
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Addad, Rami; Bagaa, Miloud; Taleb, Tarik; Cadette Dutra, Diego Leonel; Flinck, Hannu
Optimization model for Cross-Domain Network Slices in 5G Networks

Published in:
IEEE Transactions on Mobile Computing

DOI:
10.1109/TMC.2019.2905599

Published: 01/05/2020

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Addad, R., Bagaa, M., Taleb, T., Cadette Dutra, D. L., & Flinck, H. (2020). Optimization model for Cross-Domain
Network Slices in 5G Networks. IEEE Transactions on Mobile Computing, 19(5), 1156-1169. Article 8668438.
https://doi.org/10.1109/TMC.2019.2905599

https://doi.org/10.1109/TMC.2019.2905599
https://doi.org/10.1109/TMC.2019.2905599

1

Optimization model for Cross-Domain Network
Slices in 5G Networks

Rami Akrem Addad1, Miloud Bagaa1, Tarik Taleb1,2,5, Diego Leonel Cadette Dutra3

and Hannu Flinck4
1 Aalto University, Espoo, Finland, 2 Oulu University, Finland
3 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

4 Nokia Bell Labs, Espoo, Finland, 5 Sejong University, Seoul, Korea

Abstract—Network Slicing (NS) is a key enabler of the upcom-
ing 5G system and beyond, leveraging on both Network Function
Virtualization (NFV) and Software Defined Networking (SDN),
NS will enable a flexible deployment of Network Functions
(NFs) belonging to multiple Service Function Chains (SFC) over
various administrative and technological domains. Our novel
architecture addresses the complexities and heterogeneities of
verticals targeted by 5G systems, whereby each slice consists
of a set of SFCs, and each SFCs handling specified traffic
within the slice. In this paper, we propose and evaluate a
MILP optimization model to solve the complexities that arise
from this new environment, our proposed model enables a
cost-optimal deployment of network slices allowing a mobile
network operator to efficiently allocate the underlying layer
resources according to its users’ requirements. We also design
a greedy-based heuristic to investigate the possible trade-offs
between execution runtime and network slice deployment. For
each network slice, the proposed solution guarantees the required
delay and the bandwidth, while efficiently handling the use of
both the VNF nodes and the physical nodes, reducing the service
provider Operating Expenditure (OPEX).

Index Terms—5G, Next Generation system (NextGen), Net-
work slicing, Service Function Chaining, Network Functions,
Network Softwarization, Optimization.

I. INTRODUCTION

5G systems unlike the previous generation of mobile net-
works are expected to rely on both the advancement of phys-
ical infrastructures represented by the introduction of Mil-
limeter waves, massive MIMO, full duplex, beamforming, and
small cells; as well as the emergence of SDN and NFV [2].
By introducing the logical infrastructure abstraction, the 5G
mobile networks will revamp modern network infrastructures
using SDN and NFV as key enabler technologies towards
softwarized networks. Network Softwarization is the core
concept supporting the 5G’s use cases, i.e., enhanced Mobile
Broadband (eMBB), Ultra-Reliable and Low Latency Com-
munications (uRLLC), and massive Machine Type Commu-
nication (mMTC) [3], reducing both the Capital Expenditures
(CAPEX) and the OPEX of the service provider, while keep-
ing the deployment schema simple. Network Softwarization
can enable high-performance improvements by offering the
flexibility and modularity that are required to create multiple
overlying networks. These softwarized networks’ mechanisms
give place to a new concept dubbed Network Slicing [4], [5].

An abridged version of this paper has been published in the proceedings
of the 2018 edition of the IEEE GLOBECOM [1].

Meanwhile, the Third Generation Partnership Project
(3GPP) in its Releases 15 and 16 introduced a service-oriented
5G core network (5GCN) that entirely relies on NFs [6],
[7], which increases the need for autonomous mechanisms
to deploy and manage NS through operating of multiple
Service Function Chains (SFC) that will dynamically steer the
network traffic and flows across multiple logical and physical
infrastructures [8]. For instance, a given user has a network
slice that consists of two SFCs:

• The first one is used to handle the control plane part
by steering the traffic through the Access and Mobility
Management Function (AMF) and the Session Manage-
ment Function (SMF) which are equivalent to the MME,
P-Gateway Control plane (P-GWCP), and S-Gateway
Control plane (S-GWCP) in the 4G system after the
control and user plane separation of EPC nodes (CUPS).

• The second SFC will ensure the reliability of the data
plane by steering the data flows from the AMF to the
Data Network (DN) passing by the User plane Function
(UPF) which represents the p-gateway User plane (P-
GWUP) and the s-gateway User plane (S-GWUP) in the
CUPS architecture [9], [10].

As the standards development organizations (SDOs), i.e.,
the Next Generation Mobile Network Alliance (NGMN),
3GPP, and International Telecommunication Union –
Telecommunication Standardization Sector – (ITU-T), are
instantiating network slices that contain one or more SFCs,
each SFC composed by a set of NFs running inside either
a logical node or a physical node. To enable this emerging
approach, many NFs may require being traversed in a certain
strict order, leveraging on the flexibility of NFV, Mobile
Network Operators (MNOs) can deploy any particular slice
type honoring its real-time requirements. However, this
flexible management can lead to a huge number of active
nodes in the network infrastructure that are scarcely used
which leads to an inefficient network slicing deployment.
Based on these observations, the contributions of this paper
are:

• The introduction of a new architecture in compliance
with the ETSI-NFV model and the 3GPP specifications
to create a fine-grained NS;

• The formulation of a Mixed Integer Linear Programming
(MILP) to achieve an efficient cross-domain network

2

slicing deployment without having to carry about the
underlying topologies (both the VNF layer and the
physical layer) while satisfying all the constraints and
the specifications requested by the end-user or a given
vertical’s application;

• The design and evaluation of a heuristic algorithm to
overcome the exponential runtime and allow a quick
decision-making capability.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the fundamental background topics and
related research works. Section III describes the proposed
architecture and our network model. Section IV illustrates the
problem formulation and describes our proposed framework
solution. Section V introduces the proposed heuristic for the
reduction of the exponential runtime. Section VI presents
the performance evaluation and our results analysis. Finally,
Section VII concludes the paper.

II. RELATED WORK

Moens and Turck [11] presented and solved a VNF place-
ment problem, their proposed algorithm was 16 times faster
than previous solutions for a small service provider. Their
solution uses a hybrid scenario where part of the services
may be provided by dedicated physical hardware and the
remaining part is provided using virtualized service instances.
By introducing the concept of a hybrid solution, the authors
consider the difference between service requests and VM
requests, as services must be managed by the service provider
and may be deployed either on dedicated hardware or on
shared service instances while requested VMs are taken by
the users who requested the service chain. However, by the
introduction of service function chaining, we will be consid-
ering the VNF placement problem more related to the end-to-
end communication rather than an embedding problem. Added
to the fact that if we consider the network slicing concept,
the sharing of a virtual instance will be more restricted to
allow the desired QoE and QoS. The authors of [12] tackle
a trending subject of the VNFs placement problem inside
a modern optical data center. To minimize the expensive
optical/electrical/optical (O/E/O) conversions between the op-
tical steering domain and the packet domain within the same
domain, the authors tried to find an optimal vNF placement for
vNF chaining in packet/optical DCs under the constraints of
the number of conversions to be minimized. They formulated
a binary integer programming (BIP) problem and proposed
an alternative efficient heuristic algorithm to solve it. As
explained before, this problem is more related to optical data
centers rather than common network infrastructures.

Ko et al. [13] present an optimal placement of network
functions in an SFC context, the problem was solved by
considering the latency required to place the service function
in a given SFC. In this work, the authors create an abstraction
of all the underlying network equipment by evoking only the
notion of service node (SN), such an abstraction allow high-
level modeling of the system. They formulated the model as
an Integer Non-Linear Programming (INLP) problem based on

the latency requirements, however, under certain conditions,
the delay constraints are not enough to fulfill all the needs for
having a reliable SFC orchestration system; more constraints
need to be considered to strength their proposal. Song et
al. [14] treat the problem of obtaining an optimal placement of
network functions in the operators’ networks. They formulated
an Integer Linear Programming (ILP) problem to demonstrate
the trade-off between the network cost and the computing
resources cost. The network cost is mainly the bandwidth of
the links between the network functions and the resources
cost are the CPUs consumed by these network functions.
They proved the NP-hardness of the formulated problem and
provided a solution based on Hidden Markov Model (HMM).
Their solution shows a reduction in the resources consumption
as well as in the communication resources cost. Considering
the network cost based only on the bandwidth could guarantee
the satisfaction of all the desired flows. However, considering
the service requests of 5G’s critical use cases as URLLC, it
is mandatory to also consider latency.

