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We develop a theory for polymer translocation driven by a time-dependent force through an oscil-
lating nanopore. To this end, we extend the iso-flux tension propagation theory [Sarabadani et al.,
J. Chem. Phys. 141, 214907 (2014)] for such a setup. We assume that the external driving force
in the pore has a component oscillating in time, and the flickering pore is similarly described by
an oscillating term in the pore friction. In addition to numerically solving the model, we derive
analytical approximations that are in good agreement with the numerical simulations. Our results
show that by controlling either the force or pore oscillations, the translocation process can be either
sped up or slowed down depending on the frequency of the oscillations and the characteristic time
scale of the process. We also show that while in the low and high frequency limits, the translocation
time τ follows the established scaling relation with respect to chain length N0, in the intermediate
frequency regime small periodic, fluctuations can have drastic effects on the dynamical scaling.
The results can be easily generalized for non-periodic oscillations and elucidate the role of time
dependent forces and pore oscillations in driven polymer translocation. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928743]

I. INTRODUCTION

Polymer translocation through a nanopore, which has
rapidly emerged as one of the most active research areas in bio-
logical and soft matter physics, plays an important role in many
biological processes such as RNA transport through a nuclear
membrane pore and α-hemolysin channels,1,2 virus injection
into cells, and transportation of protein through membrane
channels.3 It also has many technological applications such as
rapid DNA sequencing,2,4–8 drug delivery,4 and gene therapy
and has been motivation for many theoretical and experimental
studies.4,9–38 So far, most of the theoretical studies have
been focused on the case of pore-driven translocation of a
polymer chain through a nanopore with a constant radius and
by a constant driving force, which is inherently a far-from-
equilibrium phenomenon.28,30–38 However, some theoretical
and experimental works have also been done where the width
of the pore changes during the translocation process. For
example, the active translocation of a polymer chain through
a flickering pore has been investigated by means of molecular
dynamics (MD) simulations to show that translocation through
the pore with an alternating width and sticky walls exhibits
more efficient translocation as compared to the static pore.39

There are some biological examples of this such as the
nuclear pore complex, which plays an important role in
nucleocytoplasmic transport in eukaryotes.40 Another example
is the exchange of molecules between mitochondria and the
rest of cell which is controlled by the twin-pore protein

a)Electronic address: jalal.sarabadani@aalto.fi

translocase (TIM22 complex) in the inner membrane of the
mitocondria.41 On the experimental side, it has been shown
that the translocation of DNA through a nanochannel can
be modulated by dynamically changing the cross section of
an elastomeric nanochannel device by applying mechanical
stress.42–44 Moreover, the width of the nanopore can be tuned
by using thermally driven nanoactuation of the polyNIPAM
brushes inside the nanopore.45

The external driving force can also be time-dependent dur-
ing the translocation process.7,46–50 As an example, polymer
translocation has been studied for a time-dependent alternating
driving force by means of Langevin dynamics simulations. It
has been shown that when the polymer-pore interaction is
attractive, resonant activation occurs at an optimal frequency
of the alternating driving force.46 There are some biological
applications for the alternating driving force case such as
translocation of linear and α-helical peptides through an
α-hemolysin pore in the presence of an AC field,49 and
monitoring the escape of the DNA from an α-hemolysin pore
by using an alternating current signal.51 Moreover, using an
alternating electric field in the nanopore has been suggested
as a method for DNA sequencing.7

On the theoretical side, over the last few years, a consistent
theory of driven translocation has been developed based on the
idea of tension propagation (TP)17 that may also have some
applications in DNA breathing.52,53 Within the TP theory,
the dynamics of driven translocation can be described by
considering a tension force that propagates along the backbone
of the chain. The dynamics is dominated by the drag of the
cis side of the polymer chain, leading to asymptotic scaling

