⋐ ΩT , we have the quan-
titative local higher integrability estimate

−∫−∫
QR(zo)

|Dum|2+ε dx dt ≤ c[1 + −∫−∫
Q2R(zo)

[
|u|2m

R2
+ |F|2]dx dt]

εm
m+1

−∫−∫
Q2R(zo)

|Dum|2 dx dt + c −∫−∫
Q2R

|F|2+ε dx dt. (1.8)

The quantitative local estimate (1.8) can be converted easily into an estimate on the standard parabolic
cylinders CR(zo) := BR(xo) × (to − R2, to + R2). The precise statement is as follows.

Corollary 1.3. Under the assumptions of Theorem 1.2, the estimate

−∫−∫
CR(zo)

|Dum|2+ε dx dt ≤ c
Rε [

1 + −∫−∫
C2R(zo)

[|u|2m + R2|F|2]dx dt]
εm
m+1

−∫−∫
C2R(zo)

|Dum|2 dx dt + c −∫−∫
C2R(zo)

|F|2+ε dx dt

holds true onany parabolic cylinder C2R(zo) ⋐ ΩT and for every ε ∈ (0, ε1]andwith a constant c = c(n,m, ν, L).

2 Preliminaries

2.1 Notations

In order not to overburden the notation, we abbreviate in the following the power of a vector (or possibly
negative number) by

uα := |u|α−1u for u ∈ ℝN and α > 0,

where we interpret uα = 0 in the case u = 0 and α ∈ (0, 1). Throughout the paper we write zo = (xo , to) ∈ℝn ×ℝ
and use the space-time cylinders

Q(θ)ϱ (zo) := Bϱ(xo) × Λ
(θ)
ϱ (to), (2.1)

where
Λ(θ)ϱ (to) := (to − θ1−mϱ

m+1
m , to + θ1−mϱ

m+1
m )

with some scaling parameter θ > 0. One of the most important notions for this paper is the notion of sub-
intrinsic cylinders. We call a cylinder Q(θ)ϱ (zo) sub-intrinsic if and only if

−∫−∫

Q(θ)
ϱ (zo)

|u|2m

ϱ2
dx dt ≤ θ2m

holds true. If the preceding inequality actually is an equality, we call the cylinder intrinsic. In the case θ = 1,
we simply omit the parameter in our notation and write

Qϱ(zo) := Bϱ(xo) × (to − ϱ
m+1
m , to + ϱ

m+1
m )

instead of Q(1)ϱ (zo), and, analogously, Λϱ(to) instead of Λ
(1)
ϱ (to). If zo is the origin, we write Qϱ, Bϱ and Λϱ for

Qϱ(0), Bϱ(0) and Λϱ(0). Moreover, if the center zo is clear from the context, we omit it in our notation.
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For a map u ∈ L1(0, T; L1(Ω,ℝN)) and given measurable sets A ⊂ Ω and E ⊂ Ω × (0, T) with positive
Lebesgue measure the slicewise mean (u)A : (0, T) → ℝN of u on A is defined by

(u)A(t) := −∫
A

u(t) dx for a.e. t ∈ (0, T), (2.2)

whereas the mean value (u)E ∈ ℝN of u on E is defined by

(u)E := −∫−∫
E

u dx dt.

Note that if u ∈ C0((0, T); L2(Ω,ℝN)) the slicewise means are defined for any t ∈ (0, T). If the set A is
a ball Bϱ(xo), then we abbreviate (u)xo;ϱ(t) := (u)Bϱ(xo)(t) and if E is a cylinder of the form Q(θ)ϱ (zo), we
use the shorthand notation (u)(θ)zo;ϱ := (u)Q(θ)

ϱ (zo)
. Finally, we define the boundary term

b[um , am] := m
m + 1 (|a|

m+1 − |u|m+1) − u ⋅ (am − um) (2.3)

that will appear in the energy estimate from Lemma 3.1.

2.2 Auxiliary material

In order to “re-absorb” certain terms, we will use the following iteration lemma, which can be retrieved by
a change of variable from [21, Lemma 6.1].

Lemma 2.1. Let 0 < ϑ < 1, A, C ≥ 0 and α, β > 0. Then there exists a constant c = c(β, ϑ) such that there holds:
For any 0 < r < ϱ and any non-negative bounded function ϕ : [r, ϱ] → ℝ≥0 satisfying

ϕ(t) ≤ ϑϕ(s) + A(sα − tα)−β + C for all r ≤ t < s ≤ ϱ,

we have
ϕ(r) ≤ c[A(ϱα − rα)−β + C].

Lemma 2.2. For any α > 1, there exists a constant c = c(α) such that, for all a, b ∈ ℝN the following assertions
hold true:
(i) 1

c |a
α − bα| ≤ (|a|α−1 + |b|α−1)|a − b| ≤ c|aα − bα|,

(ii) |a − b|α ≤ c|aα − bα|,
(iii) |aα − bα|2 ≤ c(a2α−1 − b2α−1) ⋅ (a − b).

The proof of (i) and (ii) can be found in [19, Lemma 2.2]. Inequality (iii) can be derived by combining the
proof of [7, Chapter I, Lemma 4.4] with (i). The next lemma provides useful estimates for the boundary term b

introduced in (2.3).

Lemma 2.3. There exists a constant c = c(m) such that for any u, a ∈ ℝN the following assertions hold true:
(i) 1

c |u
m+1
2 − a m+1

2 |2 ≤ b[um , am] ≤ c|u m+1
2 − a m+1

2 |2,
(ii) 1

c |u
m − am|2 ≤ [|u|m−1 + |a|m−1]b[um , am] ≤ c|um − am|2,

(iii) b[um , am] ≤ c|um − am| m+1
m .

Proof. Using the auxiliary function ϕ ∈ C2(ℝN), ϕ(x) = 1
m+1 |x|

m+1, we can re-write the boundary term to

b[um , am] = 1
m + 1 |u|

m+1 −
1

m + 1 |a|
m+1 − am ⋅ (u − a)

= ϕ(u) − ϕ(a) − ∇ϕ(a) ⋅ (u − a).

The Hessian of ϕ is given by the matrix

Hϕ(x) = |x|m−1(𝕀N + (m − 1)
x
|x|
⊗
x
|x| )

,
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1010 | V. Bögelein et al., The higher integrability of weak solutions of porous medium systems

whose eigenvalues are |x|m−1 and m|x|m−1. Therefore, the integral formula for the remainder in Taylor’s
expansion yields

b[um , am] ≥
1

∫
0

|a + t(u − a)|m−1(1 − t)dt |u − a|2. (2.4)

Now, we distinguish between the cases |u| ≥ |a| and |u| < |a|. In the first case, for any t ∈ (34 , 1) we have

|a + t(u − a)| ≥ t|u| − (1 − t)|a| ≥ 12 |u| ≥
1
4 (|u| + |a|),

from which we infer

b[um , am] ≥ c
1

∫
3
4

(1 − t)dt (|u| + |a|)m−1|u − a|2 = c (|u| + |a|)m−1|u − a|2, (2.5)

where c = c(m). In the second case |u| < |a|, we restrict ourselves to values t ∈ (0, 14 ). Interchanging the roles
of u, a and t, 1 − twe end upwith the same estimate for |a + t(u − a)|. In view of (2.4), this implies also in the
remaining case for b[um , am] estimate (2.5). Combining this with Lemma 2.2 (i), we arrive at the first claimed
estimate, since

b[um , am] ≥ c(m)(|u| + |a|)m−1|u − a|2 ≥ c(m)|u
m+1
2 − a

m+1
2 |2.

For the secondasserted estimate,weapply Lagrange’s formula for the remainder in Taylor’s expansion,which
yields

b[um , am] ≤ 12 sup
t∈(0,1)
(u − a) ⋅ Hϕ(a + t(u − a))(u − a)

≤
m
2 |u − a|

2 sup
t∈(0,1)
|a + t(u − a)|m−1

≤ c(m)(|u| + |a|)m−1|u − a|2. (2.6)

In view of Lemma 2.2 (i), this yields the second estimate from (i), since

b[um , am] ≤ c(m)(|u| + |a|)m−1|u − a|2 ≤ c(m)|u
m+1
2 − a

m+1
2 |2.

The inequalities in (ii) are a consequence of (i) and Lemma 2.2 (i) applied with ũ = u m+1
2 , ã = a m+1

2 and
α = 2m

m+1 , since

[|u|m−1 + |a|m−1]b[um , am] ≥ c(m)[|u|m−1 + |a|m−1]|u
m+1
2 − a

m+1
2 |2

= c(m)[|ũ|
2(m−1)
m+1 + |ã|

2(m−1)
m+1 ]|ũ − ã|2

≥ c(m)|um − am|2.

The reasoning for the second bound in (ii) is similar. The inequality (iii) also follows from inequality (2.6)
and Lemma 2.2 (i)–(ii), since

b[um , am] ≤ c(m)|um − am| |u − a| ≤ c(m)|um − am|1+
1
m .

The following estimate, which is known as the quasi-minimality of the mean value, can be established by
Young’s and Hölder’s inequality.

Lemma 2.4. Let α ≥ 1. Then for any bounded domain A ⊂ ℝk, k ∈ ℕ, any u ∈ Lα(A,ℝN), and any a ∈ ℝN there
holds

−∫
A

|u − (u)A|α dx ≤ 2α −∫
A

|u − a|α dx.

The following statement shows that mean values over subsets are still quasi-minimizing. This is well known
for α = 1. Here, we state the version for powers. As expected, the quasi-minimality constant depends on the
ratio of the measures of the set and the subset.
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Lemma 2.5. Let α ≥ 1. Then there exists a universal constant c = c(α) such that whenever A ⊂ B ⊂ ℝk, k ∈ ℕ,
are two bounded domains and u ∈ L2α(B,ℝN), there holds

−∫
B

|uα − (u)αA|
2 dx ≤ c |B|

|A|
−∫
B

|uα − (u)αB|
2 dx.

Proof. We start by estimating the difference |(u)αB − (u)
α
A|. Using Lemma 2.2 (i)–(ii), we obtain for a constant

c = c(α) that

|(u)αB − (u)
α
A|
2 ≤ c[|(u)B|2α−2 + |(u)A|2α−2]|(u)B − (u)A|2

≤ c[|(u)B|2α−2 + |(u)A − (u)B|2α−2]|(u)B − (u)A|2

≤ c |(u)B|2α−2 −∫
A

|u − (u)B|2 dx + c |(u)A − (u)B|2α

≤ c −∫
A

|uα − (u)αB|
2 dx + c −∫

A

|u − (u)B|2α dx

≤
c |B|
|A|
−∫
B

|uα − (u)αB|
2 dx.

From this estimate we conclude

−∫
B

|uα − (u)αA|
2 dx ≤ 2−∫

B

|uα − (u)αB|
2 dx + 2|(u)αB − (u)

α
A|
2

≤
c |B|
|A|
−∫
B

|uα − (u)αB|
2 dx,

which proves the claim.

The following lemma is from [12, Lemma 6.2]. For convenience of the reader, we nevertheless include the
proof.

Lemma 2.6. Let α > 1. Then there exists a universal constant c = c(α) such that for any bounded domain
A ⊂ ℝn, any non-negative u ∈ L2α(A,ℝN), and any a ∈ ℝN there holds

−∫
A

|uα − (u)αA|
2 dx ≤ c −∫

A

|uα − aα|2 dx.