Jiao et al. [15] tried to maximize the traffic throughput
under the constraint of the end-to-end latency in a given
service function chain to obtain an optimal placement. After
formulating the problem as an Integer Linear Programming
(ILP), the authors use dynamic programming to solve the re-
sulted NP-hard problem. However, the authors do not consider
either the presence of the network slicing paradigm nor the
satisfaction of the bandwidth requirements. In addition, the
authors consider a static allocation of SFC requests rather
than an elastic one which could be quite common in a
softwarization world. In [16], the authors evoke the problem of
coordinated NFV Resource Allocation (NFV-RA), they give
a whole overview of all the past related work. The authors
present an optimal solution to this issue using CPLEX and
leveraging on Homogeneous Link Mapping (HLM) modeling.
The authors try to minimize an overall cost which is consti-
tuted of the link cost (bandwidth, latency), the CAPEX cost
and the OPEX cost, then they transform the formulation in
order to present it to the optimizer (CPLEX in this case) by
using the developed HLM. By trying to solve the problem
of NFV-RA, the authors solve some issues related to the
SFC domain, however, they do not consider the inclusion of
the network slicing paradigm, which will play an important
role in the future of networking and which will bring more
restrictions concerning resource allocation.

Dietrich et al. [17] presented a holistic solution to the
multi-provider network service embedding (NSE) problem to
allow SFC mapping across multiple domains. They explained
that the traffic scaling and NF location dependencies are
the main challenging aspects of the problem. By leveraging
linear programming formulations they derived near-optimal
solutions for the NSE problem. The proposed approach is a
centralized method that exposes only the important substrate
network information of each domain to a third party. However,
the authors did not consider the end to end communication
delay as well as the notion of network slicing which creates a
more sophisticated SFC deployment across multiple domains
and in the same time introduce more challenging issues related
to the resource sharing and communication requirements.

3

The authors of [18], proposed a Network Function Consol-
idation (NFC) modeling, then followed by an Integer Linear
Programming (ILP) formulation, that they solved using a
greedy-based heuristic solution. They consider a typical three-
layer architecture in which they introduce the notion of
application layer as well as the VNF layer and the underlying
network layer. In a more understandable view, the authors tried
to minimize the number of VNFs deployed in the network by
allowing several network functions to be hosted in a limited
number of VNFs. The proposed approach shows efficient
results, however, with the entrance of the network slicing
paradigm, such an approach should be reconsidered because of
the sharing limit that has for objective to satisfy the end-users.
In addition, the authors assume that all the components of the
underlying infrastructure are similar, which will reduce the
users’ preferences in terms of authorized underlying instances.

Bari et al. [19] emphasize on the importance of using NFV
paradigm to efficiently reduce the cost and maximize the
profit for the service owner, and they showed the necessity
of SFC orchestration to handle the traffic steering through
different VNFs. The authors formulated an Integer Linear Pro-
gramming (ILP), they solved it using CPLEX optimizer and
extended it to nested bin packing SFC orchestration problems
to address the exponential time obtained while maintaining
a near-optimal performance. However, the authors consider
the requests’ routing issue while our work focuses more on
the constraints related to the network resources limitations
(latency, bandwidth), in addition to the absence of network
slicing notion which may introduce more difficulties during
the modeling phase, as well as problem-solving.

With respect to the cited works, in this study, we introduce
a cost-optimal deployment of network slices by considering
the embedding constraints, end-to-end communication delays
and bandwidth limitations in network slicing environments.
Seeing that new use-cases rely entirely on NS, SFC, and
NFs to enable a highly mobile environment, this work is a
must for achieving a fast network slices deployment for the
upcoming 5G mobile systems and beyond, while conserving
latency, bandwidth and resources access requirements.

III. PROPOSED ARCHITECTURE & NETWORK MODEL

Fig.1 depicts the main overview architecture suggested in
this paper, we have divided the architecture into three layers,
as it integrates the ETSI-NFV model and the 3GPP entities
to enable the monitoring, selection and creation process of
the virtual instances. The physical layer consists of a set of
servers and routers; in this layer, the servers are grouped into
a set of data centers that communicate between themselves
through the physical network. A set of routers would be used
as connectors for connecting different data centers. In the NFV
model, this layer refers to the NFV infrastructure (NFVI)
and would be controlled by the Virtualized Infrastructure
Manager (VIM) presented in the same figure. The VNF layer
consists of a set of virtual network functions (VNFs) created
on top of the servers, each VNF being dedicated to one or
many functionalities during the forwarding of different data

traffics. The VNF layer is managed by the VNF Manager
(VNFM) that ensures the life-cycle management of all VNF
instances spreading over multiple administrative domains. The
slice layer, which runs on top of the VNF layer, consists of
a set of slices that are dedicated to different services, e.g.,
health-care and connected cars. The traffic in each slice is
routed thanks to service function chaining (SFC), where each
traffic in the slice would be forwarded using a predefined
order. Each slice is formed by ingress, egress nodes, as well
as a set of intermediate nodes. At the reception of different
packets at the ingress node, which is also called classifier, the
SFC of those packets would be identified, and then the traffic
would be forwarded according to that specified SFC. It is
noticed that the AMF is considered the classifier in the 3GPP
standardization as it is the shared entity between the control
plane and the data plane. For instance, in the case of connected
car management that belong to the URLLC categories, a
slice can be comprised of more than one SFC inside a given
network infrastructure. While the first SFC could be dedicated
to the monitoring and control plane information, the second
SFC could be used for applying different management actions
i.e the data plane. In the following work only the core network
(CN) part is considered, while the Radio part was not studied,
however, the proposed solution can be also used to deploy
RAN slices or RAN/CN slices if the RAN part is an NF on
top of the cloud/data-center.

Let G(V,E,W,C) be a weighted graph that represents the
physical layer. Each node represents a server in a data center.
V = H ∪ U , where U presents the set of nodes deployed in
each data center and H are the set of connector nodes that
connect different data centers. A node in U can be either a
server or a router that forwards the traffic. Meanwhile, the
nodes in H form a wide area network (WAN) that intercon-
nects different data centers. Each vertex v ∈ V consists of
an ordered list, whereby each element in that list describes
the number of resources on that node, such as CPU, Memory,
and Disk. For instance, a vertex v can be presented as follows
(CPU,RAM,Disk, I/O). From another side, E represents
all the physical links relaying between the nodes V . Formally
(u, v) ∈ E if there is a direct link between vertices u and
v. We also define E(u, v) that shows the relations between
two vertices u, v ∈ V . E(u, v) = 1 if there is a physical
link between u and v, otherwise E(u, v) = 0. W represents
the weight of every link in the physical network G in the
form of another ordered list that consists of the bandwidth
and the latency (Bw,L). Due to the limited capacity and the
high concurrency in WAN connections (the aggregation of
all data-centers’ links), usually, the links’ capacities between
H are too low compared to the ones between U [20], [21].
Let WB(u, v) and WL(u, v) denote the available bandwidth
and end-to-end latency between nodes u and v. Formally,
WB(u, v) ≤ E(u, v)×M and WL(u, v) ≥ (1−E(u, v))×M,
such as M is a big number (M ≈ +∞). We denote by C
the characteristics of different vertices including the level of
security and the IaaS that the physical node belongs to; this
information could be used during the placement phase of the
virtual instances, i.e., when a user or a vertical’s application
asks for only public IaaSs, only the nodes from the public

4

Fig. 1: Global Architecture of the proposed solution

IaaSs could be selected. For each node v ∈ U , we denote by
v(CS) and v(CI) the security level and the IaaS that the node
v is part of. The proposed solution can easily consider more
complicated characteristics by updating C.

