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We study the robustness of an evolving system that is driven

by successive inclusions of new elements or constituents with

m random interactions to older ones. Each constitutive

element in the model stays either active or is temporarily

inactivated depending upon the influence of the other active

elements. If the time spent by an element in the inactivated

state reaches TW, it gets extinct. The phase diagram of this

dynamic model as a function of m and TW is investigated

by numerical and analytical methods and as a result both

growing (robust) as well as non-growing (volatile) phases are

identified. It is also found that larger time limit TW enhances

the system’s robustness against the inclusion of new

elements, mainly due to the system’s increased ability to

reject ‘falling-together’ type attacks. Our results suggest that

the ability of an element to survive in an unfavourable

situation for a while, either as a minority or in a dormant

state, could improve the robustness of the entire system.

1. Introduction
The robustness of a system with many interacting elements or

constituents under successive addition of new elements is an

essential question for understanding the behaviour of various
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complex real-world systems, that are often called ecosystems. (Here the term ‘ecosystem’ is used in a

rather general sense to mean biological ecosystems but also diverse economical and social systems

of individuals and institutions.) [1,2]. In these systems, the interactions between elements can be

competitive or cooperative in nature such that the fitness of its elements or species can be

strengthened or weakened by them, possibly causing the species to become extinct. This problem calls

for a network theoretic approach, where the constituents of the system are the nodes of a dynamical

network and the interactions are the links between them [3–6]. Then the rephrased question is about

the evolution of such a network of nodes under the condition that new nodes with different kinds of

links are introduced. If the network can grow, then the evolving system it describes is considered

robust, otherwise the system does not grow and is considered volatile. This way, we believe that the

network approach can be used and be versatile in investigating various aspects of robustness for a

wide range of different systems.

Earlier it has been shown that in a simple model setting, where directed random positive and

negative interactions characterize the system and the fitnesses of nodes (i.e. species) are identified

with their strengths, when the links per node ratio—serving as a critical parameter—remains within a

certain range, the system is robust [7]. This mechanism and the resulting phase diagram of the growth

of the system were found to be universal, i.e. this feature is shared among a variety of models like

the one with different distributions of interaction weights and with constant or random number of

links introduced with the new nodes [8] and even with different bidirectional correlations [9]. While

the range of robustness may be influenced by the details of the model, e.g. the mutuality in the

interactions increasing it, the overall picture remains the same.

An alternative way to study the problem of robustness in complex interacting systems is a population

dynamics-based approach as often done in theoretical ecology [10–12]. Such a framework enables more

complex dynamics and is flexible with respect to allowing different states of the species, but unlike in the

network approach, the inclusion of topological constraints are less straightforward in the population

dynamics approach. Our aim here is to contribute to the convergence of these different approaches by

including complex temporal features of interactions into the network models.

In population dynamics models, less fit species become minor in their population which in general

makes that species almost irrelevant to the other species before that really gets extinct. For example, in

the well adopted (generalized) Lotka–Volterra model [13,14] and replicator dynamics model [15], the

trajectory starting from a feasible initial state (i.e. all population variables are positive [16]) never

touches 0 within finite time. Therefore, a threshold is generally introduced to model extinction. This is

a simplified treatment of the Allee effect [17] about the weakening of the fitness in small populations,

or rather direct modelling of the negative effect of demographic stochasticity [18,19]. In summary,

these observations and the related approaches suggest that the population size of less fit species and

its temporal derivative becomes very small before extinction and the process is often lengthy.

Furthermore, the adaptive nature of foraging and other interactions at the population level and at the

individual level [12,20–24] make such very minor species effectively even more invisible for other

species. Therefore, it seems plausible to include an ‘inactive state’ into the set of possible states for

handling such weakened populations. Species in such an inactive state, i.e. close to extinction, could

be revived or reactivated within a frame of time if the circumstances would sufficiently improve.

The introduction of an inactive state can be also regarded as modelling dormancy, which is broadly

observed in biological ecosystems, such as in the case of hibernation and surviving in seed, spore or

bacterial spore [25,26]. From the evolutionary point of view hibernation or dormancy is favourable

as it enables survival under scarce conditions. Therefore, we expect that this new component if

considered in the framework of network models will increase the robustness of the system, which in

turn should be reflected in the increase of the growth region in the phase diagram.