Proof. Using Lemma 2.2 (iii), we obtain for a constant c = c(α) that

−∫
A

|uα − (u)αA|
2 dx ≤ c −∫

A

(u − (u)A) ⋅ (u2α−1 − (u)2α−1A )dx

= c −∫
A

(u − (u)A) ⋅ (u2α−1 − a2α−1)dx

≤ c −∫
A

|u − (u)A||u2α−1 − a2α−1|dx. (2.7)

In order to estimate the integrand from above, we distinguish between two cases. In the case |u| ≤ 1
2 |a|, we

have
|a|α = |aα − uα + uα| ≤ |aα − uα| + 2−α|a|α

and hence |a|α ≤ 2α
2α−1 |u

α − aα|. In turn, this allows us to estimate

|u2α−1 − a2α−1| ≤ 2|a|2α−1 ≤ c(α)|uα − aα|
2α−1
α ,

which by Lemma 2.2 (ii) implies

|u − (u)A||u2α−1 − a2α−1| ≤ c(α)|uα − (u)αA|
1
α |uα − aα|

2α−1
α . (2.8)
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In the remaining case |a| < 2|u|, Lemma 2.2 (i) shows

|u − (u)A||u2α−1 − a2α−1| ≤ c(α) |u − (u)A|(|u|2α−2 + |a|2α−2)|u − a|
≤ c(α) |u|2α−2|u − (u)A||u − a|
= c(α) |u|α−1|u − (u)A||u|α−1|u − a|.

An application of Lemma 2.2 (i) therefore yields

|u − (u)A||u2α−1 − a2α−1| ≤ c |uα − (u)αA||u
α − aα|. (2.9)

Combining (2.8) and (2.9), we infer that in any case the estimate

|u − (u)A||u2α−1 − a2α−1| ≤ c |uα − (u)αA|
1
α |uα − aα|

2α−1
α + c |uα − (u)αA||u

α − aα|

holds true for a constant c = c(α). We insert this into (2.7) and apply Young’s inequality twice. This leads to

−∫
A

|uα − (u)αA|
2 dx ≤ 12 −∫

A

|uα − (u)αA|
2 dx + c −∫

A

|uα − aα|2 dx.

Here we re-absorb the term 1
2 −∫A |u

α − (u)αA|2 dx into the left-hand side and obtain the asserted inequality.

Finally, we ensure that the mean value is also a quasi-minimizer of a 󳨃→ −∫A b[u, a]dx.

Lemma 2.7. There exists a universal constant c = c(m) such that for any bounded domain A ⊂ ℝn, any non-
negative u ∈ Lm+1(A,ℝN), and any a ∈ ℝN there holds

−∫
A

b[u, (u)A]dx ≤ c −∫
A

b[u, a]dx.

Proof. Due to Lemmas 2.3 (i) and 2.6 we obtain

−∫
A

b[u, (u)A]dx ≤ c −∫
A

|u
m+1
2 − (u)

m+1
2

A |
2 dx

≤ c −∫
A

|u
m+1
2 − a

m+1
2 |2 dx ≤ c −∫

A

b[u, a]dx.

This proves the asserted inequality.

3 Energy bounds
In this section we derive an energy inequality and a gluing lemma which follow from the weak formulation
(1.7) of the differential equation by testingwith suitable testing functions. Later on, theywill be used in order
to prove Sobolev–Poincaré and reverse Hölder-type inequalities.

Lemma 3.1. Let m ≥ 1 and let u be aweak solution to (1.1) inΩT in the sense of Definition 1.1, where the vector-
field A fulfills the growth and ellipticity assumptions (1.2). Then there exists a constant c = c(m, ν, L) such that
on any cylinder Q(θ)ϱ (zo) ⋐ ΩT with 0 < ϱ ≤ 1 and θ > 0, and for any r ∈ [ ϱ2 , ϱ) and any a ∈ ℝN the following
energy estimate:

sup
t∈Λ(θ)

r (to)
−∫

Br(xo)

θm−1 b[u
m( ⋅ , t), am]
ϱ m+1

m
dx + −∫−∫

Q(θ)
r (zo)

|Dum|2 dx dt

≤ c −∫−∫
Q(θ)
ϱ (zo)

[
|um − am|2

(ϱ − r)2
+ θm−1 b[um , am]

ϱ m+1
m − r m+1

m
]dx dt + c −∫−∫

Q(θ)
ϱ (zo)

|F|2 dx dt,

holds true, where b has been defined in (2.3).
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Proof. For v ∈ L1(ΩT ,ℝN), we define the following mollification in time:

[[v]]h(x, t) :=
1
h

t

∫
0

e
s−t
h v(x, s) ds.

From the weak form (1.7) of the differential equation we deduce the mollified version (without loss of gener-
ality we may assume that u ∈ C0([0, T); L2loc(Ω,ℝ

N)))

∬
ΩT

[∂t[[u]]h ⋅ φ + [[A(x, t, u, Dum)]]h ⋅ Dφ]dx dt = ∬
ΩT

[[F]]h ⋅ Dφ dx dt + 1
h ∫

Ω

u(0) ⋅
T

∫
0

e−
s
h φ ds dx (3.1)

for any φ ∈ L2(0, T;W1,2
0 (Ω,ℝN)). Let η ∈ C10(Bϱ(xo), [0, 1]) be the standard cut off function with η ≡ 1

in Br(xo) and |Dη| ≤ 2
ϱ−r and ζ ∈ W

1,∞(Λ(θ)ϱ (to), [0, 1]) defined by

ζ(t) :=
{{{
{{{
{

1 for t ≥ to − θ1−mr
m+1
m ,

(t − to)θm−1 + ϱ
m+1
m

ϱ m+1
m − r m+1

m
for t ∈ (to − θ1−mϱ

m+1
m , to − θ1−mr

m+1
m ).

Furthermore, for given ε > 0 and t1 ∈ Λ(θ)r (to) we define the cut-off function ψε ∈ W1,∞(Λ(θ)ϱ (to), [0, 1]) by

ψε(t) :=
{{{
{{{
{

1 for t ∈ (to − θ1−mϱ
m+1
m , t1],

1 − 1
ε (t − t1) for t ∈ (t1, t1 + ε),

0 for t ∈ [t1 + ε, to).

We choose
φ(x, t) = η2(x)ζ(t)ψε(t)(um(x, t) − am)

as testing function in the mollified version (3.1) of the differential equation. For the integral containing the
time derivative we compute

∬

Q(θ)
ϱ (zo)

∂t[[u]]h ⋅ φ dx dt = ∬
Q(θ)
ϱ (zo)

η2ζψε∂t[[u]]h ⋅ ([[u]]mh − a
m)dx dt

+ ∬

Q(θ)
ϱ (zo)

η2ζψε∂t[[u]]h ⋅ (um − [[u]]mh )dx dt

≥ − ∬

Q(θ)
ϱ (zo)

η2ζψε∂t(
1

m + 1
󵄨󵄨󵄨󵄨[[u]]h
󵄨󵄨󵄨󵄨
m+1 − am ⋅ [[u]]h)dx dt

= − ∬

Q(θ)
ϱ (zo)

η2ζψε∂t(b[[[u]]mh , a
m])dx dt

= ∬

Q(θ)
ϱ (zo)

η2(ζψ󸀠ε + ψεζ 󸀠)b[[[u]]mh , a
m]dx dt,

where we also used the identity ∂t[[u]]h = − 1h ([[u]]h − u), cf. [24, Chapter 2]. Since [[u]]h → u in Lm+1loc (ΩT), we
may pass to the limit h ↓ 0 in the integral on the right-hand side and therefore find that

lim inf
h↓0
∬

Q(θ)
ϱ (zo)

∂t[[u]]h ⋅ φ dx dt ≥ ∬
Q(θ)
ϱ (zo)

η2(ζψ󸀠ε + ψεζ 󸀠)b[um , am]dx dt =: Iε + IIε .

At this point, we pass to the limit ε ↓ 0 and obtain for the first term

lim
ε↓0

Iε = ∫
Bϱ(xo)

η2b[um( ⋅ , t1), am]dx,
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for any t1 ∈ Λ(θ)r (to), whereas the term IIε can be estimated in the following way (observe that the boundary
term is non-negative):

|IIε| ≤ ∬
Q(θ)
ϱ (zo)

ζ 󸀠b[um , am]dx dt ≤ ∬
Q(θ)
ϱ (zo)

θm−1 b[um , am]
ϱ m+1

m − r m+1
m

dx dt.

Next, we consider the diffusion term in (3.1). After passing to the limit h ↓ 0, we use the ellipticity and growth
assumption (1.2), and later on Young’s inequality. In this way, we obtain

∬

Q(θ)
ϱ (zo)

A(x, t, u, Dum) ⋅ Dφ dx dt = ∬
Q(θ)
ϱ (zo)

A(x, t, u, Dum) ⋅ [η2ζψεDum + 2ηζψε(um − am) ⊗ Dη]dx dt

≥ ν ∬
Q(θ)
ϱ (zo)

η2ζψε|Dum|2 dx dt − 2L ∬
Q(θ)
ϱ (zo)

η|Dη|ζψε|um − am||Dum|dx dt

≥
ν
2 ∬
Q(θ)
ϱ (zo)

η2ζψε|Dum|2 dx dt − c ∬
Q(θ)
ϱ (zo)

|Dη|2ζψε|um−am|2 dx dt

≥
ν
2 ∬
Q(θ)
ϱ (zo)

η2ζψε|Dum|2 dx dt − c ∬
Q(θ)
ϱ (zo)

|um − am|2

(ϱ − r)2
dx dt

for a constant c = c(m, ν, L). Finally, we consider the right-hand side integrals in (3.1). The second integral
disappears in the limit h ↓ 0, since φ(0) = 0. In the integral containing the inhomogeneity F we pass to the
limit h ↓ 0 and subsequently apply Hölder’s inequality. In this way, we obtain

∬

Q(θ)
ϱ (zo)

F ⋅ Dφ dx dt = ∬
Q(θ)
ϱ (zo)

[η2ζψεF ⋅ Dum + 2ηζψεF ⋅ (um − am) ⊗ Dη] dx dt

≤
ν
4 ∬
Q(θ)
ϱ (zo)

[η2ζψε|Dum|2 +
|um − am|2

(ϱ − r)2
]dx dt + c ∬

Q(θ)
ϱ (zo)

|F|2 dx dt.

We combine these estimates and then pass to the limit ε ↓ 0. This leads to

∫
Br(xo)

b[um( ⋅ , t1), am]dx +
ν
4

t1

∫

to−θ1−m r
m+1
m

∫
Bϱ(xo)

|Dum|2 dx dt

≤ c ∬
Q(θ)
ϱ (zo)

[
|um − am|2

(ϱ − r)2
+ θm−1 b[um , am]

ϱ m+1
m − r m+1

m
]dx dt + c ∬

Q(θ)
ϱ (zo)

|F|2 dx dt

for any t1 ∈ Λ(θ)r (to), with a constant c = c(m, ν, L). In the preceding inequality we take in the first term on
the left-hand side the supremum over t1 ∈ Λ(θ)ϱ (to), and then pass to the limit t1 ↑ to + θ1−mr

m+1
m . Finally, we

take means on both sides. This procedure leads to the claimed inequality.

The following lemma serves to compare the slice-wise mean values at different times. This is necessary since
Poincaré’s and Sobolev’s inequality can only be applied slice-wise. Such a result, which connects means on
different time slices, is termed Gluing Lemma.