We denote by R(X ,N ,P,Q) the graph that represents the
VNFs (instances of virtualization) running on top of physical
nodes represented by G(V,E,W,C). X represents the set of
already existing VNFs or the ones that should be created in
the network. A VNF x ∈ X is also presented by an ordered
list, where each element shows the resources used by that
VNF. For instance, a vertex x ∈ X can be also presented
as follows (CPU,RAM,Disk, I/O), where each element in
the list shows the number of resources used by that VNF.
While N presents the logical communication links between
different VNFs, P represents the characteristics of different
links. In fact, p ∈ P is also an ordered list, where each
element represents the amount of resource can be offered
by that link. For the sake of simplicity, we also assume that
p ∈ P consists of two elements, which are the bandwidth
and latency (Bw,L). We denote by PB(u, v) and PL(u, v)
the bandwidth and end-to-end latency guaranteed between
VNFs u and v, respectively. Similarly to C, Q represents
all sort of characteristics related to the VNF layer such
as the security level, placement admission or even different
complicated options not considered in this paper.

In the proposed architecture, it is assumed that a global
service has multiple users that can be grouped over a set of
slices where each slice is an instance of the service chain
with its own owner. Moreover, the grouping method may be
application specific, i.e., for autonomous driving assistance,
it may be locality based. Under these considerations, it is
defined that a slice (an instance of service chain) is created
on the behalf of a group of users. The 5G verticals monitor
(5G-VM) will be in charge of gathering information about
the services running at different users and devices, such
as the amount of bandwidth and end-to-end delay. 5G-VM

periodically monitors and detects the changes occurring at
the network, including users’ and devices’ demands and/or
their mobility, which can affect the service level agreement
(SLA), then it will trigger the Slice Orchestrator (SO) for
creating and/or rescheduling the different slices, as well as
transfer the different monitoring information to the SO as a
Slice Instance Descriptor (SID). By leveraging the 5G-VM,
end users and/or verticals’ applications submit as a SID all the
set of necessary specifications for the creation of a slice s ∈ S
to the SO. By using the Network Slice Selection Function
(NSSF) [22], which is a 3GPP functional component respon-
sible for selecting the appropriate Network Slice instance
based on the information transferred by the SID; and both the
VNF Orchestrator (VNFO) and Operation/Business Support
Systems (OSS/BSS) from the ETSI-NFV model, the SO will
create a dynamic network slice based on chained NFs running
on top of VNFs. On one side, the specifications obtained
from the SID contain information on the service function
chain fi ∈ Fs, with s ∈ S , needed for the establishment
of a network slice, the ingress node (AMF if following the
3GPP standardization) and the egress node. While the ingress
node classifies the incoming packets based on the pre-defined
network policy traffic for the available set of SFCs Fs in the
slice s ∈ S , the egress node forwards the processed packets
to the outside of the SFC domain (an output node).

On another side, the SFCs are composed of a set of NFs
connected through virtual links. Each NF requires a certain
CPU , RAM and a set of authorized nodes yj for the
deployment of a given NF. It is noticed that end-users and/or
verticals’ applications can impose certain affinity constraints
in order to deploy their NFs, for instance, users can ask
for only the public IaaS which means that only the data
centers responsible for hosting the public IaaS will be taken
into consideration. Depending on service characteristics, SFCs
have different bandwidth and latency requirements. In addition
to the bandwidth and the latency between each two NFs, the

5

SFCs have the global bandwidth and latency requirements
denoted by lf and wf that must be satisfied.

After specifying the total requirements for the slice creation,
the 5G-VM transfers the requests to the SO in a SID format,
then the SO will take as an additional input, the number of
available resources in the physical layer (transmitted from
the NFVI through the NFVO). The SO will verify for each
request from the 5G-VM (a request can be for either one
or many users), the requirements for the creation and finally
leverage the NSSF function to select the right Network Slice,
i.e., a creation model driven from the compliance of our
proposed architecture with the 3GPP entities and the ETSI-
NFV model [23]. For instance, let’s assume that the Policy
Control Function (PCF) which is responsible for the billing
system in the 5G core network is used, it requires 5 Gb of
vRAM, 3 vCPU and a set of authorized IaaS y{2, 5, 7}, the
SO will use the available resources from the physical layer to
place the NF in the right place in concordance with the other
NFs that belong to the same SFC in order to satisfy also the
requirements of the connectivity (bandwidth and latency) and
finally create the desired slice.

IV. COST AWARE NETWORK SLICE MANAGEMENT FOR
ENABLING 5G VERTICALS

Based on the observation that one or more NFs should run
on top of a VNF, it is obvious that the number of VNFs does
not exceed the number of NFs in the network. As mentioned
before, each slice s ∈ S has a set of SFCs Fs. Each SFC
fi ∈ Fs consists of a set of NFs that are connected one with
each other, whereby each NF has one predecessor and one
successor except the first and the last NFs. While the first NF
has only one successor, which is the second NF in the SFC,
the last one has only one predecessor. We denote by Ψs

i the
set of NFs in the SFC fi. We also denote by Ψs

i,j the jth NF
in SFC fi ∈ Fs at the slice s ∈ S . Let we denote by Γ the
number of NFs in the network. Formally, Γ can be defined as
follows:

Γ =
∑

∀s∈S,∀i∈Fs,∀j∈Ψs
i

1 (1)

Based on what has been discussed, we can assume that
we have Γ boolean decision variables that show if the VNFs
should be deployed or not. We define the following variables:

∀i ∈ {1...Γ} : ρi =

{
1 if the VNF i should be created
0 Otherwise

We also define the following variables:
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i ,∀k ∈ {1...Γ} :

Ys,i,j,k =

{
1 if the NF j is running on top of VNF k
0 Otherwise

In the Objective Function 2, we aim to minimize the number
of VNFs hosting the NFs that constitute different network
slices.

min
∑

v∈{1...Γ}

ρv (2)

Meanwhile, the constraints will be divided into five parts:
the placement constraints, the resources constraints, the links
arrangements constraints, the latency aware constraints, and
the bandwidth aware constraints. Each part consists of the
Slice-VNF layer mapping and the VNF-Physical layer map-
ping.

A. Placement Constraints
In this subsection constraints related to the three layer

placement will be introduced. We start by the Slice-VNF layer
mapping in constraint 3 and 4, then we continue with the
VNF-Physical layer mapping in constraint 5 and 6. Finally,
we deduce a three layer mapping starting from constraint 7
to constraint 11.

Constraint 3 ensures that each NF should run on top of only
one VNF;
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i :∑
k∈{1...Γ}

Ys,i,j,k = 1 (3)

Constraint 4 shows that if a given NF is running on top of
a VNF, this VNF must be created;
∀v ∈ {1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i :

ρv ≥ Ys,i,j,v (4)

We also define the following variables in order to introduce
the VNF-physical mapping:
∀u ∈ {1...Γ},∀v ∈ V :

Xu,v =

 1 if the VNF u is running on top of the bare
metal server v.

0 Otherwise

The following constraint ensures that each VNF runs on
top of one bare metal server at most. If it is not running on
top of any server, this means that the VNF is not instantiated.
∀u ∈ {1...Γ} : ∑

∀v∈V

Xu,v ≤ ρu (5)

We denote by yj the list of authorized nodes of the NF j. It
is noticed that the yj is mainly used to enable a fine-grained
placement for the proposed solution. The constraint 6 ensures
that if a VNF is not instantiated, then it should not hold a NF.
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i ,∀k ∈ {1...Γ} :

Ys,i,j,k ≤
∑
v∈yj

Xk,v (6)

Constraint 7 ensures that the VNF is instantiated in autho-
rized bare metal servers.
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i , k ∈ {1...Γ} :∑
v∈yj

Ys,i,j,k ×Xk,v = 1 (7)

6

However equation (7) is not linear. In order to make the
optimization linear, we add the following constraints and
variables:

Firstly, we add the following boolean decision variables:
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i ,∀k ∈ {1...Γ},∀v ∈ yj :
Y∗s,i,j,k,v

The constraint 8 guarantees that each NF is mapped to only
one VNF which will be in its turn mapped to only one bare
metal node.
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i , k ∈ {1...Γ} :∑
v∈yj

Y∗s,i,j,k,v = 1 (8)