The paper is organized such that in the next section, we describe our network-based model of

evolutionary system of species capable of being temporarily inactive. This is followed with a

comprehensive account and analysis of computational modelling results to map out the phase

diagram of the evolutionary system. Then we draw conclusion and present discussions.

2. Model
As we consider the ecosystems as being composed of connected species, we have devised our model

being a network of nodes (or species) connected by unidirectional links with weights, as illustrated

schematically in figure 1. Here the nodes represent species of animals of some sort and the links

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181471
2



different types of directed influences between the pairs of species. The strength of the influence of

species j on species i is denoted by the weight of the unidirectional link from node j to node i, i.e.

aij. These weights can be either positive or negative. Each species has its ‘fitness’, which is simply

given by the sum of its incoming interactions from other species in the system, i.e. fi =
Pincoming

j aij.

A species can survive as long as its fitness is greater than zero. The species with non-positive

fitness, which in our previous models [7,9] went instantaneously extinct, will in the present model

be inactivated after its fitness-dependent waiting time t ¼ ef, i.e. species in worse situation is

inactivated faster. The inactivated species loses its influence on other species; thus, we will neglect

the links out of those for the calculation of fitness. If the surrounding community of an inactivated

species changes and the fitness of an inactivated species becomes positive, the species is reactivated

(waking up from dormancy). The waiting time of this reactivation process is also assumed to be

fitness-dependent: t ¼ e2f. The slowest process among the microscopic dynamics is the inactivation

and reactivation of solitary species ( f ¼ 0). The duration of these processes, t ¼ 1, gives the unit of

time to this otherwise time-scale-less model. Although it is known that some species can maintain

its dormancy for quite a long time [27], the period has generally a limit. In the following, we

introduce a uniform time-limit parameter TW. A species that has spent TW of continuous time in the

inactive state with non-positive fitness gets extinct. The extinct species and its incoming and

outgoing links are removed permanently. Note that the present model with dormancy reduces to

the original model [7] at TW ¼ 0. A pseudo-code style description of the entire dynamics is available

in appendix A.

An example of temporal evolution of the system is shown in figure 2. If all the species are in active

state and have positive fitnesses, nothing will happen. Therefore, we call such a state a persistent state. In

the previous models [7,9], we added a new species every time the community has reached a persistent

state. This corresponds to a low-introduction (mutation, invasion, etc.) rate limit. In the present model,

however, it is also possible that the system relaxes to a limit cycle and never reaches a stationary

persistent state (figure 3). Therefore, we need a new parameter for the time interval of the species

introduction, Tint. In the following, we take a long interval: Tint ¼ 100 to keep a low-introduction rate,

unless otherwise noted.

Every time after finding a persistent state or elapsed time Tint, we proceed to the next time step by

adding a new species with m interactions into the system. The m interacting species are chosen at

random from the resident species with equal probability and the directions (incoming or outgoing) are

also determined at random. The link weights are again assigned at random from the standard normal

distribution.

3. Results
Following the approach of our previous study [7], we assess the robustness of the emergent system by the

long-term trend of the system size, i.e. the number of species, under the successive introduction of new

fi = Sactive aia
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Figure 1. Introduction of the inactive state (dormancy) before the extinction, to our graph-dynamics framework. Less fit species is
inactivated faster, and better fit species in inactive state is reactivated faster. The time limit of dormancy till extinction is, in contrast,
uniformly set to TW.
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species which, in terms of the directions and the weights of its interactions, has neutral effect on growth.

In our original model without any dormant mechanism [7], the system can grow limitlessly; thus, it is

robust enough against the inclusion of new species if the number of interactions given for each newly

introduced species, m, is kept within a moderate range, i.e. 5 � m � 18. By contrast, the system with m
outside this range, keeps fluctuating with a finite size. These fluctuations may lead to the extinction of

the entire system, and the lower the mean level is, the higher is the probability for such an event. To

avoid this possibility, we adopt an incubation rule when the system size becomes smaller than the

initial system size N0. Under the incubation rule, we let totally isolated species (i.e. fi ¼ 0) stay in