Lemma 3.2. Let m ≥ 1 and let u be aweak solution to (1.1) inΩT in the sense of Definition 1.1, where the vector-
field A fulfills the growth and ellipticity assumptions (1.2). Then for any cylinder Q(θ)ϱ (zo) ⋐ ΩT with 0 < ϱ ≤ 1
and θ > 0 there exists ϱ̂ ∈ [ ϱ2 , ϱ] such that for all t1, t2 ∈ Λ

(θ)
ϱ (to) there holds

|(u)xo;ϱ̂(t2) − (u)xo;ϱ̂(t1)| ≤
c ϱ 1

m

θm−1
−∫−∫

Q(θ)
ϱ (zo)

[|Dum| + |F|]dx dt

for a constant c = c(L).
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Proof. Let t1, t2 ∈ Λ(θ)ϱ (to) with t1 < t2 and assume that r ∈ [ ϱ2 , ϱ]. For δ > 0 and 0 < ε ≪ 1, we define
ξε ∈ W1,∞

0 (t1 − ε, t2 + ε) by

ξε(t) :=

{{{{{{{{{
{{{{{{{{{
{

0 for to − θ1−mϱ
m+1
m ≤ t ≤ t1 − ε,

t−t1+ε
ε for t1 − ε < t < t1,

1 for t1 ≤ t ≤ t2,
t2+ε−t
ε for t2 < t < t2 + ε,

0 for t2 + ε ≤ t ≤ to,

and a radial function Ψδ ∈ W1,∞
0 (Br+δ(xo)) by Ψδ(x) := ψδ(|x − xo|), where

ψδ(s) :=
{{{
{{{
{

1 for 0 ≤ s ≤ r,
r+δ−s
δ for r < s < r + δ,

0 for r + δ ≤ s ≤ ϱ,

for s ∈ [0, ϱ]. For fixed i ∈ {1, . . . , N} we choose φε,δ = ξεΨδei as testing function in the weak formula-
tion (1.7), where ei denotes the i-th canonical basis vector inℝN . In the limit ε, δ ↓ 0 we obtain

∫
Br(xo)

[u( ⋅ , t2) − u( ⋅ , t1)] ⋅ ei dx =
t2

∫
t1

∫
∂Br(xo)

[A(x, t, u, Dum) + F] ⋅ ei ⊗
x − xo
|x − xo|

dHn−1(x)dt.

We multiply the preceding inequality by ei and sum over i = 1, . . . , N. This yields

∫
Br(xo)

[u( ⋅ , t2) − u( ⋅ , t1)]dx =
t2

∫
t1

∫
∂Br(xo)

[A(x, t, u, Dum) + F] x − xo
|x − xo|

dHn−1(x)dt.

Here, we use the growth condition (1.2)2 and immediately get for any t1, t2 ∈ Λ(θ)ϱ (to) and any r ∈ [ ϱ2 , ϱ] that
there holds

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

Br(xo)

[u( ⋅ , t2) − u( ⋅ , t1)]dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
t2

∫
t1

∫
∂Br(xo)

[L|Dum| + |F|]dHn−1 dt.

Since
t2

∫
t1

∫
Bϱ(xo)

[L|Dum| + |F|]dx dt =
ϱ

∫
0

t2

∫
t1

∫
∂Br(xo)

[L|Dum| + |F|]dHn−1 dt dr

≥

ϱ

∫
ϱ
2

t2

∫
t1

∫
∂Br(xo)

[L|Dum| + |F|]dHn−1 dt dr,

there exists a radius ϱ̂ ∈ [ ϱ2 , ϱ) with
t2

∫
t1

∫
∂Bϱ̂(xo)

[L|Dum| + |F|]dHn−1 dt ≤ 2
ϱ

t2

∫
t1

∫
Bϱ(xo)

[L|Dum| + |F|]dx dt.

Therefore,we choose in the above inequality r = ϱ̂ and then takemeans on both sides of the resulting inequal-
ity. This implies

|(u)xo;ϱ̂(t2) − (u)xo;ϱ̂(t1)| ≤
c
ϱ ∫
Λ(θ)
ϱ (to)

−∫
Bϱ(xo)

[|Dum| + |F|]dx dt

=
c ϱ 1

m

θm−1
−∫−∫

Q(θ)
ϱ (zo)

[|Dum| + |F|]dx dt

for any t1, t2 ∈ Λ(θ)ϱ (to) and with a constant c = c(L).
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4 Parabolic Sobolev–Poincaré-type inequalities
Throughout this section we consider so-called sub-intrinsic cylinders. These cylinders are characterized as
follows: On the scaled cylinder Q(θ)ϱ (zo) ⋐ ΩT with 0 < ϱ ≤ 1 and θ > 0 the following coupling between the
mean of |u|

2m

ϱ2 on Q(θ)ϱ (zo) and θ holds true:

−∫−∫

Q(θ)
ϱ (zo)

|u|2m

ϱ2
dx dt ≤ 2d+2θ2m . (4.1)

The following lemma is the first step towards a Poincaré-type inequality for weak solutions to the porous
medium system. This is necessary because the standard Poincaré inequality in ℝn × ℝ cannot be applied
directly, since weak solutions u a priori do not possess the necessary regularity with respect to time; note that
we only assume for the spatial derivative Dum ∈ L2loc(ΩT ,ℝ

Nn), while no regularity assumption with respect
to time is incorporated in the definition of weak solutions. Nevertheless, we are able to prove some sort of
Poincaré inequality. This is achieved by considering the space and time direction separately. In x-direction
we can apply the Poincaré inequality on ℝn, while in t-direction the needed regularity is gained from the
gluing lemma.

Lemma 4.1. Let m ≥ 1 and let u be a weak solution to (1.1) in ΩT in the sense of Definition 1.1, where the
vector-field A fulfills the growth and ellipticity assumptions (1.2). Then on any cylinder Q(θ)ϱ (zo) ⋐ ΩT satisfying
the sub-intrinsic coupling (4.1) for some 0 < ϱ ≤ 1 and some θ > 0, the inequality

−∫−∫

Q(θ)
ϱ (zo)

|um − (um)(θ)zo;ϱ|2

ϱ2
dx dt ≤ c −∫−∫

Q(θ)
ϱ (zo)

|um − (um)zo;ϱ(t)|2

ϱ2
dx dt + c[ −∫−∫

Q(θ)
ϱ (zo)

[|Dum| + |F|]dx dt]
2

(4.2)

holds true with a universal constant c = c(n,m, L).

Proof. In the followingwe shall again omit for simplification the reference point zo in our notation.Moreover,
we let ϱ̂ ∈ [ ϱ2 , ϱ] be the radius from Lemma 3.2. By adding and subtracting the slice-wise means (u)mϱ̂ (t) as
defined in (2.2), we obtain the inequality

−∫−∫

Q(θ)
ϱ

|um − (um)(θ)ϱ |2

ϱ2
dx dt ≤ 3[ −∫−∫

Q(θ)
ϱ

|um − (u)mϱ̂ (t)|
2

ϱ2
dx dt + 1

ϱ2
−∫

Λ(θ)
ϱ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫

Λ(θ)
ϱ

[(u)mϱ̂ (t) − (u)
m
ϱ̂ (τ)]dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
dt

+
1
ϱ2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−∫

Λ(θ)
ϱ

(u)mϱ̂ (τ)dτ − (u
m)(θ)ϱ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
]

=: 3[I + II + III], (4.3)

with the obvious meaning of I, II, III. In the following, we treat the terms of the right side in order. We start
with the term I. Using the fact that ϱ̂ ∈ [ ϱ2 , ϱ], we can first replace the slice-wisemeans (u)mϱ̂ (t) by (u)

m
ϱ (t)with

the help of Lemma 2.5, and afterwards apply Lemma 2.6, to obtain

I ≤ c −∫−∫
Q(θ)
ϱ

|um − (u)mϱ (t)|2

ϱ2
dx dt ≤ c −∫−∫

Q(θ)
ϱ

|um − (um)ϱ(t)|2

ϱ2
dx dt,

where c = c(m, n). Since III ≤ I, it remains to treat the term II. In turn, we apply Lemma 2.2 (i) and Lemma 3.2
to infer that for any t, τ ∈ Λ(θ)ϱ there holds

|(u)mϱ̂ (t) − (u)
m
ϱ̂ (τ)| ≤ c[|(u)ϱ̂(t)|

m−1 + |(u)ϱ̂(τ)|m−1]|(u)ϱ̂(t) − (u)ϱ̂(τ)|

≤
c ϱ 1

m

θm−1
−∫−∫

Q(θ)
ϱ

[|Dum| + |F|]dx dt[|(u)ϱ̂(t)|m−1 + |(u)ϱ̂(τ)|m−1],
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where c = c(m, L). Taking squares on both sides, integrating with respect to t and τ over Λ(θ)ϱ and applying
Hölder’s inequality and the sub-intrinsic coupling (4.1), we infer

II ≤ c
ϱ

2(m−1)
m θ2(m−1)

[ −∫−∫

Q(θ)
ϱ

|u|2m dx dt]
m−1
m

[ −∫−∫

Q(θ)
ϱ

[|Dum| + |F|]dx dt]
2
≤ c[ −∫−∫

Q(θ)
ϱ

[|Dum| + |F|]dx dt]
2

for a constant c depending only on n,m, and L. At this point, we use the estimates for I – III in (4.3) and
obtain the claimed inequality.

With the help of Lemma 4.1 we can now easily deduce a Poincaré-type inequality. Later on, Lemma 4.1 will
also be the starting point for the proof of a Sobolev–Poincaré-type inequality; see Lemma 4.3.

Lemma 4.2. Let m ≥ 1 and let u be a weak solution to (1.1) in ΩT in the sense of Definition 1.1, where the
vector-field A fulfills the growth and ellipticity assumptions (1.2). Then on any cylinder Q(θ)ϱ (zo) ⋐ ΩT satisfying
the sub-intrinsic coupling (4.1) for some 0 < ϱ ≤ 1 and some θ > 0, the Poincaré-type inequality

−∫−∫

Q(θ)
ϱ (zo)

|um − (um)(θ)zo;ϱ|2

ϱ2
dx dt ≤ c −∫−∫

Q(θ)
ϱ (zo)

[|Dum|2 + |F|2]dx dt

holds true with a universal constant c = c(n,m, L).

Proof. In the following we shall again omit for simplification the reference point zo in our notation. We
will take estimate (4.2) from Lemma 4.1 as starting point for our considerations. To the first integral on the
right-hand side, we apply Poincaré’s inequality slice wise for a.e. t ∈ Λ(θ)ϱ . In this way, we obtain

−∫−∫

Q(θ)
ϱ

|um − (um)ϱ(t)|2

ϱ2
dx dt ≤ c −∫−∫

Q(θ)
ϱ

|Dum|2 dx dt,

where c = c(n,m). Applying Hölder’s inequality to the second integral on the right-hand side of (4.2) yields
the claimed Poincaré-type inequality on sub-intrinsic cylinders.

The next statement can be interpreted as some sort of Sobolev–Poincaré inequality for the L2-deviation of um
from itsmean value on the sub-intrinsic cylinderQ(θ)ϱ (zo). Later on,we shall use this inequality to estimate the
right-hand side in the energy inequality from Lemma3.1. As usual, this leads to a reduction in the integration
exponent of the energy term of the right-hand side, i.e. the integral containing Dum. Similar to Lemma 4.2,
we take Lemma 4.1 as starting point in the proof. Then the idea is to extract a part of the integration exponent
from the L2-oscillation integral by the sup-term (occurring in the left-hand side of the energy estimate) and
then to apply Sobolev’s inequality to the remainder.