Then, we add the constraints 9, 10 and 11 to consolidate
our transformation. Formally, Y∗s,i,j,k,v = Ys,i,j,k if Xk,v = 1,
otherwise Y∗s,i,j,k,v = 0:
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i ,∀k ∈ {1...Γ},∀v ∈ yj :

Y∗s,i,j,k,v ≤ Ys,i,j,k (9)

Y∗s,i,j,k,v ≤ Xk,v (10)

Y∗s,i,j,k,v ≥ Xk,v + Ys,i,j,k − 1 (11)

B. Resources Constraints

We denote by < the set of resource type, such as CPU,
RAM, Storage and so on. From the Slice Descriptor presented
in Fig. 1, we can get the required resources for each NF.
∀s ∈ S,∀i ∈ Fs,∀j ∈ Ψs

i ,∀r ∈ < :
Rs,i,j(r) denotes the required resource r of NF j.
We denote by πrv which is a real variable, the number of

resources r ∈ < used by VNF v ∈ {1...Γ}.
Constraint 12 ensures that the amount of resources in

the Slice-VNF mapping layer is respected. Each NF request
should not exceed the available resources in any given VNF
deployed to serve network slices. v ∈ {1...Γ},∀r ∈ < :∑

s∈S,i∈Fs,j∈Ψs
i

Rs,i,j(r)× Ys,i,j,v ≤ πrv (12)

We denote by Πr
u the amount of resources r ∈ < of a node

u ∈ V .
The constraint 13 guarantees that the VNF-physical layer

mapping is respected. Any VNF should be instantiated in a
physical node that has enough resources.
∀u ∈ V,∀r ∈ < : ∑

v∈{1...Γ}

πrv ×Xv,u ≤ Πr
u (13)

However, the constraint (13) is not linear. In order to
translate the optimization to linear programming, we update
the constraint (13) as follows:

We define the following variable π∗rv,u for u ∈ V , v ∈
{1...Γ} and r ∈ <. Formally, π∗rv,u = πrv if Xu,v = 1,
otherwise π∗rv,u = 0. In order to ensure that the optimization

problem is linear, we add the constraints 14, 15, 16 and 17,
with M representing a big number (M≈∞).:
∀u ∈ V,∀r ∈ < : ∑

v∈{1...Γ}

π∗rv,u ≤ Πr
u (14)

∀u ∈ V, v ∈ {1...Γ},∀r ∈ < :

π∗rv,u ≤ πrv +M× (1−Xv,u) (15)

πrv ≤ π∗rv,u +M× (1−Xv,u) (16)

π∗rv,u ≤M×Xv,u, (17)

C. Links Arrangement Constraints

The subsection IV-C introduces all the variables and
constraints in relation to the links arrangement of different
levels of nodes.

From constraint 18 to 21, we define the variables that have
a relationship with the Slice-VNF layer. In the following, we
assume that a VNF can hosts multiple NFs.
∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i − Ψs
i,1},∀a ∈ {1...Γ},∀b ∈

{1...Γ} :

Zj−1,j
s,i,a,b =

 1 if the traffic between j and j-1
pass through the link (a,b)

0 Otherwise

We have the constraint 18 that ensures the presence of a
link between each two consecutive NFs.
∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −Ψs
i,1} :∑

a∈{1...Γ}

∑
b∈{1...Γ}

Zj−1,j
s,i,a,b = 1 (18)

We have also the following inequalities in 19, 20 and 21
which guarantee that if there is a link between NFj−1 and
NFj , the VNF a and b are hosting respectively NFj−1 and
NFj and deployed in the network:
∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i − Ψs
i,1},∀a ∈ {1...Γ},∀b ∈

{1...Γ} :

Zj−1,j
s,i,a,b ≤ Ys,i,j−1,a (19)

Zj−1,j
s,i,a,b ≤ Ys,i,j,b (20)

Zj−1,j
s,i,a,b ≥ Ys,i,j−1,a + Ys,i,j,b − 1 (21)

∀u, v ∈ {1...Γ},∀(a, b) ∈ E :

ξa,bu,v =

1 if the communication between u
and v uses the link (a,b).

0 Otherwise

Constraints 22, 23 and 24 need to be introduced to guaran-
tee the VNF-physical layer mapping. They ensure that if there

7

is a link between VNFa and VNFb, the physical nodes u and
v are hosting respectively VNFa and VNFb and deployed in
the network:
∀u, v ∈ {1...Γ},∀(a, b) ∈ E :

ξa,bu,v ≤ Xu,a (22)

ξa,bu,v ≤ Xv,b (23)

ξa,bu,v ≥ Xu,a + Xv,b − 1 (24)

D. Latency Aware Constraints

The constraints in IV-D guarantee that the links have the
requested end-to-end latency for ensuring a good system
functionality.

Starting from constraint 25 to 30, the latency of the Slice-
VNF layer mapping is ensured. We define the following
variables:
φLj−1,j a real variable that shows the maximum delay

between the NFj−1 and NFj in SFC i at the slice s.
The constraint 25 ensures that the desired end-to-end la-

tency is maintained in the slice layer.
∀s ∈ S,∀i ∈ Fs : ∑

j∈{Ψs
i−Ψs

i,1}

φLj−1,j ≤ lfi (25)

We also define the following variables:
∀u ∈ {1...Γ},∀v ∈ {1...Γ} :
ΦLu,v a real variable that shows the maximum delay between

the VNF u and v.
The constraint 26 ensures that if the communication be-

tween NFj−1 and NFj uses the link u, v, then the delay
between VNFu and VNFv must be smaller than the delay
between NFj−1 and NFj .
∀u ∈ {1...Γ},∀v ∈ {1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −
Ψs
i,1} :

ΦLu,v ≤ φLj−1,j ×Z
j−1,j
s,i,u,v (26)

However, inequality (26) is not linear. In order to make
the optimization problem linear, we introduce the following
variables and constraints.

Firstly, we define the following real variables:
∀u ∈ {1...Γ},∀v ∈ {1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −
Ψs
i,1} : φL,u,vs,i,j

With M as a big number (M ≈∞) and φL,u,vs,i,j = φLj−1,j

if Zj−1,j
s,i,u,v = 1, otherwise φL,u,vs,i,j = 0, we add the following

constraints:
∀u ∈ {1...Γ},∀v ∈ {1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −
Ψs
i,1} :

φL,u,vs,i,j ≤ φ
L
j−1,j + (1−Zj−1,j

s,i,u,v)×M (27)

φLj−1,j ≤ φ
L,u,v
s,i,j + (1−Zj−1,j

s,i,u,v)×M, (28)

φL,u,vs,i,j ≥ (1−Zj−1,j
s,i,u,v)×M, (29)

ΦLu,v ≤ φ
L,u,v
s,i,j (30)

From the constraint number 31 to constraint number 36, we
ensure that the delay of the VNF-physical layer mapping is
taken into consideration.

Firstly, we define the following real variable:
∀(a, b) ∈ E : ΥL

a,b a real variable that represents maximum
latency between the physical node a and b.

Constraint 31 ensures that if the VNFu and the VNFv pass
through the physical link between the underlying node a and
b, the available latency between the physical nodes must be
respected.
∀u, v ∈ {1...Γ},∀(a, b) ∈ E :

ΥL
a,b ≤ ΦLu,v × ξa,bu,v (31)

However, equation (31) is not linear. In order to make the
optimization problem linear, we define the following variables
and constraints:

Firstly, we add the following real variables:
∀u ∈ {1...Γ},∀v ∈ {1...Γ},∀(a, b) ∈ E} : ΩLu,v,a,b.
With M as a big number (M ≈ ∞) and ΩLu,v,a,b = ΦLu,v

if ξa,bu,v = 1, otherwise ΩLu,v,a,b = 0, we add the following
constraints:

ΩLu,v,a,b ≤ ΦLu,v + (1− ξa,bu,v)×M (32)

ΦLu,v ≤ ΩLu,v,a,b + (1− ξa,bu,v)×M (33)

ΩLu,v,a,b ≥ (1− ξa,bu,v)×M (34)

ΥL
a,b ≤ ΩLu,v,a,b (35)

The constraint 36 ensures that always the requested latency
is bigger than the available one between the physical nodes.