(a) (b) (c) (d) (e)

new species introduction

new

next introduction

new

e−0.2

–0.2 –0.2 –0.2

–0.1 +0.1 0.1

0.2 0

e0

–0.1

0

e−0.1 e−0.1

–0.2

0.5

0.5

0.4

–0.1

0.4

0.2

0.4

0.3

0.4

0.1

0.5

0.3

–0.2

–0.3

–0.2

new species

–0.2

0.5

0.2

0.4

–0.1

0

0.2

0.4

0.3

0.4

0.1

0.5

0.3

–0.2

–0.3

–0.2

–0.2

0.5

0.2

0.4

+0.1

0

0.2

0.4

0.3

0.4

0.1

0.5

0.3

–0.2

–0.3

–0.2

–0.2

0.5

0.5

0.4

0.1

0

0.2

0.4

0.3

0.5

0.3

–0.2–0.2

0.5

0.5

0.4

0.1

0

0.2

0.4

0.3

0.5

0.3

–0.2

active species inactive species

active link inactive link

period of new species introduction: Tint waiting time: TW

extinction

f f

ji
aij

TW = 1.3

time

t t + Tint

extinction

0

TW = 1.3

Figure 2. A temporal evolution of the model with inactivation (dormancy) and reactivation (revival), after inclusion of new species.
(a) Introduction of a new species (red), which makes the fitness of two species (orange and magenta) negative. Each of these two
species will be inactivated after its fitness-dependent duration: t = e fi . (b) Inactivation of the species with worse fitness (orange)
takes place first and then the other species (magenta) is inactivated, which makes the fitness of another species (green) non-
positive. Inactivated species is given TW of waiting time till it will go extinct. (c) Green species is inactivated before any of
other inactive species goes extinct. This change makes the fitness of the inactive species (magenta) positive. (d ) Magenta
species is reactivated after a fitness-dependent waiting time t = efi . Meanwhile, the orange species have spent TW of time in
the inactivated state and hence gone extinct: the orange species and the interactions from and to it are deleted. (e) Green
species goes extinct. This does not change the sign of fitness of any species in the community. Therefore, after the extinction
of green species, the system finally reaches a new persistent state, i.e. all the species are in the active state and have positive
fitnesses. Nothing will happen for a community in a persistent state, until the next new species is introduced at t þ Tint.
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the active state or inactive state. This treatment prevents the total collapse of the system and provides the

system with many more opportunities to search for growth from different initial conditions.

For sufficiently large initial system size, typically N0 � 100, the limitless growth and finite size

fluctuation behaviour are confirmed to be independent of the initial network structure. Therefore, we

call the former behaviour taking place in the ‘diverging phase’ and the latter in the ‘finite phase’ of

the parameter space. The temporal evolution of the system size of the present model with m ¼ 25 is
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Figure 3. A limit cycle observed in an emergent system in the present model with inactivation and revival processes. (Top) The time
series of the state changes of the species involved in the limit cycle (73, 80 and 90). (a) The entire system at the beginning of the
cycle, t ¼ 0. Red and blue arrows represent positive and negative interactions, respectively, such that the thickness represents the
amplitude of the interaction. Precise values of the interactions are shown only for the interactions among the species 73, 80 and 90.
(b) Species with negative fitness, 73, is inactivated at t ¼ expf f73g. This makes the fitness of species 80 and 90 non-positive.
(c) Species with worse fitness, 90, is inactivated. This makes the fitness of species 73 positive. (d ) Species 80 is later
inactivated. (e) Species 73 is reactivated before the extinctions of species 80 and 90, making the fitness of those species
positive. (f ) Species 90 is reactivated. (g) Species 80 is reactivated and those three species come back to the initial all-active state.
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shown in figure 4. Inheriting the nature of the original model [7], the system with short dormancy limit

TW is found to be in the finite phase. However, as TW increases (to the value TW ¼ 0.3) the typical system

size shows a clear increase yet it stays finite, and for TW ¼ 0.4 and above the system has crossed a certain

threshold to show diverging behaviour. This clearly illustrates that our newly introduced parameter TW,

the time limit for the continuous dormancy, can change the robustness of the system.

Next we will explore the whole phase diagram with systematic computer simulations by scanning

through the m versus TW parameter space. The obtained phase diagram is shown in figure 5, where it

is seen that the introduction of dormancy and revival processes broaden the diverging phase. While
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this effect turns out to be larger for longer dormancy time limit TW, yet it is not possible to get the system

with very dense interactions (m � 28) to the diverging phase. It should also be noted that, as shown in

appendix A, the basic network characteristics of the emergent systems are not so much dependent on TW

and not deviated from that of Erdó́s–Rényi random graph, indicating the almost random network

structure as in the previous models [7,9].