Lemma 4.3. Let m ≥ 1 and let u be aweak solution to (1.1) inΩT in the sense of Definition 1.1, where the vector-
field A fulfills the growth and ellipticity assumptions (1.2). Then on any sub-cylinder Q(θ)ϱ (zo) ⋐ ΩT as in (4.1)
for some 0 < ϱ ≤ 1 and some θ > 0, and for any given ε ∈ (0, 1] the following Sobolev-type inequality holds:

−∫−∫

Q(θ)
ϱ (zo)

|um − (um)(θ)zo;ϱ|2

ϱ2
dx dt ≤ ε sup

t∈Λ(θ)
ϱ (to)
−∫

Bϱ(xo)

θm−1
b[um( ⋅ , t), (um)(θ)zo;ϱ]

ϱ m+1
m

dx

+
c
ε 2
n
[ −∫−∫

Q(θ)
ϱ (zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫
Q(θ)
ϱ (zo)

|F|2 dx dt

for a universal constant c = c(n,m, L) and q := nd < 1.

Proof. In the following, we shall again omit the reference point zo in our notation. As in the proof of
Lemma 4.2 we take inequality (4.2) from Lemma 4.1 as starting point. Moreover, we abbreviate (um)ϱ(t)
by (um)ϱ. From the context, it is clear that (um)ϱ is to be interpreted as a function of t. To the first integral
on the right-hand side, we apply the lower bound for the boundary term from Lemma 2.3 (ii) and Hölder’s
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inequality with exponents m(n+2)
m−1 , n+2d . In this way, we obtain

−∫−∫

Q(θ)
ϱ

|um − (um)ϱ(t)|2

ϱ2
dx dt = c

ϱ2
−∫−∫

Q(θ)
ϱ

|um − (um)ϱ|
4
n+2 |um − (um)ϱ|

2n
n+2 dx dt

≤
c
ϱ2
−∫−∫

Q(θ)
ϱ

[|um|
1
m + |(um)ϱ|

1
m ]

2(m−1)
n+2

b[um , (um)ϱ]
2
n+2 |um − (um)ϱ|

2n
n+2 dx dt

≤
c
ϱ2
[ −∫−∫

Q(θ)
ϱ

[|um|
1
m + |(um)ϱ|

1
m ]

2m
dx dt]

m−1
m(n+2)

⋅ [ −∫−∫

Q(θ)
ϱ

b[um , (um)ϱ]
2
d |um − (um)ϱ|

2n
d dx dt]

d
n+2

≤
c
ϱ2
[ −∫−∫

Q(θ)
ϱ

|u|2m dx dt]
m−1
m(n+2)

[ −∫−∫

Q(θ)
ϱ

b[um , (um)ϱ]
2
d |um − (um)ϱ|

2n
d dx dt]

d
n+2

.

Now, we use the sub-intrinsic coupling (4.1), Hölder’s inequality with exponents d
2 ,

d
d−2 and for a.e. t ∈ Λ

(θ)
ϱ

Sobolev’s inequality slicewise (note that 2n
d ≥ 1, since n ≥ 2). This yields

−∫−∫

Q(θ)
ϱ

|um − (um)ϱ(t)|2

ϱ2
dx dt ≤ c θ

2(m−1)
n+2

ϱ 2d
n+2
[ −∫−∫

Q(θ)
ϱ

b[um , (um)ϱ]
2
d |um − (um)ϱ|

2n
d dx dt]

d
n+2

= c[ −∫−∫
Q(θ)
ϱ

[θm−1
b[um , (um)ϱ]

ϱ m+1
m
]

2
d |um − (um)ϱ|

2n
d

ϱ 2n
d

dx dt]
d
n+2

≤ c[ −∫
Λ(θ)
ϱ

[ −∫
Bϱ

θm−1
b[um , (um)ϱ]

ϱ m+1
m

dx]
2
d

[ −∫
Bϱ

|um − (um)ϱ|
2n
d−2

ϱ
2n
d−2

dx]
d−2
d

dt]
d
n+2

≤ c sup
t∈Λ(θ)

ϱ

[ −∫
Bϱ

θm−1
b[um( ⋅ , t), (um)ϱ(t)]

ϱ m+1
m

dx]
2
n+2

⋅ [ −∫

Λ(θ)
ϱ

[ −∫
Bϱ

|um − (um)ϱ|
2n
d−2

ϱ
2n
d−2

dx]
d−2
d

dt]
d
n+2

≤ c sup
t∈Λ(θ)

ϱ

[ −∫
Bϱ

θm−1
b[um( ⋅ , t), (um)(θ)ϱ ]

ϱ m+1
m

dx]
2
n+2

[ −∫−∫

Q(θ)
ϱ

|Dum|
2n
d dx dt]

d
n+2

,

with a universal constant c = c(n,m). In the last line we have used Lemma 2.7 in order to replace in the
boundary term b the slice wise mean (um)ϱ(t) by the mean (um)(θ)ϱ . Inserting this inequality into (4.2) and
applying Young’s and Hölder’s inequality, this results for any ε ∈ (0, 1] in

−∫−∫

Q(θ)
ϱ

|um − (um)(θ)ϱ |2

ϱ2
dx dt ≤ c sup

t∈Λ(θ)
ϱ

[ −∫
Bϱ

θm−1
b[um( ⋅ , t), (um)(θ)ϱ ]

ϱ m+1
m

dx]
2
n+2

[ −∫−∫

Q(θ)
ϱ

|Dum|
2n
d dx dt]

d
n+2

+ c[ −∫−∫
Q(θ)
ϱ

[|Dum| + |F|]dx dt]
2

≤ ε sup
t∈Λ(θ)

ϱ

−∫
Bϱ

θm−1
b[um(t), (um)(θ)ϱ ]

ϱ m+1
m

dx + c
ε 2
n
[ −∫−∫

Q(θ)
ϱ

|Dum|
2n
d dx dt]

d
n

+ c −∫−∫
Q(θ)
ϱ

|F|2 dx dt.

This completes the proof of the Sobolev–Poincaré-type inequality.
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5 Reverse Hölder inequality
As it is well known, the core of each higher-integrability result is a so-called reverse Hölder inequality for
the quantity in question, which in our case is the gradient Dum. These reverse Hölder inequalities result in
a certainway from the previously established Caccioppoli-type estimate and Sobolev–Poincaré-type inequal-
ities. In principle, the right-hand side integrals of the Caccioppoli inequality are estimated by applying the
Sobolev–Poincaré inequalities. However, the proof turns out to be more subtle than originally expected. The
assumption that a sub-intrinsic coupling assumption must be imposed for the cylinder Q(θ)2ϱ (zo) is obvious,
since thiswas presupposed in Lemma4.3. However, this is not sufficient because the factor θm−1 in the energy
estimate has to be converted into an Lm+1-oscillation integral of u. This is done by a super-intrinsic coupling
on the cylinder Q(θ)ϱ (zo); see the assumption (5.1)2. Both assumptions together, i.e. (5.1)1 and (5.1)2, mean
that the cylinder Q(θ)2ϱ (zo) is intrinsic in some sense. On such an intrinsic cylinder the oscillations of u are
small compared to the mean value of u. This case could be called the non-degenerate case.

Proposition 5.1. Let m ≥ 1 and let u be a weak solution to (1.1) in ΩT in the sense of Definition 1.1, where
the vector-field A fulfills the structural assumptions (1.2). Then on any cylinder Q(θ)2ϱ (zo) ⋐ ΩT with an intrinsic
coupling of the form

−∫−∫

Q(θ)
2ϱ (zo)

|u|2m

(2ϱ)2
dx dt ≤ θ2m ≤ −∫−∫

Q(θ)
ϱ (zo)

|u|2m

ϱ2
dx dt (5.1)

for some 0 < ϱ ≤ 1 and θ > 0, the following reverse Hölder-type inequality holds true:

−∫−∫

Q(θ)
ϱ (zo)

|Dum|2 dx dt ≤ c[ −∫−∫
Q(θ)
2ϱ (zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫
Q(θ)
2ϱ (zo)

|F|2 dx dt

for some universal constant c = c(n,m, ν, L) and where q := nd < 1.

Proof. Once again, we omit the reference to the center zo in the notation. We consider radii r, s with
ϱ ≤ r < s ≤ 2ϱ. From the energy estimate in Lemma 3.1, we obtain

sup
t∈Λ(θ)

r

−∫
Br

θm−1 b[u
m( ⋅ , t), (um)(θ)r ]

r m+1
m

dx + −∫−∫
Q(θ)
r

|Dum|2 dx dt

≤ c −∫−∫
Q(θ)
s

|um − (um)(θ)r |2

(s − r)2
dx dt + c −∫−∫

Q(θ)
s

θm−1 b[u
m , (um)(θ)r ]

s m+1
m − r m+1

m
dx dt + c −∫−∫

Q(θ)
s

|F|2 dx dt

=: I + II + III, (5.2)

with the obvious meaning of I, II, III. We abbreviate

Rr,s :=
s m+1

2m

s m+1
2m − r m+1

2m
, (5.3)

and observe that

s
m+1
2m − r

m+1
2m ≤ (s − r)

m+1
2m .

This together with Lemma 2.5 yields for the first term

I ≤ cR
4m
m+1
r,s −∫−∫

Q(θ)
s

|um − (um)(θ)s |2

s2
dx dt. (5.4)

For the second term we use the intrinsic coupling (5.1)2, Lemma 2.3 (ii)–(iii), Hölder’s inequality and
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Lemma 2.5 to infer that

II ≤ cR2
r,s −∫−∫

Q(θ)
s

θm−1 b[u
m , (um)(θ)r ]
s m+1

m
dx dt

≤ cR2
r,s[ −∫−∫

Q(θ)
s

|um − (um)(θ)r |2

s2
dx dt]

m−1
2m

−∫−∫

Q(θ)
s

b[um , (um)(θ)r ]
s m+1

m
dx dt

+ cR2
r,s|(um)

(θ)
r |

m−1
m −∫−∫

Q(θ)
s

b[um , (um)(θ)r ]
s2

dx dt

≤ cR2
r,s −∫−∫

Q(θ)
s

|um − (um)(θ)r |2

s2
dx dt

≤ cR2
r,s −∫−∫

Q(θ)
s

|um − (um)(θ)s |2

s2
dx dt.

Inserting the estimates for I and II above and applying Lemma 4.3, we find for any ε ∈ (0, 1] that

sup
t∈Λ(θ)

r

−∫
Br

θm−1 b[u
m( ⋅ , t), (um)(θ)r ]

r m+1
m

dx + −∫−∫
Q(θ)
r

|Dum|2 dx dt

≤ cR
4m
m+1
r,s [ε sup

t∈Λ(θ)
s

−∫
Bs

θm−1 b[u
m( ⋅ , t), (um)(θ)s ]

s m+1
m

dx + 1
ε 2
n
[ −∫−∫

Q(θ)
s

|Dum|2q dx dt]
1
q

+ −∫−∫

Q(θ)
s

|F|2 dx dt].

With the choice ε = 1

2cR
4m
m+1
r,s

, this yields

sup
t∈Λ(θ)

r

−∫
Br

θm−1 b[u
m( ⋅ , t), (um)(θ)r ]

r m+1
m

dx + −∫−∫
Q(θ)
r

|Dum|2 dx dt

≤
1
2 sup
t∈Λ(θ)

s

−∫
Bs

θm−1 b[u
m( ⋅ , t), (um)(θ)s ]

s m+1
m

dx + cR
4m(n+2)
n(m+1)
r,s [ −∫−∫

Q(θ)
2ϱ

|Dum|2q dx dt]
1
q

+ cR
4m
m+1
r,s −∫−∫

Q(θ)
2ϱ

|F|2 dx dt,

for a constant c = c(n,m, ν, L). To re-absorb the term 1
2 [. . . ] from the right-hand side into the left-hand side,

we apply the Iteration Lemma 2.1. This leads to the claimed reverse Hölder-type inequality, i.e. to

sup
t∈Λ(θ)

ϱ

−∫
Bϱ

θm−1
b[um( ⋅ , t), (um)(θ)ϱ ]

ϱ m+1
m

dx + −∫−∫
Q(θ)
ϱ

|Dum|2 dx dt ≤ c[ −∫−∫
Q(θ)
2ϱ

|Dum|2q dx dt]
1
q

+ c −∫−∫
Q(θ)
2ϱ

|F|2 dx dt.