ΥL
a,b ≥ WL(a, b) (36)

E. Bandwidth Aware Constraints
The following constraints guarantee that each link has

enough bandwidth for ensuring a good system functionality.
Starting from constraint 37 to 42, the latency of the Slice-

VNF layer mapping is ensured. We define the following
variables:
δBj−1,j a real variable that shows the minimum bandwidth

between the NFj−1 and NFj in SFC i at the slice s.
Constraint 37 ensures that the required bandwidth is re-

spected between each two successive NFs.
∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −Ψs
i,1} :

δBj−1,j ≥ wfi (37)

The constraint 38 ensures that the bandwidth between
VNFu and VNFv equals the sum of all the bandwidth used
by different NFs.

8

∆B
u,v a real variable that shows the minimum bandwidth

between the VNF u and v.
∀u, v ∈ {1...Γ} :

∆B
u,v ≥

∑
s∈S,i∈Fs,j∈{Ψs

i−Ψs
i,1}

δBj−1,j ×Z
j−1,j
s,i,u,v (38)

However, inequality (38) is not linear. In order to make
the optimization problem linear, we introduce the following
variables and constraints.

Firstly, we add the following real variables: ∀u, v ∈
{1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −Ψs
i,1} : δB,u,vs,i,j

With M as a big number (M ≈ ∞) and δB,u,vs,i,j = δBj−1,j

if Zj−1,j
s,i,u,v = 1, otherwise δB,u,vs,i,j = 0, we add the following

constraints:
∀u, v ∈ {1...Γ},∀s ∈ S,∀i ∈ Fs,∀j ∈ {Ψs

i −Ψs
i,1} :

δB,u,vs,i,j ≤ δ
B
j−1,j + (1−Zj−1,j

s,i,u,v)×M (39)

δBj−1,j ≤ δ
B,u,v
s,i,j + (1−Zj−1,j

s,i,u,v)×M (40)

δB,u,vs,i,j ≤ Z
j−1,j
s,i,u,v ×M (41)

∀u ∈ {1...Γ},∀v ∈ {1...Γ}} :

∆B
u,v ≥

∑
s∈S,i∈Fs,j∈{Ψs

i−Ψs
i,1}

δB,u,vs,i,j (42)

The remaining constraints ensure that the bandwidth con-
straints of the VNF-physical layer mapping are taken into
consideration.

Firstly, we define the following real variable:
∀(a, b) ∈ E : ΛBa,b a real variable that represents minimum

bandwidth between the physical node a and b.
Then, we add the following constraints.
Constraint 43 ensures that if the VNFu and the VNFv pass

through the physical link between the underlying node a and
b, the available bandwidth between the physical nodes must
be respected.
∀(a, b) ∈ E :

ΛBa,b ≥
∑

u,v∈{1...Γ}

∆B
u,v × ξa,bu,v (43)

However, equation (43) is not linear. In order to make the
optimization problem linear, we define the following variables
and constraints:

Firstly, we add the following real variables:
∀u ∈ {1...Γ},∀v ∈ {1...Γ},∀(a, b) ∈ E} : ΘB

u,v,a,b.

With M as a big number (M≈∞) and ΘB
u,v,a,b = ∆B

u,v

if ξa,bu,v = 1, otherwise ΘB
u,v,a,b = 0, we add the following

constraints:
∀u, v ∈ {1...Γ},∀(a, b) ∈ E :

ΘB
u,v,a,b ≤ ∆B

u,v + (1− ξa,bu,v)×M (44)

∆B
u,v ≤ ΘB

u,v,a,b + (1− ξa,bu,v)×M (45)

ΘB
u,v,a,b ≤ ξa,bu,v ×M (46)

ΛBa,b ≥
∑

u,v∈{1...Γ}

ΘB
u,v,a,b (47)

The constraint 48 ensures that always the requested band-
width is smaller than the available one between the physical
nodes.

ΛBa,b ≤ WB(a, b) (48)

For the sake of facility, a detailed example will be intro-
duced to illustrate the operations of our proposed solution.
Fig. 2 represents a simple three-layer architecture, which
consists of six data-centers named from A to I in the physical
layer, a set of already deployed VNFs numbered from 1 to 9
in the VNF layer. Also note that for clarity, the bandwidth and
the latency will be both represented by W and ω respectively
in the VNF layer and the physical layer, we also omitted the
5G-VM, the SID, the SO and the integrated ETSI-NFV model
from Fig. 2, they are responsible for the creation of different
kinds of network slices after receiving requests from end users
and the selection part from the NSSF.

Let’s assume that we have a connected car management
scenario; in that case, and for safety reasons, we need at least
one mandatory network slice containing an SFC dedicated
for the monitoring and control plane information, by virtue of
simplicity, this SFC is not shown in the Fig. 2. In Fig. 2(a) we
assume that the connected car was stopped and a passenger
inside attaches to the access network (AN) and requests a
video streaming service that requires 10Mbps of bandwidth
and 31ms of latency. By collecting the request, the 5G-VM,
the SID, the NSSF and the SO will coordinate and create a
slice dubbed S1 in the Slice layer, S1 contains 3 NFs a, b and
c deployed in VNFs 6, 9 and 7, respectively. The Fig. 2(a)
shows the bandwidth and latency resources partially in use
as highlighted by the red numbers between the VNFs 6, 9,
and 7 in the VNF layer, and between nodes F and G in
the physical layer. Based on this topology, we update our
reference graphs G and R by removing all used resources
as depicted in Fig. 2(b). In Fig. 2(c), the connected car starts
moving and for safety reasons, a second SFC is needed to
handle the monitoring tasks and the measurements related
to the mobile connected car, therefore the connected car
requests the creation of this second SFC. However, that second
SFC is resource consuming and needs at least 100Mbps of
bandwidth and 10ms of latency as its a delay-sensitive service
(URLLC), added to that, the NFg and the NFr have some
restrictions in terms of deployment in the physical layer
(location constraints), for instance, NFr can only be deployed
on the bare-metal servers ”G”, ”H” and ”I”; here we can
clearly observe the constraints 8, 9, 10, and 11. The Fig. 2(d)
shows the instantiation of a new VNF numbered as 10 to
host the NFr, the bandwidth, and latency resources partially
in use are also highlighted using the red color between the
VNF 8 and the newly created one 10 in the VNF layer,
and between node G and H in the physical layer. Fig. 2(e)

9

(a) Architecture view showing bandwidth and latency in use in red
and the remaining resources in black.

(b) Network resources allocated for SFC1, Computed graph of
the proposed architecture removing the bandwidth and the latency
currently in use.

(c) Car start moving and the request for the management SFC
(SFC2) creation.

(d) Network resources allocated for SFC2.

(e) Network resources reference graph is recalculated.

Fig. 2: Example of our proposed solution for cost optimal network slicing deployment.

represents the graphs G and R in the physical layer and VNF
layer, respectively after the re-computation. It is noticed that
all the constraints related to the link arrangement, latency
and bandwidth are used in each request by our proposed
solution. It is also noticed that all the instantiated NFs are
supposed to represent one of the proposed NFs in the 5GCN
service-based architecture, however, for reason of clarity we
choose to name them using simple alphabetic identification.
Finally, the obtained network slice is shared between the end-
user requesting the video streaming service and the car that
requires two separated SFCs for handling both the control
plane information and the monitoring tasks for high-speed
mobility.

F. Final model

Algorithm 1, dubbed Optimal Cross-domain Network
Slices Deployment, summarizes these constraints. For each

new request for the slice creation, the distribution of the NFs
that form the slices has to be recomputed. This algorithm is
triggered by either the reception of a request for creating a
new slice or the update of an existing slice: whether it be
the arrival of a new user (end-user or vertical’s application)
or the mobility of an existing one. The input parameters of
the proposed solution are the graph G that represents the
physical layer and the requests’ specifications (authorized
IaaS, bandwidth, end-to-end latency and so on). At each
execution of the Algorithm, a new configuration is computed
thanks to the optimization problem defined below, and then
that configuration is returned to the orchestrator to enforce it.
As shown in the Algorithm, the main control loop re-executes
a waiting function to receive a new request either for creating
a new slice or updating existing according to the changes
happened at the three-layer network topology.

After introducing all the needed constraints and their

10

respective transformations, the final model to optimize is
defined as follow:

min
∑

v∈{1...Γ}
ρv

S.t



Constraints 3 – 6.
Constraints 8 – 12.
Constraints 14 – 25.
Constraints 27 – 30.
Constraints 32 – 37.
Constraints 39 – 42.
Constraints 44 – 48.