The main mechanism of this enforcement is the rejection of ‘falling-together-attacks’. To illustrate this,

let us consider a situation that a negative link weight (2a) is added to a resident species by a newly

introduced species, which has zero or negative fitness value, 2b (figure 6).

In the original model [7] and in the present model with TW ¼ 0, in which the least fit species goes

extinct first, the attacked resident species and the new species sequentially go extinct for f 2 a , 2b
and otherwise only the new species goes extinct (i.e. is rejected). Especially for the newly introduced

species with no incoming links (b ¼ 0, solitary attack), every attack strong enough (f , a) can kill the

resident species before the newly introduced attacker species goes extinct.

In the present model with TW . 0, the situation is different as the resident species has another chance

to reject such a falling-together attack. The rejection happens if the resident species can survive in the

inactivated state until the newly added species stays inactivated. The condition for this type of

dynamics is as follows:

f � a , �b , ln (e f�a + TW ): (3:1)

Therefore, even a strong attack (f . a) by a solitary new species (b ¼ 0) is rejected if TW . 1 2 e f2a. And if

TW � 1, i.e. the limit of the dormancy period is long enough, even the solitary attacks never become

successful. Note that the rejection acts perfectly in a special case of m ¼ 1, because in this situation

every inclusion of new species corresponds to either a solitary attack or an attachment of species with

no outgoing link. Therefore, even for this most sparse condition, large TW drives the system with a

mutually supporting community core to grow infinitely in size. However, such a growth is highly

dependent on the initial condition (if there is no core in the initial network, the system collapses)

which is out of the scope of this study. Thus, we excluded this case from the phase diagram.

The increment of probability to reject falling-together-attacks directly contributes to the growth rate of

the system, v ¼ N(t)/t. A rough estimate of it near the upper phase boundary (m � 18) predicts a linear

increase of the rejections to TW for the small TW regime (see appendix A for details), which is confirmed

in the simulation (figure 7). The observed contribution of the additional rejections to the system’s growth

rate, Dv � TW/8, predicts the slope of the phase boundary to behave as Dm* � 20 TW. This is found to be

consistent with the phase portrait.

The effect of rejections in the sparse regime (m � 4) needs to be estimated differently. This is because

the probability to have a solitary attack is larger. What is more significant, however, is the fact that the

resident community has a sparse network structure, which in turn is very prone to a loss of certain

species and can cause a cascade of extinctions of species supported by that species. Therefore, the

effect of the increased chance of rejection can be more drastic. It is also possible that the structure of

the emergent networks is changed, although the basic network characteristics (see appendix A) and

the well-kept distributions of extinction cascade size suggests it to be negligible at least for m ¼ 4
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Figure 6. The mechanism of rejecting the attack by species with non-positive fitness.
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(figure 8). The consideration above predicts the broadening of the diverging phase, but it is difficult to

give an estimate of the effect of TW against the very steep drop of the growth rate in this regime of

the phase diagram.

4. Summary and discussion
We have studied the robustness of an evolving system against successive inclusions of new elements or

constituents, each with an ability to survive temporarily under unfavourable conditions in the state of

being inactive. It is found that the introduction of the inactivation and revival processes broadens the

phase the systems stays robust. This reinforcement of the emerging system is mainly due to its

increased ability to reject falling-together type attacks. It should be noted that the broadening of the

robust phase has a limit: systems with m � 28 stay in the finite phase even at TW ¼ 1, where the

rejection probability reaches its maximum. The short-term rejection process, in which a possible

extinction of a species caused by the attack from a species with poor fitness is altered by the

extinction of the attacker, can be regarded as a simplified dynamics in a class of population dynamics

models [13–15,22]. Because another type of interaction form, namely the ratio-dependent interaction

[28], is known to reduce to our previous model [29], the extension of the model in this study has

broadened the applicability of our theoretical framework. Similar to our earlier results [7,9], we have

found that the number of interactions per species limits the system’s robustness. There are empirical

findings in support to this observation [30].

As for the modelling in general the population dynamics models based on differential or difference

state equations are able to describe rich evolutionary patterns following periodic and even chaotic
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trajectories, as observed in nature [31,32]. However, this approach is generally computationally so costly

that larger system sizes and longer time scales could not be studied. In order to circumvent these

problems, we have taken a network-based approach, which is able to describe the dynamics of the

system over much longer evolutionary time scale.