This finishes the proof of Proposition 5.1.

The next lemma deals with the degenerate casewhich is characterized by the fact that u is small compared to
the oscillations of u. In terms of integral quantities this means that on the one hand Q(θ)2ϱ (zo) is sub-intrinsic,
and on the other hand the scaling parameter θ2m is smaller than the mean of |Dum|2 on Q(θ)ϱ (zo). As in
the non-degenerate case, we need the assumption (5.5)1, i.e. that Q

(θ)
2ϱ (zo) is sub-intrinsic, as a prerequi-

site for the application of Lemma 4.3, which serves to deal with some of the right-hand side integrals of the
Caccioppoli-type estimate. However, during this procedure, a term of the order of magnitude δθ2m appears,
and it is precisely there where we need assumption (5.5)2, which converts this term into the oscillation term
that can be re-absorbed into the left-hand side of Caccioppoli’s inequality.

Proposition 5.2. Let m ≥ 1 and let u be a weak solution to (1.1) in ΩT in the sense of Definition 1.1, where the
vector-field A fulfills the structure assumptions (1.2). Then on any cylinder Q(θ)2ϱ (zo) ⋐ ΩT satisfying a coupling
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of the form

−∫−∫

Q(θ)
2ϱ (zo)

|u|2m

(2ϱ)2
dx dt ≤ θ2m ≤ K −∫−∫

Q(θ)
ϱ (zo)

[|Dum|2 + |F|2]dx dt (5.5)

for some scaling parameter θ > 0 and some constant K ≥ 1, the following reverse Hölder-type inequality holds
true:

−∫−∫

Q(θ)
ϱ (zo)

|Dum|2 dx dt ≤ c[ −∫−∫
Q(θ)
2ϱ (zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫
Q(θ)
2ϱ (zo)

|F|2 dx dt

with a constant c = c(n,m, ν, L)K
(n+2)(m−1)
n(m+1) and q := nd < 1.

Proof. We omit in our notation the reference to the center zo. Furthermore, we consider radii r, s with
ϱ ≤ r < s ≤ 2ϱ. As in the proof of Proposition 5.1 we start from inequality (5.2) which follows from the
energy estimate in Lemma 3.1 and we recall the abbreviation (5.3). Estimate (5.4) for I is the same as in the
proof of Proposition 5.1. This is clear, since we did not use hypothesis (5.1)2 for their proof. Therefore, it
remains to consider the term II. Applying Young’s inequality, Lemma 2.3 (iii), and Lemma 2.5, we infer for
any δ ∈ (0, 1] that

II ≤ R2
r,s −∫−∫

Q(θ)
s

θm−1 b[u
m , (um)(θ)r ]
s m+1

m
dx dt

≤ δθ2m +
R

4m
m+1
r,s

δ m−1
m+1
−∫−∫

Q(θ)
s

b[um , (um)(θ)r ]
2m
m+1

s2
dx dt

≤ δθ2m +
cR

4m
m+1
r,s

δ m−1
m+1
−∫−∫

Q(θ)
s

|um − (um)(θ)r |2

s2
dx dt

≤ δθ2m +
cR

4m
m+1
r,s

δ m−1
m+1
−∫−∫

Q(θ)
s

|um − (um)(θ)s |2

s2
dx dt.

From (5.4), the preceding estimate and Lemma 4.3 we obtain for δ, ε ∈ (0, 1] that

I + II ≤ δθ2m +
cR

4m
m+1
r,s

δ m−1
m+1
[ε sup

t∈Λ(θ)
s

−∫
Bs

θm−1 b[u
m( ⋅ , t), (um)(θ)s ]

s m+1
m

dx + 1
ε 2
n
[ −∫−∫

Q(θ)
s

|Dum|2q dx dt]
1
q

+ −∫−∫

Q(θ)
s

|F|2 dx dt].

Moreover, from the coupling (5.5)2 we infer that

θ2m ≤ 2dK −∫−∫
Q(θ)
r

[|Dum|2 + |F|2]dx dt.

We insert the estimates for I and II into (5.2) and choose δ = 2−(d+1)K−1. This allows us to re-absorb the
integral of |Dum|2 into the left-hand side. Proceeding in this way, we obtain

sup
t∈Λ(θ)

r

−∫
Br

θm−1 b[u
m( ⋅ , t), (um)(θ)r ]

r m+1
m

dx + −∫−∫
Q(θ)
r

|Dum|2 dx dt

≤ c εK
m−1
m+1R

4m
m+1
r,s sup

t∈Λ(θ)
s

−∫
Bs

θm−1 b[u
m( ⋅ , t), (um)(θ)s ]

s m+1
m

dx

+ cK
m−1
m+1R

4m
m+1
r,s [

1
ε 2
n
[ −∫−∫

Q(θ)
s

|Dum|2q dx dt]
1
q

+ −∫−∫

Q(θ)
s

|F|2 dx dt].
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At this stage the choice
ε = 1

2cK m−1
m+1R

4m
m+1
r,s

yields

sup
t∈Λ(θ)

r

−∫
Br

θm−1 b[u
m( ⋅ , t), (um)(θ)r ]

r m+1
m

dx + −∫−∫
Q(θ)
r

|Dum|2 dx dt

≤
1
2 sup
t∈Λ(θ)

s

−∫
Bs

θm−1 b[u
m( ⋅ , t), (um)(θ)s ]

s m+1
m

dx

+ cK
(m−1)(n+2)
(m+1)n R

4m(n+2)
(m+1)n
r,s [[ −∫−∫

Q(θ)
2ϱ

|Dum|2q dx dt]
1
q

+ −∫−∫

Q(θ)
2ϱ

|F|2 dx dt].

Now, we apply the Iteration Lemma 2.1 to re-absorb the sup-term from the right-hand side into the left. This
leads us to

sup
t∈Λ(θ)

ϱ

−∫
Bϱ

θm−1
b[um( ⋅ , t), (um)(θ)ϱ ]

ϱ m+1
m

dx + −∫−∫
Q(θ)
ϱ

|Dum|2 dx dt ≤ c[ −∫−∫
Q(θ)
2ϱ

|Dum|2q dx dt]
1
q

+ c −∫−∫
Q(θ)
2ϱ

|F|2 dx dt,

where the constant c is of the form c(n,m, ν, L)K
(m−1)(n+2)
(m+1)n . This finishes the proof of the proposition.

6 Proof of the higher integrability
As we have seen in the last section, one can establish reverse Hölder inequalities in both the degenerate
and the non-degenerate regime. It should be recalled, however, that the cylinders on which these reverse
Hölder inequalities are valid, are essentially scaledby the solution u.More precisely, the relationship between
−∫−∫Q(θ)

ϱ (zo)
|u|2m
ϱ2 dx dt, the scaling parameter θ and −∫−∫Q(θ)

ϱ (zo) |Du
m|2 dx dt plays the decisive role. Therefore, the

main objective in the proof of the higher integrability theorem is to find parabolic cylinders covering the
super-level set of the spatial gradient of um in the sense of a Vitali-type covering, such that on each cylinder
either a coupling in the form of (5.1) or in the form of (5.5) holds true. These cylinders will be constructed by
some sort of stopping time argument, combined with a rising sun-type construction. This very nice idea, which
has already been explained in the introduction, goes back to [16]. Once the covering has been constructed
bymeans of such cylinders, the application of the reverse Hölder inequalities leads to a quantitative estimate
of |Dum|2 on the super-level sets in terms of |Dum|2q for q = nd < 1. The decay in terms of the super-level sets
can then be converted into the higher integrability of Dum.

Before we start the construction of the system of non-uniform cylinders reflecting the character of the
porous medium system as explained above, we fix the setup. We consider a fixed cylinder

Q8R(yo , τo) ≡ B8R(yo) × (τo − (8R)
m+1
m , τo + (8R)

m+1
m ) ⋐ ΩT

with R ∈ (0, 1]. In the following, we abbreviate Qϱ := Qϱ(yo , τo) for ϱ ∈ (0, 8R] and define

λo := 1 + [ −∫−∫
Q4R

[
|u|2m

(4R)2
+ |Dum|2 + |F|2]dx dt]

1
m+1

.

At this point, we recall the notation for space-time cylinders Q(θ)ϱ (zo) from (2.1), which will be used in the
following construction. Moreover, we observe that

Q(θ)ϱ (zo) ⊂ Q4R

whenever zo ∈ Q2R, ϱ ∈ (0, R] and θ ≥ 1.
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6.1 Construction of a non-uniform system of cylinders

The following construction of a non-uniform system of cylinders is similar to the one in [16, 27]. Let zo ∈ Q2R.
For a radius ϱ ∈ (0, R] we define

θ̃ϱ ≡ θ̃zo;ϱ := inf {θ ∈ [λo ,∞) :
1
|Qϱ|
∬

Q(θ)
ϱ (zo)

|u|2m

ϱ2
dx dt ≤ θm+1}.

Note that θ̃ϱ is well defined, since the set of those θ ≥ λo for which the integral condition is satisfied, is non-
empty. In fact, in the limit θ →∞ the integral on the left-hand side converges to zero, while the right-hand
side blows up with speed θm+1. Note also that the condition in the infimum above can be rewritten as

−∫−∫

Q(θ)
ϱ (zo)

|u|2m

ϱ2
dx dt ≤ θ2m .

Therefore, we either have that

θ̃ϱ = λo and −∫−∫

Q(θ̃ϱ )
ϱ (zo)

|u|2m

ϱ2
dx dt ≤ θ̃2mϱ = λ2mo ,

or that
θ̃ϱ > λo and −∫−∫

Q(θ̃ϱ )
ϱ (zo)

|u|2m

ϱ2
dx dt = θ̃2mϱ (6.1)

holds true. In any case we have θ̃R ≥ λo ≥ 1. On the other hand, if λo < θ̃R, then (again by definition and the
fact that Q(θ̃R)R (zo) ⊂ Q4R), we have

θ̃m+1R =
1
|QR|
∬

Q(θ̃R )
R (zo)

|u|2m

R2
dx dt ≤ 42

|QR|
∬
Q4R

|u|2m

(4R)2
dx dt ≤ 4d+2λm+1o .

Therefore, we end up with the bound

θ̃R ≤ 4
d+2
m+1 λo . (6.2)

Next, we establish that themapping (0, R] ∋ ϱ 󳨃→ θ̃ϱ is continuous. To this end, consider ϱ ∈ (0, R] and ε > 0,
and define θ+ := θ̃ϱ + ε. Then there exists δ = δ(ε, ϱ) > 0 such that

1
|Qr|
∬

Q(θ+)
r (zo)

|u|2m

r2
dx dt < θm+1+

for all radii r ∈ (0, R]with |r − ϱ| < δ. Indeed, the preceding strict inequality holds by the very definition of θ̃ϱ
with r = ϱ, since the integral on the left-hand side decreases with the replacement of θ̃ϱ by θ+ (note that the
domain of integration shrinks), while the right-hand side strictly increases. The claim now follows, since
both, i.e. the integral on the right- and the left-hand side, are continuous with respect to the radius. With
other words, we have shown that θ̃r ≤ θ+ = θ̃ϱ + ε for r sufficiently close to ϱ. Therefore, it remains to prove
θ̃r ≥ θ− := θ̃ϱ − ε for r close to ϱ. This is clear from the construction if θ− ≤ λo, since θ̃r ≥ λo for any r. In the
other case, after diminishing δ = δ(ε, ϱ) > 0 if necessary, we get

1
|Qr|
∬

Q(θ−)
r (zo)

|u|2m

r2
dx dt > θm+1−

for all r ∈ (0, R]with |r − ϱ| < δ. For r = ϱ, this is a direct consequence of the definition of θ̃ϱ, since otherwise,
wewould have θ̃ϱ ≤ θ−, which is a contradiction. For rwith |r − ϱ| < δ the claim follows from the continuity of
both sides as a function of r. By definition of θ̃r, the preceding inequality implies θ̃r ≥ θ− = θ̃ϱ − ε, as claimed.
This completes the proof of the continuity of (0, R] ∋ ϱ 󳨃→ θ̃ϱ.
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θ
˜
ϱ,θϱ

λo

r

θr=θ
˜

r

ϱ

θϱ

θ
˜

ϱ

ϱ˜

θ
ϱ
~ = θ

˜

ϱ
~

R

θ
˜
ϱ

θϱ

Figure 1: Illustration of the rising sun construction.