Theorem 1: Grouping NFs on VNFs and placing them on
top of physical servers is NP-hard problem.

Proof The resolution introduced by the OCNSD algorithm
is optimal, however, the formulated problem is NP-hard as
result of the non-reasonable calculation time. One way to
prove the NP-hardness of a problem is reducing it to a well-
known NP-hard problem. In that case, if we simplified our
problem and considered only one network slice limited to only
one SFC which contains a given number of NFs, we would
have a problem denoted by P where the grouping of different
NFs into VNFs and placing those VNFs into physical servers
is similar to the knapsack problem, which is known to be
NP-hard. In the problem P, the different physical servers can
be considered as knapsacks while the VNFs are considered as
different objects should be filled in knapsacks. In the problem
P, we aim to reduce the number of used physical servers,
which is equivalent to the cost in the knapsack problem. In
fact, in problem P, we aim to reduce the cost while the capacity
of VNFs, in terms of CPU, memory, and disk, does not exceed
the capacity of used physical servers. It’s noticed that even
when expunged the delay and the bandwidth the problem
was NP-hard, hence adding them will increase in complexity.
Thus, OCNSD is also an NP-hard problem that requires the
design of a heuristic solution to obtain an engineering time
of execution. �

Algorithm 1: OCNSD Algorithm.
Input : G: Network Graph.

Q: List of Requests’ specification (resources,
authorized hosts, bandwidth, end-to-end
latency).

Output: NFs Placement,
Allocated VNF nodes,
Allocated DC nodes.

1 while True do
2 read current;
3 if q in Q == (new or updated) then
4 OptimizationOCNSD(G,Q);
5 end
6 end

V. GDMK: HEURISTIC SOLUTION

As mentioned in the previous section, achieving an optimal
solution is an NP-hard problem. The optimization problem
suggested in the previous solution can provide an optimal
configuration for a small size network. Also, it can serve
as a baseline approach for evaluating different heuristics that
can be proposed in the future for providing different network
configurations. In this section, we suggest a heuristic, named
Greedy Distributed Multi-layer Knapsack (GDMK) solution,
to provide an efficient configuration. GDMK is a greedy-based
algorithm that aims to reduce the computational cost while
the number of VNFs should be created in a reasonable time.
Basically, the GDMK solution consists of three main ideas:

• The placement part of our network slice deployment
problem can be considered as a knapsack problem, con-
sidering its three layers architecture, it can be extended to
be a multi-layers knapsack problem (nested bin packing
problem [24]) where the physical data-centers play the
role of a knapsack for the VNF layer components and
the VNF layer is considered as a knapsack hosting the
SFCs with their respective NFs;

• The communication constraints (end-to-end latency and
bandwidth) make our formulated problem a distributed
knapsack problem where we cannot pack items (NFs in
the VNF layer and VNFs in the physical layer) except if
they have the required communication resources;

• By following a greedy logic when packing NFs and
VNFs (NFs in the VNF layer and VNFs in the phys-
ical layer), a reasonable time will be obtained while
respecting placement, latency, and bandwidth constraints.
The proposed heuristic will be a greedy-based distributed
multi-layer knapsack problem.

Algorithm 2 serves to describe different steps of the
heuristic GDMK. As aforementioned in the previous section,
the information about both physical layer and network slice
layer are fed as input for the suggested solution while the
information about the VNFs and the mapping about the three
layers are considered as output. For this reason, in the initial
step, all the required inputs related to the physical layer (data
centers) and the slice layer are introduced to GDMK heuristic.

We define by γ the set of all the NFs existing in the network.
Formally, γ is considered as all the NFs that should be created
in each SFC Fs at each slice s ∈ S (Algorithm 2: Lines 1−8).
An NF ν1 ∈ γ is a neighbor to another NF ν2 ∈ γ if only ν2

is a predecessor or a successor ν1 in the same SFC. We denote
by η(ν) the neighbor of ν. Let WL(ν1, ν2) and WB(ν1, ν2)
denote the latency and the bandwidth between the NF ν1 and
its neighbor ν2 ∈ η(ν1). As we have explained above, the
set of NFs γ should run on top of VNFs δ, such that each
VNF should host at least one NF. Let G denote the grouped
set of γ, whereby each group g ∈ G consists of a set of NFs
γg ⊆ γ. Let δg denotes the VNF that should host the group
of NFs g ∈ G. A VNF g2 ∈ G is a neighbor of another VNF
g1 ∈ G if exist an NF ν1 ∈ γ1 that is a neighbor to another
NF ν2 ∈ γ1. We denote by η(g), for g ∈ G, all the VNFs
neighbors of the VNF δg .

Let F(γ,N) denote a function that groups the NFs γ in
a set of groups G whose size does not exceed N . Formally,

11

Algorithm 2: Greedy Distributed Multi-layer based Knap-
sack Heuristic (GDMK)

Input :
G(V,E,W,C): A weighted graph that

represents the physical layer.
S: A network slice.
Fs: The list of network functions NFs of the

slice S.
lf : The end-to-end latency of SFC f ∈ Fs.
lw: The end-to-end bandwidth of SFC f ∈ Fs.

Output:
δ: The set of VNFs,
G: The grouped set of NFs,
K: Number of repetitions before taking the final

decision.
1 γ ← ∅;
2 for s ∈ S do
3 for fi ∈ Fs do
4 for θ ∈ Ψs

i do
5 γ.append(θ);
6 end
7 end
8 end
9 N ← |γ|;

10 R ← K;
11 while True do
12 δT = F(γ,N);
13 if Υ(δT , G) == True & |δT | < N then
14 δ ← δT ;
15 N ← |δ|;
16 R ← K;
17 end
18 else
19 R ← R− 1;
20 if (R == 0) & δ 6= ∅ then
21 Break();
22 end
23 end
24 end

F(γ,N) returns the set of VNFs δ that should be deployed
on top of V . The function F(γ,N) should return the list of
returned VNF δ that should satisfy the following conditions:

• ∀g1, g2 ∈ G, γg1 ∩ γg2 = ∅. This means that one NF
should not be deployed on two different VNFs;

•
⋃
g∈G

γg = γ. This means that all the NFs should be

deployed on top of the VNFs;
• ∀s ∈ S, fi ∈ Fs :

∑
ν1∈fi,ν2∈η(ν1)WL(ν1, ν2) ≤ lfi .

This condition ensures that the sum of the hop-by-hop
delay of the SFC fi does not exceed the end-to-end delay
of that SFC;

• ∀s ∈ S, fi ∈ Fs, ν1 ∈ fi, ν2 ∈ η(ν1) : WB(ν1, ν2) ≤
W f
i . This condition ensures that the hop-by-hop band-

width of the SFC fi does not exceed the end-to-end
bandwidth of that SFC.

The RAM, the CPU and the DISK of a VNF g ∈ G are
defined as the sum of all the RAM, the CPU and the DISK
of its NFs γg , respectively. Formally, ∀g ∈ G, δg.RAM =∑
ν∈γg

ν.RAM , δg.CPU =
∑
ν∈γg

ν.CPU , and δg.DISK =∑
ν∈γg

ν.DISK. Let WL(δg1, δg2) and WB(δg1, δg2) denote

the latency and the bandwidth between a VNF g1 ∈ G and
its neighbor g2 ∈ η(g1). WL(δg1, δg2) is defined as the
maximum delay between any two NF neighbors ν1 ∈ γg1
and ν2 ∈ γg2. Formally, WL(δg1, δg2) is defined as fol-
low: WL(δg1, δg2) = max

ν1∈γg1,ν2∈η(ν1)∩γg2
WL(ν1, ν2). While

WB(δg1, δg2) is defined as the sum of all the bandwidths
between all the NF neighbors ν1 ∈ γg1 and ν2 ∈ γg2.
Formally WB(δg1, δg2) is defined as follow: WB(δg1, δg2) =∑
ν1∈γg1,ν2∈η(ν1)∩γg2

WB(ν1, ν2).