Although our present analysis covers up to the long-dormancy time limit (TW ¼ 1) in terms of the

resulting short-term rejection process, far longer dormancy limit (TW� Tint) could bring new

phenomena. Under such condition, inactive species can survive evolutionary time scale during which

new species are introduced and that change the community. In some cases and for various kinds of

systems, such as biological, social and economic systems, it may be important to consider such long

dormancy periods [33]. Also, the effect of bidirectionality [9] of the interaction should be examined,

because it is expected to make the emergent system show limit cycles more frequently. These two

regimes, although that requires heavier computation power, will reveal new phenomena and will

better bridge with the continuous time dynamics models. Extending our approach so that some

aspects of short-term dynamics of more complex models are kept, with further spacial extension

focusing on some aspects hardly accessible by traditional methods, is a promising way to treat

evolutionary problems better [34,35].
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Appendix A
A.1. Model procedure
(0) (Create an initial system)

(i) Prepare N0 species and connect them randomly by L0 unidirectional links with link weights

denoted by aij. Typical settings are N0 ¼ 100 and L0 ¼ 10 N0.

(ii) Each species has its state variable (Si ¼ f2 1, 1g, 1 and 21 denote active and inactive states,

respectively), the time counters for state change gi, and the counter for extinction hi. Those are

set to the initial values: {Si} = 1, {gi} = 1, {hi} = TW .

(iii) Set the system time at t ¼ 0 and the time for the next new species introduction Tnext ¼ Tint.

(1) Calculate the fitness fi of each species,

fi =
Xincoming

j

1 + S j

2

� �
aij:

(2) Reset the time counter if needed:

gi = 1 (Si = +1 and fi . 0 > fold
i � 0)

gi = 1 (Si = +1 and fi � 0 > fold
i . 0)

gi = 1 (Si =�1 and fi . 0 > fold
i � 0)

hi = TW (Si =�1 and fi � 0 > fold
i . 0),

8>>><
>>>:

where fold
i is the fitness at the previous time step.

(3) Calculate the remaining time till the next event for each species, dti:

dti =

Tnext � t (Si = +1, fi . 0: no state change)
gie

Sifi (Si = +1, fi � 0: inactivation)
gie

Sifi (Si =�1, fi . 0: reactivation)
Tnext � t (Si =�1, fi � 0: extinction):

8>><
>>:
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(4) Find the shortest time to the next event in the system: dt�j = min {dti}.

(5) Time translation of the system from t to t + dt�j
(i) Update the system time t = t + dt�j
(ii) Update the time counters:

gi = gi (Si = +1 and fi . 0)

gi = gi � eSifidt�j (Si = +1 and fi � 0)

gi = gi � eSifidt�j (Si =�1 and fi . 0)

hi = hi � dt�j (Si =�1 and fi � 0)

8>>>><
>>>>:

(iii) Extinction: If hi � 0, delete the species i and all links connecting to and from it.

(6) Treat the event at t (state change of species j or new species introduction)

— If t , Tnext, treat the nearest state change of species, j:
(i) Update the state of the species j:

Sj ¼ 2Sj.

(ii) Reset the time counters:

gj ¼ 1 and hj ¼ TW.

— If t ¼ Tnext, add a new species:

(i) The new species is added in active state (S ¼ þ1) with the time counters g ¼ 1 and h ¼ TW.

(ii) m interacting species are randomly chosen from the resident species.

(iii) The new species forms m directed unidirectional links. The direction of each new link is chosen

with a equal probability 1/2.

(iv) The link weights are also randomly chosen from a standard normal distribution.

(v) Update the time for the next species introduction: Tnext ¼ Tnext þ Tint.

(7) Recalculate the fitness: go back to step (1).

A.2. Estimation of the rate of the additional rejections and its effect
Here we first roughly estimate the increment of the chance to reject such falling-together-attack which

directly contributes to the growth rate of the system, v ¼ N(t)/t, near the upper phase boundary (m �
18). In the vicinity of the phase boundary in the dense regime, an inclusion of new species causes one

strong attack (f , a) event in average. The distribution of f 2 a is given by the negative side of the

convolution:

r(f � a) =

ð1

0

�f(j) G(1, f � a� j) dj, (A 1)

where �f(x) and G(s, x) represent the equilibrium fitness distribution of the emergent system and the

Gaussian distribution with its standard deviation s, respectively. The distribution of the fitness of

newly added species, 2b, is well approximated by the negative half side of the Gaussian distribution