Unfortunately, the mapping (0, R] ∋ ϱ 󳨃→ θ̃ϱ might not be monotone. For this reason we modify θ̃ϱ in
a way, such that the modification – denoted by θϱ – becomes monotone. The precise construction is as
follows: We define

θϱ ≡ θzo;ϱ := max
r∈[ϱ,R]

θ̃zo;r .

This construction can be viewed as a rising sun construction, because on those intervals (ϱ, ̄r) on which
θ̃r < θ̃ ̄r, for r ∈ (ϱ, ̄r), one replaces θ̃r by θ̃ ̄r. Then by construction the mapping (0, R] ∋ ϱ 󳨃→ θϱ is continuous
and monotonically decreasing; see Figure 1 for an illustration of the construction.

Moreover, the cylinders Q(θϱ)s (zo) are sub-intrinsic whenever ϱ ≤ s. More specifically, we have

−∫−∫

Q(θϱ )
s (zo)

|u|2m

s2
dx dt ≤ θ2mϱ for any 0 < ϱ ≤ s ≤ R. (6.3)

In fact, the definition of θs and its monotonicity imply θ̃s ≤ θs ≤ θϱ, so that Q
(θϱ)
s (zo) ⊂ Q

(θ̃s)
s (zo). Therefore,

we have

−∫−∫

Q(θϱ )
s (zo)

|u|2m

s2
dx dt ≤ (

θϱ
θ̃s
)
m−1
−∫−∫

Q(θ̃s )
s (zo)

|u|2m

s2
dx dt ≤ (

θϱ
θ̃s
)
m−1

θ̃2ms = θm−1ϱ θ̃m+1s ≤ θ2mϱ .

We now define

ϱ̃ :=
{
{
{

R if θϱ = λo,
min{s ∈ [ϱ, R] : θs = θ̃s} if θϱ > λo.

(6.4)

In particular, we have θr = θ̃ϱ̃ for any r ∈ [ϱ, ϱ̃]; see again Figure 1. Next, we claim that

θϱ ≤ (
s
ϱ)

d+2
m+1
θs for any s ∈ (ϱ, R]. (6.5)

In the case that θϱ = λo we know that also θs = λo, so that (6.5) trivially holds. Therefore, it remains to con-
sider the case θϱ > λo. If s ∈ (ϱ, ϱ̃], then θϱ = θs, and the claim (6.5) follows again. Finally, if s ∈ (ϱ̃, R], then
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the monotonicity of ϱ 󳨃→ θϱ, (6.1) and (6.3) imply

θϱ = θ̃ϱ̃ = [
1
|Qϱ̃|
∬

Q
(θϱ̃ )
ϱ̃ (zo)

|u|2m

ϱ̃2
dx dt]

1
m+1

≤ (
s
ϱ̃)

d+2
m+1
[

1
|Qs|
∬

Q(θs )
s (zo)

|u|2m

s2
dx dt]

1
m+1

≤ (
s
ϱ)

d+2
m+1
θs .

We now apply (6.5) with s = R. Since θR = θ̃R the estimate (6.2) for θ̃R yields

θϱ ≤ (
R
ϱ )

d+2
m+1
θR ≤ (

4R
ϱ )

d+2
m+1
λo . (6.6)

In the following, we consider the system of concentric cylinders Q(θzo ;ϱ)ϱ (zo)with radii ϱ ∈ (0, R] and zo ∈ Q2R.
Note that the cylinders are nested in the sense that

Q(θzo ;r)r (zo) ⊂ Q
(θzo ;s)
s (zo) whenever 0 < r < s ≤ R.

The inclusion holds true due to the monotonicity of the mapping ϱ 󳨃→ θzo;ϱ. The disadvantage of this system
of nested cylinders is, that in general the cylinders only fulfill a sub-intrinsic coupling condition.

6.2 Covering property

Here, we will prove a Vitali-type covering property for the cylinders constructed in the last subsection. The
precise result is the following:

Lemma 6.1. There exists a constant ĉ = ĉ(n,m) ≥ 20 such that the following holds true: LetF be any collection
of cylinders Q(θz;r)4r (z), where Q

(θz;r)
r (z) is a cylinder of the form constructed in Section 6.1 with radius r ∈ (0, Rĉ ).

Then there exists a countable subfamily G of disjoint cylinders in F such that

⋃
Q∈F

Q ⊂ ⋃
Q∈G

Q̂, (6.7)

where Q̂ denotes the ĉ
4 -times enlarged cylinder Q, i.e. if Q = Q

(θz;r)
4r (z), then Q̂ = Q

(θz;r)
ĉr (z).

Proof. For j ∈ ℕ we consider the sub-collection

Fj := {Q
(θz;r)
4r (z) ∈ F : R

2j ĉ
< r ≤ R

2j−1 ĉ
}

and choose Gj ⊂ Fj as follows: We let G1 be any maximal disjoint collection of cylinders in F1. Note that G1
is finite, since by (6.6) and the definition of F1 the Ln+1-measure of each cylinder Q ∈ G1 is bounded from
below. Now, assume that G1, G2, . . . , Gk−1 have already been selected for some integer k ≥ 2. Thenwe choose
Gk to be any maximal disjoint subcollection of

{Q ∈ Fk : Q ∩ Q∗ = 0 for any Q∗ ∈
k−1
⋃
j=1

Gj}.

Note again that also Gk is finite. Finally, we define

G :=
∞
⋃
j=1

Gj .

Then G is a countable collection of disjoint cylinders and G ⊂ F. At this point it remains to prove that for each
Q ∈ F there exists a cylinder Q∗ ∈ G with Q ∩ Q∗ ̸= 0, and that this implies Q ⊂ Q̂∗.

To this end, fix Q = Q(θz;r)4r (z) ∈ F. Then there exists j ∈ ℕ such that Q ∈ Fj. By the maximality of Gj, there
exists a cylinder

Q∗ = Q(θz∗ ;r∗ )4r∗ (z∗) ∈
j
⋃
i=1

Gi
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with Q ∩ Q∗ ̸= 0. We know that r ≤ R
2j−1 ĉ and r∗ >

R
2j ĉ , so that r ≤ 2r∗. This ensures that B4r(x) ⊂ B20r∗ (x∗). In

the following, we shall prove
θz∗;r∗ ≤ 64

d+2
m+1 θz;r . (6.8)

By r̃∗ ∈ [r∗, R] we denote the radius from (6.4) associated to the cylinder Q(θz∗ ;r∗ )r∗ (z∗). Recall that either
Q(θz∗ ;r∗ )r̃∗ (z∗) is intrinsic or r̃∗ = R and θz∗;r∗ = λo. In the latter case we have due to the definition of θz;r that

θz∗;r∗ = λo ≤ θz;r .

Therefore, we may assume that Q(θz∗ ;r∗ )r̃∗ (z∗) is intrinsic, which means

θm+1z∗;r∗ =
1
|Q r̃∗ |

∬

Q(θz∗ ;r∗ )
r̃∗ (z∗)

|u|2m

r̃2∗
dy dτ. (6.9)

In the following, we distinguish between the cases r̃∗ ≤ Rη and r̃∗ > Rμ , where μ := 16. In the latter case we
exploit (6.9) and the definition of λo and θz;r to obtain

θm+1z∗;r∗ ≤ (
4R
r̃∗
)
2 1
|Q r̃∗ |
∬
Q4R

|u|2m

(4R)2
dy dτ ≤ (4Rr̃∗

)
d+2
λm+1o ≤ (4μ)d+2θm+1z;r .

This shows that

θz∗;r∗ ≤ (4μ)
d+2
m+1 θz;r .

Therefore, it suffices to consider the case r̃∗ ≤ Rμ . Since r̃∗ ≥ r∗ and |x − x∗| < 4r + 4r∗ ≤ 12r∗, we know that
B4r̃∗ (x∗) ⊂ Bμr̃∗ (x). In addition, we have

|t − t∗| ≤ θ1−mz;r (4r)
m+1
m + θ1−mz∗;r∗ (4r∗)

m+1
m . (6.10)

Without restriction one can now assume θz;r ≤ θz∗;r∗ , because otherwise (6.8) trivially holds. Now, themono-
tonicity of ϱ 󳨃→ θz;ϱ and r ≤ 2r∗ ≤ 2r̃∗ ≤ μr̃∗ yield

θz∗;r∗ ≥ θz;r ≥ θz;μr̃∗ ,

so that

θ1−mz∗;r∗ (4r̃∗)
m+1
m + |t − t∗| ≤ 2θ1−mz∗;r∗ (4r̃∗)

m+1
m + θ1−mz;r (4r)

m+1
m

≤ 2 ⋅ 8
m+1
m θ1−mz;μr̃∗ r̃

m+1
m
∗ ≤ θ1−mz;μr̃∗ (μr̃∗)

m+1
m .

But this means
Λ(θz∗ ;r∗ )4r̃∗ (t∗) ⊂ Λ

(θz;μr̃∗ )
μr̃∗ (t).

Therefore, from (6.9) and (6.3) with ϱ = s = μ ̃r∗, we obtain

θm+1z∗;r∗ ≤
μ2

|Q r̃∗ |
∬

Q
(θz;μr̃∗ )

μr̃∗ (z)

|u|2m

(μ ̃r∗)2
dy dτ ≤ μd+2θm+1z;r .

This implies that

θz∗;r∗ ≤ μ
d+2
m+1 θz;r .

This finishes the proof of (6.8). With (6.10), r ≤ 2r∗, and (6.8) we conclude

θ1−mz;r (4r)
m+1
m + |t − t∗| ≤ 2θ1−mz;r (4r)

m+1
m + θ1−mz∗;r∗ (4r∗)

m+1
m

≤ 4
m+1
m [1 + 2 ⋅ 2

m+1
m ⋅ 64

(m−1)(d+2)
m+1 ]θ1−mz∗;r∗ r

m+1
m
∗

≤ θ1−mz∗;r∗ (ĉr∗)
m+1
m

for a constant ĉ = ĉ(n,m) > 4. This yields the inclusion Λ(θz;r)4r (t) ⊂ Λ
(θz∗ ;r∗ )
ĉr∗ (t∗). After possibly enlarging ĉ, so

that ĉ ≥ 20, this implies Q ⊂ Q̂∗ = Q(θz∗ ;r∗ )ĉr∗ (z∗). This establishes (6.7) and completes the proof of the Vitali
covering-type lemma.
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6.3 Stopping time argument

For λ > λo and r ∈ (0, 2R], we define the super-level set of the function |Dum| by

E(r, λ) := {z ∈ Qr : z is a Lebesgue point of |Dum| and |Dum|(z) > λm}.