Let Υ(δ,G) a function that randomly selects a set of
physical nodes from V , whereby the VNFs δ should be
deployed. Let we denote by δv the set of VNFs that should be
deployed on top of the physical server v ∈ V . The function
Υ(δ,G) picks up a random subset V from V (V ⊆ V) that
satisfies the following conditions:

• ∀v1, v2 ∈ V, δv1 ∩ δv2 = ∅. This condition is used to
ensure that two physical servers should not host the same
VNF;

•
⋃
v∈V

δv = δ. This condition ensures that all VNFs should

be deployed in the physical servers;
• ∀g1, g2 ∈ G, (g2 ∈ η(g1)) =⇒ ∃v1, v2 ∈ V, (g1 ∈
δv1) ∧ (g2 ∈ δv2) ∧ ((v1, v2) ∈ E ∨ (v1 = v2)). This
condition is used to ensure that two neighbors VNFs
g1, g2 ∈ G should be hosted at: i) the same physical
server, or ii) two neighbors physical servers;

• ∀v ∈ V :
∑
g∈δv

δg.RAM ≤ v.RAM . This condition

ensures that the RAM used by different VNFs δv hosted
at the same physical server node v ∈ V should not exceed
the RAM capacity of v;

• ∀v ∈ V :
∑
g∈δv

δg.CPU ≤ v.CPU . This condition

ensures that the CPU used by different VNFs δv hosted at
the same physical server node v ∈ V should not exceed
the CPU capacity of that server v;

• ∀v ∈ V :
∑
g∈δv

δg.DISK ≤ v.DISK. This condition

ensures that the DISK used by different VNFs δv hosted
at the same physical server node v ∈ V should respect
the capacity limit of the server v;

• ∀(v1, v2) ∈ E : min
g1∈δv1,g2∈η(g1)∩δv1

WL(g1, g2) ≥

WL(v1, v2). This condition ensures that the shortest
delay between two neighbors VNFs g1 and g2 (which
represents the fastest delay) is bigger than the available
delay between their hosted servers v1 and v2, respec-
tively;

• ∀(v1, v2) ∈ E :
∑

g1∈δv1,g2∈η(g1)∩δv1

WB(g1, g2) ≤

WB(v1, v2). This condition ensures that the sum of the
bandwidth between all the VNFs neighbors g1 and g2
hosted at the servers v1 and v2, respectively, should not

12

exceed the bandwidth between the servers v1 and v2.
The function Υ(δ,G) returns a true if it could succeed

to select the set of physical nodes that satisfy the above
conditions. Otherwise, it will return false. Initially, Algorithm
2 generates the set of NFs γ from different network slices and
their SFCs (Algorithm 2: Lines 1 − 8). Then, the number of
VNFs is initiated to equal the number of NFs γ (Algorithm
2: Line 9). In the worst case scenario, each NF ν ∈ γ should
run on top of a VNF g ∈ G. The number of repetitions R
is initiated with K (Algorithm 2: Line 10). Then, GDMK
heuristic enters in an infinite loop to create different VNFs
δ and place them at different physical servers. In the loop,
initially, the Algorithm randomly generates the set of VNFs
δ that satisfies the aforementioned conditions, such as the
number of VNFs δ less or equals to N (Algorithm 2: Line 12).
Note that, initially, the number of NFs γ equals the number
of VNFs N (i.e., |δ| = |γ|). Then, during the processing
phase of the proposed Algorithm, the number of VNFs N
will be reduced. After that, the Algorithm places different
VNFs δ in G, and checks if the aforementioned conditions
hold (Algorithm 2: Line 13). If the conditions hold (i.e.,
The function Υ returns true) and the size of the new VNFs
δT is better than the best-achieved solution, then the new
best configuration of VNFs would be moved from temporal
configuration δT to the best configuration δ (Algorithm 2:
Lines 14− 16). Also, the number of VNFs and repetition are
re-initialized. In the case that the Algorithm does not succeed
to place the VNFs in G, the number of repetitions is reduced
by one (Algorithm 2: Line 19). Thus, the Algorithm checks
if the number of repetitions reaches zero (Algorithm 2: Line
20). If so, the Algorithm also checks if the best configuration
exists. In case of success, the Algorithm terminates, otherwise,
the Algorithm keeps seeking for the best VNFs configuration.

A. Complexity Analysis

Analyzing the complexity allows us to forecast the com-
putational time, nbslice, nbsfc, nbnf are chosen to represent
the number of network slices, the number of SFCs and the
number of NFs, respectively. During the initialization phase
(Algorithm 2: Lines 1 − 8) we have a complexity equal to
the multiplication of those three defined variables (nbslice *
nbsfc * nbnf). Next, in the main loop part of the proposed
algorithm, the proposed solution will have to execute (K + 1) *
(nbnf + nbdcs) in the best case scenario. While the worst case
complexity will be X * (K + 1) * (nbnf + nbdcs), with ”X”
to represent the number of defective solutions found before
the effective one that will be executed K additional times to
be committed as the best solution.

VI. PERFORMANCE EVALUATION

In the simulation, we have used Python and the Gurobi
optimizer to implement our optimization framework to solve
the previously formulated problem. Meanwhile, the proposed
heuristic is implemented using the Python language. The
underlying layer’s components (i.e nodes, edges, CPU, RAM,
Disk), network slices, SFCs, NFs, and the NFs’ resources

requirements are randomly generated to simulate a more
realistic environment. The resource demands of each NF in
terms of both, bandwidth and latency between NFs, follows
a discrete uniform distribution over the interval [50, 100].

We conducted our experiments on a multi-core server as
described in Table I.

TABLE I: Hardware Configuration.

Type Configuration
CPU Dual Intel Xeon E5-2680 v3 @ 2.5GHz
Memory 256GB
Linux Ubuntu 16.04
Kernel 4.4.0-72

We started the evaluation of our solution’s behavior by
varying the number of network slices and NFs. For each
experiment, we operate 100 repetitions, changing the un-
derlying layer’s components deployment and compute the
number of nodes’ used as well as the computational times.
Afterward, we present the mean and 95% Confidence Interval
of the number of nodes’ used in the proposed architecture and
the computational cost in seconds. It is noticed that for the
Fig. 3, Fig. 4, and Fig. 5, the number of nodes used and the
computational time of the evaluation are represented by the
pentagon shape and the hexagon shape, respectively for the
optimal solution. While the circle shape shows the number of
used nodes and the star shape the computational time for the
heuristic solution.

Fig. 3: Varying the number of network slices from 1 to 6.

Fig. 3 features the comparison between the optimal solution
(OCNSD) and the proposed heuristic (GDMK), we vary the
number of network slices over both the VNF layer and the
physical network from 1 to 6, while keeping for each slice
both the number of SFCs and NFs constant, i.e., running our
simulations with 1 and 4, respectively. In Fig. 3, the left Y-
axis represents the number of nodes used, the right Y-axis
shows the required time in seconds to solve the optimization
problem, and the X-axis portrays the number of network slices
in the proposed architecture. For the optimal solution, the
number of used nodes represented by the pentagon shape in-
creases linearly from 4 to 7 when the number of network slices
increases. It is noticed that the number of used nodes follows
a binary logic which means real values must be rounded
up. The mean number of nodes activated is 5.5387 with a
standard deviation of 1.0417. Meanwhile, the computational
cost showed as a hexagonal shape increases exponentially

13

when varying the number of network slices. The heuristic
solution (GDMK) shows that the number of active nodes,
represented by the circle shape, increases from 3 to 13 when
the 6th variation of network slices is reached. The mean
number of nodes activated is 8.44 with a standard deviation of
3.8493. Concurrently, the computational cost, portrayed by the
star shape, increases linearly from 0.0036s to 0.01992s. The
linear regression parameters are 0.0033 and 0.0003, as α and
β, respectively, for the solution cost of our set of experiments.

Fig. 4: Varying the number of NFs from 2 to 5.