G
� ffiffiffiffiffiffiffiffiffi

m=2
p

, � b
�

, where m/2 is the average number of incoming links. For small TW, the condition to

have the dormancy-aided rejection, equation (3.1), is

f � a , �b , f � a +
TW

e f�a : (A 2)

Substituting r(2 b) near 0 by its peak value G
� ffiffiffiffiffiffiffiffiffi

m=2
p

, 0
�

= 1=
ffiffiffiffiffiffiffi
pm
p

, and taking f 2 a � 21/2 as a typical

attack strength, an estimated increment in the system’s growth rate brought by the increase of the

rejection is

Dvest: �
ffiffiffiffiffiffiffi
e

pm

r
TW � TW

5
: (A 3)

We can confirm this linear relationship between the rejection rate Dv and TW in the simulation results for
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m ¼ 19 and 20 (figure 7). And the observed slope

Dvobs: =
TW

8
(A 4)

is also consistent with the very rough estimation above.

Taking the linear slope of the system’s intrinsic growth rate to m obtained from the observed growth

rates

Dv
Dm

� 0:06

10
, (A 5)

we reach an estimation for the slope of phase boundary

Dm � 20 TW : (A 6)

A.3. Network characteristics of the emergent systems
The network characteristics of emergent systems are shown in table 1.

Table 1. Network characteristics of emergent systems. For each parameter set, (m, TW), the average and the error are calculated
from 10 independent simulation samples. Samples in the diverging phase are taken when the system size reaches Nobs ¼

20 000.

m TW kNl kkl assortativity nestednessa
clustering
coefficienta

19 0.5 Nobs ¼ 20000 20.11+ 0.05 20.024+ 0.001 1.0909+ 0.0005 0.919+ 0.005

0.3 Nobs 20.04+ 0.05 20.0240+ 0.0007 1.0884+ 0.0003 0.928+ 0.009

0.1 Nobs 19.68+ 0.05 20.022+ 0.001 1.0874+ 0.0004 0.912+ 0.007

0.0 2.3 � 103 19.36+ 0.01 20.0197+ 0.0001 1.0873+ 0.0001 0.9172+ 0.0001

10 0.5 Nobs 11.55+ 0.03 20.028+ 0.001 1.1312+ 0.0009 0.87+ 0.02

0.3 Nobs 11.39+ 0.02 20.030+ 0.001 1.1288+ 0.0007 0.89+ 0.02

0.1 Nobs 11.10+ 0.02 20.0338+ 0.0007 1.1205+ 0.0007 0.83+ 0.02

0.0 Nobs 10.89+ 0.03 20.036+ 0.001 1.1188+ 0.0005 0.86+ 0.02

4 0.5 Nobs 5.20+ 0.02 20.040+ 0.002 1.204+ 0.002 0.75+ 0.04

0.3 Nobs 4.98+ 0.01 20.052+ 0.001 1.186+ 0.001 0.71+ 0.09

0.1 Nobs 4.69+ 0.01 20.073+ 0.002 1.160+ 0.001 0.72+ 0.07

0.0 1.0 � 103 4.63+ 0.01 20.0746+ 0.0002 1.1567+ 0.0003 0.662+ 0.002

3 0.5 Nobs 4.04+ 0.01 20.058+ 0.002 1.221+ 0.002 0.59+ 0.09

0.3 Nobs 3.79+ 0.01 20.081+ 0.001 1.187+ 0.002 0.65+ 0.05

0.1 5.6 � 102 3.78+ 0.01 20.0748+ 0.0009 1.1954+ 0.0008 0.608+ 0.006

0.0 4.3 � 102 3.85+ 0.01 20.063+ 0.002 1.204+ 0.002 0.65+ 0.01

2 0.5 Nobs 2.90+ 0.01 20.075+ 0.003 1.256+ 0.002 0.5+ 0.1

0.3 1.3 � 103 2.90+ 0.01 20.056+ 0.001 1.265+ 0.001 0.49+ 0.02

0.1 5.5 � 102 2.92+ 0.01 20.039+ 0.004 1.271+ 0.005 0.51+ 0.02

0.0 4.0 � 102 2.93+ 0.03 20.035+ 0.008 1.296+ 0.007 0.44+ 0.06
aThe clustering coefficient and nestedness are given in those ratio to the ones of Erdó́s – Rényi random graph with the same size
and average degree.
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