The Lebesgue points are to be understood with regard to the cylinders constructed in Section 6.1. Note that
Ln+1 a.e. point is a Lebesgue point with respect to these cylinders; cf. [14, Section 2.9.1] and the Vitali-type
covering Lemma 6.1. For fixed radii R ≤ R1 < R2 ≤ 2R, we consider the concentric parabolic cylinders

QR ⊆ QR1 ⊂ QR2 ⊆ Q2R .

Note that the inclusion

Q(κ)ϱ (zo) = Bϱ(xo) × (to − κ1−mϱ
m+1
m , to + κ1−mϱ

m+1
m ) ⊂ QR2

holds truewhenever zo ∈ QR1 , κ ∈ [λo ,∞) and ϱ ∈ (0, R2 − R1]. We fix zo ∈ E(R1, λ) and abbreviate θs ≡ θzo;s
for s ∈ (0, R] throughout this section. By Lebesgue’s differentiation theorem, cf. [14, Section 2.9.1] we have
that

lim
s↓0
−∫−∫

Q(θs )
s (zo)

[|Dum|2 + |F|2]dx dt ≥ |Dum|2(zo) > λ2m . (6.11)

In the following, we consider values of λ satisfying

λ > Bλo , where B := ( 4ĉR
R2 − R1

)
n+2
m+1
> 1, (6.12)

where ĉ = ĉ(n,m) denotes the constant from the Vitali-type covering Lemma 6.1. For radii s with
R2 − R1

ĉ
≤ s ≤ R (6.13)

we have, by the definition of λo, for any s as in (6.13) that

−∫−∫

Q(θs )
s (zo)

[|Dum|2 + |F|2]dx dt ≤ |Q4R|

|Q(θs)s |
−∫−∫
Q4R

[|Dum|2 + |F|2]dx dt

≤
|Q4R|
|Qs|

θm−1s λm+1o

≤ (
4R
s )

d+ (d+2)(m−1)
m+1

λ2mo

≤ (
4ĉR

R2 − R1
)
d+ (d+2)(m−1)

m+1
λ2mo

= B2mλ2mo < λ2m .

In the last chain of inequalities we used (6.6), (6.13) and d + (d+2)(m−1)m+1 =
2m(n+2)
m+1 . On the other hand, on

behalf of (6.11) we find a sufficiently small radius 0 < s < R2−R1ĉ such that the above integral with Q(θs)s (zo)
as domain of integration, possesses a value larger than λ2m. Consequently, by the absolute continuity of the
integral there exists a maximal radius 0 < ϱzo < R2−R1ĉ such that

−∫−∫

Q
(θϱzo )
ϱzo (zo)

[|Dum|2 + |F|2]dx dt = λ2m . (6.14)

The maximality of the radius ϱzo implies in particular that

−∫−∫

Q(θs )
s (zo)

[|Dum|2 + |F|2]dx dt < λ2m for any s ∈ (ϱzo , R]. (6.15)

Finally, we know from the construction that Q(θϱzo )ĉϱzo (zo) is contained in Qĉϱzo (zo), which in turn is contained
in QR2 .
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6.4 A reverse Hölder inequality

As before, we consider zo ∈ E(r1, λ)with λ as in (6.12) and abbreviate θϱzo ≡ θzo;ϱzo . As in (6.4) we construct
the radius ϱ̃zo ∈ [ϱzo , R]. Exactly at this point, we pass from the possibly sub-intrinsic cylinder Q(θϱzo )ϱzo (zo) to
the intrinsic cylinder Q(θϱzo )ϱ̃zo (zo). Observe that θs = θϱzo for any s ∈ [ϱzo , ϱ̃zo ], and, in particular, θϱ̃zo = θϱzo .
Our aim now is to prove the following reverse Hölder inequality:

−∫−∫

Q
(θϱzo )
ϱzo (zo)

|Dum|2 dx dt ≤ c[ −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|F|2 dx dt (6.16)

with q := nd < 1 and c = c(n,m, ν, L). We distinguish between the cases in which ϱ̃zo ≤ 2ϱzo or ϱ̃zo > 2ϱzo .
In the case ϱ̃zo ≤ 2ϱzo we apply Proposition 5.1 on the intrinsic cylinder Q(θϱzo )ϱ̃zo (zo) (note that Q

(θϱzo )
ϱ̃zo (zo) is

intrinsic and, thanks to (6.3), Q(θϱzo )2ϱ̃zo (zo) is sub-intrinsic) and obtain

−∫−∫

Q
(θϱzo )
ϱzo (zo)

|Dum|2 dx dt ≤ 2d −∫−∫

Q
(θϱzo )

ϱ̃zo
(zo)

|Dum|2 dx dt

≤ c[ −∫−∫

Q
(θϱzo )

2ϱ̃zo
(zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫

Q
(θϱzo )

2ϱ̃zo
(zo)

|F|2 dx dt

≤ c[ −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|F|2 dx dt,

where c = c(n,m, ν, L). In the other case ϱ̃zo > 2ϱzo , we want to apply Proposition 5.2 on the cylinder
Q(θϱzo )ϱzo (zo). However, this is only permitted if the hypothesis (5.5) is satisfied. First, we notice that (5.5)1
is an immediate consequence of (6.3), and therefore we only need to verify (5.5)2. To this end, we consider
two cases. If θϱzo = λo, we obtain (5.5)2 by the following computation:

θ2mϱzo = λ
2m
o < λ2m = −∫−∫

Q
(θϱzo )
ϱzo (zo)

[|Dum|2 + |F|2]dx dt.

Here we used (6.14) for the last identity. If θϱzo > λo, then by construction Q(θϱzo )ϱ̃zo (zo) is intrinsic. Moreover,
since 1

2 ϱ̃zo > ϱzo , we can apply (6.3) with (ϱ, s) replaced by (ϱzo , 12 ϱ̃zo ). This together with Lemma 4.2 and
(6.15) (applied with s = ϱ̃zo ∈ (ϱzo , R]) ensures that

θϱzo = [ −∫−∫

Q
(θϱzo )

ϱ̃zo
(zo)

|u|2m

ϱ̃2zo
dx dt]

1
2m

≤ [ −∫−∫

Q
(θϱzo )

ϱ̃zo
(zo)

󵄨󵄨󵄨󵄨um − (um)
(θϱzo )
zo; 12 ϱ̃zo
󵄨󵄨󵄨󵄨
2

ϱ̃2zo
dx dt]

1
2m

+

󵄨󵄨󵄨󵄨(um)
(θϱzo )
zo; 12 ϱ̃zo
󵄨󵄨󵄨󵄨
1
m

ϱ̃
1
m
zo

≤ c[ −∫−∫

Q
(θϱzo )

ϱ̃zo
(zo)

󵄨󵄨󵄨󵄨um − (um)
(θϱzo )
zo;ϱ̃zo
󵄨󵄨󵄨󵄨
2

ϱ̃2zo
dx dt]

1
2m

+ 2−
1
m [ −∫−∫

Q
(θϱzo )
1
2 ϱ̃zo
(zo)

|u|2m

(12 ϱ̃zo )2
dx dt]

1
2m

≤ c[ −∫−∫

Q
(θϱzo )
ϱ̃zo
(zo)

[|Dum|2 + |F|2]dx dt]
1
2m

+ 2−
1
m θϱzo

≤ c λ + 2−
1
m θϱzo
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for a constant c = c(n,m, L). Re-absorbing 2− 1m θϱzo into the left-hand side and using (6.14), we find that

θϱzo ≤ c λ = c[ −∫−∫

Q
(θϱzo )
ϱzo (zo)

[|Dum|2 + |F|2]dx dt]
1
2m

for a constant c = c(n,m, L) ≥ 1. This yields (5.5)2 in the second case with K = c2m ≥ 1. Therefore, we are
allowed to apply Proposition 5.2 on the cylinder Q(θϱzo )ϱzo (zo), thereby obtaining that

−∫−∫

Q
(θϱzo )
ϱzo (zo)

|Dum|2 dx dt ≤ c[ −∫−∫

Q
(θϱzo )
2ϱzo
(zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫

Q
(θϱzo )
2ϱzo
(zo)

|F|2 dx dt.

In conclusion, we have shown that in any case the claimed reverse Hölder inequality (6.16) holds true.

6.5 Estimate on super-level sets

So far we have shown that if λ satisfies (6.12), then for every zo ∈ E(R1, λ) there exists a cylinder Q
(θzo ;ϱzo )
ϱzo (zo)

with Q(θzo ;ϱzo )ĉϱzo (zo) ⊂ QR2 such that (6.14), (6.15) and (6.16) hold true on this specific cylinder. As before, we
abbreviate θϱzo ≡ θzo;ϱzo . We define the super-level set of the inhomogeneity F by

F(r, λ) := {z ∈ Qr : z is a Lebesgue point of F and |F| > λm}.

As for the super-level set E(r, λ) the Lebesgue points have to be understood with regard to the cylinders con-
structed in Section 6.1. Using (6.14) and (6.16), we obtain for η ∈ (0, 1] (to be specified later in a universal
way) that

λ2m = −∫−∫

Q
(θϱzo )
ϱzo (zo)

[|Dum|2 + |F|2]dx dt

≤ c [ −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|Dum|2q dx dt]
1
q

+ c −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|F|2 dx dt

≤ c η2mλ2m + c [ 1

|Q(θϱzo )4ϱzo (zo)|
∬

Q
(θϱzo )
4ϱzo
(zo)∩E(R2 ,ηλ)

|Dum|2q dx dt]
1
q

+
c

|Q(θϱzo )4ϱzo (zo)|
∬

Q
(θϱzo )
4ϱzo
(zo)∩F(R2 ,ηλ)

|F|2 dx dt

for a constant c = c(n,m, ν, L). In the preceding inequality we choose the η in the form η2m = 1
2c . This choice

allows the re-absorption of 1
2 λ

2m into the left-hand side. Furthermore, we use Hölder’s inequality and (6.15)
to estimate

[
1

|Q(θϱzo )4ϱzo (zo)|
∬

Q
(θϱzo )
4ϱzo
(zo)∩E(R2 ,ηλ)

|Dum|2q dx dt]
1
q −1
≤ [ −∫−∫

Q
(θϱzo )
4ϱzo
(zo)

|Dum|2 dx dt]
1−q
≤ λ2m(1−q).

We insert this above, and multiply the result, i.e. the inequality where we already fixed η and re-absorbed
1
2 λ

2m, by |Q(θϱzo )4ϱzo (zo)|. This leads to the inequality

λ2m󵄨󵄨󵄨󵄨Q
(θϱzo )
4ϱzo (zo)

󵄨󵄨󵄨󵄨 ≤ c ∬

Q
(θϱzo )
4ϱzo
(zo)∩E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt + c ∬

Q
(θϱzo )
4ϱzo
(zo)∩F(R2 ,ηλ)

|F|2 dx dt

again with c = c(n,m, ν, L). Now, (6.15) with the choice s = ĉϱzo allows us to estimate λ2m from below.
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The precise argument is as follows: Using in turn (6.15), the monotonicity of ϱ 󳨃→ θϱ and (6.5), i.e. that
θĉϱzo ≤ θϱzo ≤ ĉ

d+2
m+1 θĉϱzo , we obtain that

λ2m > −∫−∫

Q
(θ ̂cϱzo )

̂cϱzo
(zo)

|Dum|2 dx dt ≥ 1
ĉ

(m−1)(d+2)
m+1

−∫−∫

Q
(θϱzo )
̂cϱzo
(zo)

|Dum|2 dx dt.