In Fig. 4 a comparison between the optimal solution (OC-
NSD) and the proposed heuristic (GDMK) is illustrated when
varying NFs number in the network from 2 to 5 while fixing
the number of network slices and SFCs in the network to
two instances for each. We kept the same representations as
before for the Y-axes except for the X-axis in which we are
considering the number of NFs in our network instead of
network slices. Regarding the optimal solution, we observed
a linear increase concerning the number of activated nodes,
represented by the pentagon shape, in the network, with a
mean number of activated nodes of 4.4375 and a standard
deviation of 0.9675. Similar to the previous experiment we
can perceive an exponential growth in the computational
time (hexagonal shape). While for the heuristic approach, we
observed that the number of activated nodes represented by
the circle shape, increases from 5 to 12 with a mean number
of activated nodes of 8.5275 and a standard deviation of
2.5084. Still, in Fig. 4, we noticed that the solution cost (the
star shape) in seconds increases linearly with the number of
activated nodes in the network: the linear regression of these
samples was 0.0035 and −0.0012, as α and β, respectively.

The experiment in Fig. 5 shows how the underlying
topologies impact both the optimal solution (OCNSD) and
the proposed heuristic (GDMK). We vary the number of
physical hosts belonging to the physical layer in our proposed
architecture while fixing the number of network slices, SFCs,
NFs. Concerning the optimal solution, the first observation
that we can draw from this figure is that the number of used
nodes, represented by the pentagon shape, stagnates in 5,
even when increasing the number of physical hosts 5 fold.
Moreover, we clearly observe the exponential behavior of the
computational time, expressed by the hexagon shape, which
allow us to conclude that when we increase the number of
underlying nodes, the number of links between those nodes
increases due to the higher density of nodes’ in our network

Fig. 5: Varying the number of physical hosts from 1 to 36.

which will raise the probability of deployment of the network
slices causing by the same time the exponential growth in
the computational time (optimal solution search always best
options). For the heuristic solution, the same stagnation in
terms of the number of used nodes, represented by the circle
shape, is observed with a higher number of the used nodes
(6 for the heuristic instead of 5 for the optimal solution).
However, the computational time for the heuristic solution is
linear and has the following linear regression samples 0.0096
and 0.00099, as α and β, respectively.

Fig. 6: Varying the number of network slices from 1 to 50 in
large scale networks.

Fig. 7: Varying the number of NFs from 2 to 20 for large
scale networks.

Finally, we evaluated the computational cost of the heurestic
GDMK by varying the number of slices and SFCs. Fig. 6

14

depicts the impact of the number of network slices on the
proposed heuristic GDMK in terms of the cost (i.e., number
of used nodes) and the execution time. In this experiment,
we have varied the number of sliced from 1 till 50, while
keeping for each slice both the number of SFCs and NFs
constant. The results plotted in Fig. 6 shows that both the cost
and the execution time increases linearly with the number of
slices in the network. While Fig. 7 depicts the performances
of the proposed heuristic by varying the number of NFs in
the network from 2 to 20 while fixing the number of network
slices and SFCs in the network by 2. The results plotted in
Fig. 7 show clearly that the cost and execution time increase
linearly with the number of NFs.

VII. CONCLUSION

In this article, we presented a detailed modeling of the
cross-domain network slicing, we introduced a novel cost
optimal deployment of network slices and evaluated our
proposal using multiple network topologies, and in particular,
focused on following the standard specifications pronounced
by the 3GPP. Interesting results were obtained where varying
the number of network slices and NFs, we observed that the
computational time grows exceptionally. A heuristic algorithm
was designed, implemented and evaluated to compute the un-
derlying node distribution in polynomial time. In future works,
the mobility of Network Slices will be investigated to fulfill
mobile users’ requirements and allow a better QoE/QoS, the
exploration of real-world NFV orchestrator like OSM, ONAP,
Tacker (OpenStack’s NFV components) will be considered in
order to integrate both the designed algorithms (optimal and
heuristic) and provide information to the NFV orchestrator
to determine the best place to instantiate NFs.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
Project 6Genesis Flagship (grant no. 318927), and in part by
the European Unions Horizon 2020 Research and Innovation
Program through the MATILDA Project under Grant No.
761898.

REFERENCES

[1] R. A. Addad, T. Taleb, M. Bagaa, D. L. C. Dutra, and H. Flinck,
“Towards Modeling Cross-Domain Network Slices for 5G,” in 2018
IEEE Global Communications Conference, IEEE GLOBECOM, Abu
Dhabi, UAE, Dec 2018.

[2] N. Alliance, “5G white paper,” Tech. Rep., February 2015. [Online].
Available: https://www.ngmn.org/uploads/media/NGMN\ 5G\ White\

Paper\ V1\ 0.pdf
[3] G. P. A. W. Group, “View on 5g architecture,” Tech. Rep., July

2016. [Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/
02/5G-PPP-5G-Architecture-WP-For-public-consultation.pdf

[4] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing; softwarization: A survey on principles, enabling technologies;
solutions,” IEEE Communications Surveys Tutorials, vol. PP, no. 99,
pp. 1–1, 2018.

[5] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, May 2017.

[6] 3rd Generation Partnership Project (3GPP), “Release 15,” 2018,
(Last visit on : 02-05-2018). [Online]. Available: http://www.3gpp.org/
release-15

[7] ——, “Release 16,” 2018, (Last visit on : 02-05-2018). [Online].
Available: http://www.3gpp.org/release-16

[8] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on
service function chaining,” J. Netw. Comput. Appl., vol. 75, no. C,
pp. 138–155, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.
jnca.2016.09.001

[9] 3rd Generation Partnership Project (3GPP), “3gpp 5g core
network status,” Tech. Rep., November 2017. [Online]. Avail-
able: http://www.3gpp.org/ftp/information/presentations/Presentations\
2017/webinar-ct-status-11-2017.pdf

[10] E. Joe Wilke, “5g network architecture and fmc,”
Tech. Rep., July 2017. [Online]. Available: https:
//www.itu.int/en/ITU-T/Workshops-and-Seminars/201707/Documents/
Joe-Wilke-%205G%20Network%20Architecture%20and%20FMC.pdf

[11] H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM) and Workshop, Nov 2014,
pp. 418–423.

[12] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565–1570, April
2015.

[13] H. Ko, D. Suh, H. Baek, S. Pack, and J. Kwak, “Optimal placement
of service function in service function chaining,” in 2016 Eighth
International Conference on Ubiquitous and Future Networks (ICUFN),
July 2016, pp. 102–105.

[14] X. Song, X. Zhang, S. Yu, S. Jiao, and Z. Xu, “Resource-efficient virtual
network function placement in operator networks,” in GLOBECOM
2017 - 2017 IEEE Global Communications Conference, Dec 2017, pp.
1–7.

[15] S. Jiao, X. Zhang, S. Yu, X. Song, and Z. Xu, “Joint virtual net-
work function selection and traffic steering in telecom networks,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
Dec 2017, pp. 1–7.

[16] H. Li, L. Wang, X. Wen, Z. Lu, and L. Ma, “Constructing service func-
tion chain test database: An optimal modeling approach for coordinated
resource allocation,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2017.

[17] D. Dietrich, A. Abujoda, A. Rizk, and P. Papadimitriou, “Multi-provider
service chain embedding with nestor,” IEEE Transactions on Network
and Service Management, vol. 14, no. 1, pp. 91–105, March 2017.

[18] T. Wen, H. Yu, G. Sun, and L. Liu, “Network function consolidation
in service function chaining orchestration,” in 2016 IEEE International
Conference on Communications (ICC), May 2016, pp. 1–6.

[19] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in 2015 11th International
Conference on Network and Service Management (CNSM), Nov 2015,
pp. 50–56.

[20] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013,
pp. 15–26. [Online]. Available: http://doi.acm.org/10.1145/2486001.
2486012

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-
deployed software defined wan,” SIGCOMM Comput. Commun.
Rev., vol. 43, no. 4, pp. 3–14, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2534169.2486019

[22] 3GPP, “System Architecture for the 5G System; Stage
2,” 3rd Generation Partnership Project (3GPP), Technical
Specification (TS) 23.501, 03 2018, version 15.1.0. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3144

[23] A NOvel Radio Multiservice adaptive network Architecture for the
5G era, “NORMA,” 2018, (Last visit on : 02-11-2018). [Online].
Available: http://www.it.uc3m.es/wnl/5gnorma/index.html

[24] L. T. Kou and G. Markowsky, “Multidimensional bin packing
algorithms,” IBM J. Res. Dev., vol. 21, no. 5, pp. 443–448, Sep. 1977.
[Online]. Available: http://dx.doi.org/10.1147/rd.215.0443