Inserting this above and keeping in mind that ĉ depends only on n and m, we deduce

∬

Q
(θϱzo )
̂cϱzo
(zo)

|Dum|2 dx dt ≤ c ∬

Q
(θϱzo )
4ϱzo
(zo)∩E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt

+ c ∬

Q
(θϱzo )
4ϱzo
(zo)∩F(R2 ,ηλ)

|F|2 dx dt (6.17)

with c = c(n,m, ν, L).
So far, we showed that for any value λ > Bλo the super-level set E(R1, λ) can be covered by a family

F ≡ {Q(θzo ;ϱzo )4ϱzo (zo)} of parabolic cylinders with center zo ∈ E(R1, λ), which are contained in QR2 , and such
that on each cylinder estimate (6.17) holds true. At this point, we use the Vitali-type Covering Lemma 6.1
and gain a countable subfamily

{Q
(θzi ;ϱzi )
4ϱzi
(zi)}i∈ℕ ⊂ F

consisting of pairwise disjoint cylinders, such that the ĉ
4 -times enlarged cylinders Q(θzi ;ϱzi )ĉϱzi

(zi) are contained
in QR2 and cover the super-level set E(R1, λ), i.e.

E(R1, λ) ⊂
∞
⋃
i=1
Q
(θzi ;ϱzi )
ĉϱzi
(zi) ⊂ QR2 .

Since the cylinders Q(θzi ;ϱzi )4ϱzi
(zi) are pairwise disjoint, we obtain from (6.17) that

∬
E(R1 ,λ)

|Dum|2 dx dt ≤
∞
∑
i=1
∬

Q
(θzi ;ϱzi )
̂cϱzi
(zi)

|Dum|2 dx dt

≤ c
∞
∑
i=1

∬

Q
(θzi ;ϱzi )
4ϱzi
(zi)∩E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt + c
∞
∑
i=1

∬

Q
(θzi ;ϱzi )
4ϱzi
(zi)∩F(R2 ,ηλ)

|F|2 dx dt

≤ c ∬
E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt + c ∬
F(R2 ,ηλ)

|F|2 dx dt,

where the constant c depends only on n, m, ν, and L. On E(R1, ηλ) \ E(R1, λ) we have the pointwise bound
|Dum|2 ≤ λ2m and therefore

∬
E(R1 ,ηλ)\E(R1 ,λ)

|Dum|2 dx dt ≤ ∬
E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt.

We combine the last two inequalities and get the following reverse Hölder inequality on super-level sets:

∬
E(R1 ,ηλ)

|Dum|2 dx dt

≤ c ∬
E(R2 ,ηλ)

λ2m(1−q)|Dum|2q dx dt + c ∬
F(R2 ,ηλ)

|F|2 dx dt.

Here, we replace ηλ by λ and recall that η < 1 depends only on n,m, ν, and L. With this replacement we
obtain for any λ ≥ ηBλo =: λ1 that

∬
E(R1 ,λ)

|Dum|2 dx dt ≤ c ∬
E(R2 ,λ)

λ2m(1−q)|Dum|2q dx dt + c ∬
F(R2 ,λ)

|F|2 dx dt (6.18)

holds true with a constant c = c(n,m, ν, L). This is the desired estimate on super-level sets.
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6.6 Proof of the gradient estimate

For k > λ1 we define the truncation of |Dum| by

|Dum|k := min {|Dum|, km},

and for r ∈ (0, 2R] the corresponding super-level set

Ek(r, λ) := {z ∈ Qr : |Dum|k > λm}.

Note that |Dum|k ≤ |Dum| a.e., as well as Ek(r, λ) = 0 for k ≤ λ and Ek(r, λ) = E(r, λ) for k > λ. Therefore, it
follows from (6.18) that

∬
Ek(R1 ,λ)

|Dum|2−2qk |Du
m|2q dx dt ≤ c ∬

Ek(R2 ,λ)

λ2m(1−q)|Dum|2q dx dt + c ∬
F(R2 ,λ)

|F|2 dx dt

whenever k > λ ≥ λ1. Since Ek(r, λ) = 0 for k ≤ λ, the last inequality also holds in this case. Now, we multiply
the preceding inequality by λεm−1, where ε ∈ (0, 1] will be chosen later in a universal way, and integrate the
result with respect to λ over the interval (λ1,∞). This gives

∞

∫
λ1

λεm−1[ ∬
Ek(R1 ,λ)

|Dum|2−2qk |Du
m|2q dx dt]dλ

≤ c
∞

∫
λ1

λm(2−2q+ε)−1[ ∬
Ek(R2 ,λ)

|Dum|2q dx dt]dλ + c
∞

∫
λ1

λεm−1[ ∬
F(R2 ,λ)

|F|2 dx dt]dλ. (6.19)

Here we exchange the order of integration with the help of Fubini’s theorem. For the integral on the left-hand
side Fubini’s theorem implies

∞

∫
λ1

λεm−1[ ∬
Ek(R1 ,λ)

|Dum|2−2qk |Du
m|2q dx dt]dλ

= ∬
Ek(R1 ,λ1)

|Dum|2−2qk |Du
m|2q[

|Dum |
1
m
k

∫
λ1

λεm−1 dλ]dx dt

=
1
εm ∬

Ek(R1 ,λ1)

[|Dum|2−2q+εk |Dum|2q − λεm1 |Du
m|2−2qk |Du

m|2q]dx dt,

while for the first integral on the right-hand side we find that

∞

∫
λ1

λm(2−2q+ε)−1[ ∬
Ek(R2 ,λ)

|Dum|2q dx dt]dλ = ∬
Ek(R2 ,λ1)

|Dum|2q[
|Dum |

1
m
k

∫
λ1

λm(2−2q+ε)−1 dλ]dx dt

≤
1

m(2 − 2q + ε) ∬
Ek(R2 ,λ1)

|Dum|2−2q+εk |Dum|2q dx dt

≤
1

2m(1 − q) ∬
Ek(R2 ,λ1)

|Dum|2−2q+εk |Dum|2q dx dt.

Finally, for the last integral in (6.19) we obtain

∞

∫
λ1

λεm−1[ ∬
F(R2 ,λ)

|F|2 dx dt]dλ = ∬
F(R2 ,λ1)

|F|2[
|F| 1m

∫
λ1

λεm−1 dλ]dx dt

≤
1
εm ∬

F(R2 ,λ1)

|F|2+ε dx dt

≤
1
εm ∬

Q2R

|F|2+ε dx dt.
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We insert these estimates into (6.19) and multiply by εm. This leads to

∬
Ek(R1 ,λ1)

|Dum|2−2q+εk |Dum|2q dx dt ≤ λεm1 ∬
Ek(R1 ,λ1)

|Dum|2−2qk |Du
m|2q dx dt

+
c ε
1 − q ∬

Ek(R2 ,λ1)

|Dum|2−2q+εk |Dum|2q dx dt

+ c∬
Q2R

|F|2+ε dx dt.

The last inequality is now combined with the corresponding inequality on the complement QR1 \ Ek(R1, λ1),
i.e. with the inequality

∬
QR1 \Ek(R1 ,λ1)

|Dum|2−2q+εk |Dum|2q dx dt ≤ λεm1 ∬
QR1 \Ek(R1 ,λ1)

|Dum|2−2qk |Du
m|2q dx dt.

We also take into account that |Dum|k ≤ |Dum|. All together this gives the inequality

∬
QR1

|Dum|2−2q+εk |Dum|2q dx dt ≤ c∗ε
1 − q ∬

QR2

|Dum|2−2q+εk |Dum|2q dx dt

+ λεm1 ∬
Q2R

|Dum|2 dx dt + c∬
Q2R

|F|2+ε dx dt,

where c∗ = c∗(n,m, ν, L) ≥ 1. Now, we choose

0 < ε ≤ min{εo , σ − 2}, where εo :=
1 − q
2c∗
< 1.

Note that εo depends only on n,m, ν, and L. Moreover, observe that λε1 ≡ (ηBλo)ε ≤ Bλεo, since η ≤ 1, B ≥ 1
and 0 < ε ≤ 1. Therefore, from the previous inequality we conclude that for any pair of radii R1, R2 with
R ≤ R1 < R2 ≤ 2R there holds

∬
QR1

|Dum|2−2q+εk |Dum|2q dx dt ≤ 12 ∬
QR2

|Dum|2−2q+εk |Dum|2q dx dt

+ c ( R
R2−R1
)
m(n+2)
m+1

λεmo ∬
Q2R

|Dum|2 dx dt + c∬
Q2R

|F|2+ε dx dt.

We can now apply the Iteration Lemma 2.1 to the last inequality, which yields

∬
QR

|Dum|2−2q+εk |Dum|2q dx dt ≤ c λεmo ∬
Q2R

|Dum|2 dx dt + c∬
Q2R

|F|2+ε dx dt.

On the left side we apply Fatou’s lemma and pass to the limit k →∞. In the result, we go over to means on
both sides. This gives

−∫−∫
QR

|Dum|2+ε dx dt ≤ c λεmo −∫−∫
Q2R

|Dum|2 dx dt + c −∫−∫
Q2R

|F|2+ε dx dt.

At this point, we estimate λo with the help of the energy estimate from Lemma 3.1 applied with θ = 1 and
a = 0 and Hölder’s inequality. This leads to the bound

λo ≤ c[1 + −∫−∫
Q8R

[
|u|2m

R2
+ |F|2]dx dt]

1
m+1

,

where c = c(m, ν, L). Inserting this above, we deduce

−∫−∫
QR

|Dum|2+ε dx dt ≤ c[1 + −∫−∫
Q8R

[
|u|2m

R2
+ |F|2]dx dt]

εm
m+1

−∫−∫
Q2R

|Dum|2 dx dt + c −∫−∫
Q2R

|F|2+ε dx dt,

where c = c(n,m, ν, L). The claimed estimate (1.8) involving the cylinders QR and Q2R now follows by a cov-
ering argument. This completes the proof of Theorem 1.2.
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6.7 Proof of Corollary 1.3

It remains to deduce a corresponding estimate on a standard parabolic cylinder

C2R(zo) := B2R(xo) × (to − (2R)2, to + (2R)2) ⋐ ΩT .

To this end, we rescale the solution u, the vector-field A, and the right-hand side F via

{{{
{{{
{

v(x, t) := u(xo + Rx, to + R2t),
B(x, t, u, ξ) := RA(xo + Rx, to + R2t, u, 1

R ξ),
G(x, t) := R F(xo + Rx, to + R2t)

whenever (x, t) ∈ C2 and (u, ξ) ∈ ℝN × ℝNn. Then v is a weak solution of the differential equation

∂tv − divB(x, t, v, Dvm) = div G in Q2 ⊂ C2,

in the sense of Definition 1.1. Moreover, assumptions (1.2) are satisfied for the rescaled vector-fieldB in place
of A. Therefore, estimate (1.8) is applicable to v on the cylinder Q2, which yields

−∫−∫
Q1

|Dvm|2+ε dx dt ≤ c[1 + −∫−∫
Q2

[|v|2m + |G|2]dx dt]
εm
m+1

−∫−∫
Q2

|Dvm|2 dx dt + c −∫−∫
Q2

|G|2+ε dx dt

for every ε ∈ (0, εo], with a constant c = c(n,m, ν, L). Scaling back and recalling that Q2 ⊂ C2, we arrive at
the estimate

R2+ε −∫−∫
CR(zo)

|Dum|2+ε dx dt ≤ c R2[1 + −∫−∫
C2R(zo)

[|u|2m + R2|F|2]dx dt]
εm
m+1

−∫−∫
C2R(zo)

|Dum|2 dx dt

+ c R2+ε −∫−∫
C2R(zo)

|F|2+ε dx dt.

Dividing both sides by R2+ε yields the assertion of Corollary 1.3.
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