0021-9606/2015/143(7)/074905/10/$30.00 143, 074905-1 © 2015 AIP Publishing LLC
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of the average translocation time τ ∝ N1+ν
0 as a function of

the chain length (number of monomers) N0,27,28,38,54 where
the Flory exponent ν is exactly 3/4 in two and approximately
0.59 in three dimensions, respectively.55 In addition, the theory
reveals that the pore friction ηp plays an important role
for chains of finite length, leading to a large correction-to-
scaling term such that the translocation time actually scales as
τ(N0) = c1N1+ν

0 + c2ηpN0, where c1 and c2 are constants.28,54

This scaling form has most recently been theoretically derived
using the iso-flux Brownian dynamics tension propagation
(IFTP) theory of driven polymer translocation.25,54

In this paper, our main goal is to investigate the influence
of an alternating external driving force and a flickering pore on
the dynamics of the driven translocation process. To this end,
we employ the IFTP theory to theoretically study polymer
translocation in the presence of a time dependent driving
force through a flickering nanopore. Here, the time dependent
driving force, f (t), is incorporated into the theory directly,
while the effect of the flickering pore is implemented by
a time dependent pore friction coefficient ηp(t). Using the
IFTP theory modified in this manner allows us to explicitly
derive the TP equations for the present setup. The formalism
also allows us to investigate both the influence of thermal
fluctuations from the solvent by introducing randomness into
the effective driving force27,38,54 and the influence of the
distribution of the initial configurations of the chain on the
cis side.54

The outline of the paper is as follows: In Sec. II, we
show how to model pore-driven polymer translocation in the
context of the iso-flux Brownian dynamics tension propagation
formalism when the pore friction is time dependent and the
driving force is alternating. Sections III A and III B present
the finite-size scaling form for the translocation time in the
presence of an alternating driving force and time dependent
pore friction, respectively. Sections IV and V are devoted
to the results on the average translocation time, the waiting
time distribution, and time evolution of the translocation
coordinate, respectively. Conclusions and discussion are in
Sec. VI.

II. MODEL

For the sake of brevity, we use dimensionless units
denoted by tilde as Z̃ ≡ Z/Zu, with the units of length
su ≡ a, time tu ≡ ηa2/(kBT), velocity vu ≡ a/tu = kBT/(ηa),
force fu ≡ kBT/a, monomer flux φu ≡ kBT/(ηa2), and friction
Γu ≡ η, where a is the segment length, η is the solvent friction
per monomer, kB is the Boltzmann constant, and T is the
temperature of the system.

To elucidate the parameter values chosen in this paper,
we compare them with those in real physical systems and
also with those used in MD simulations in reduced Lennard-
Jones (LJ) units.46,54 Here, parameters without tilde such as
external driving force, F, pore friction, ηp, and time, t, are
in LJ units. In MD simulations, the scale of time, mass, and
energy can be fixed by the LJ parameters m, σ, and ϵ which
are the mass and diameter of each bead, and the strength of the
interaction, respectively. We have chosen kBT = 1.2 which is
dimensionless and the time is scaled by tLJ = (mσ2/ϵ)1/2. In

our model, the interaction strength is 3.39 × 10−21 J at room
temperature (T = 295 K), the mass of each bead is about 936
amu, and the size of each bead corresponds to the single-
stranded DNA Kuhn length, which is σ ≈ 1.5 nm. Therefore,
the LJ time scale is 32.1 ps. Here, the thickness of the pore is
set to σ. By assuming the effective charge of 0.094e for each
unit charge, three unit charges per bead,56,57 and with a force
scale of 2.3 pN, an external driving force of F = 5 corresponds
to a voltage of 375 mV across the pore.46

We use Brownian dynamics (BD) in the overdamped limit
as the basic theoretical framework.27,38 The time evolution of
the translocation coordinate s̃ which is the chain length on the
trans side is governed by the BD equation that can be written
as

Γ̃(t̃ )ds̃
dt̃
= (1 − γ′)

 1
N0 − s̃

− 1
s̃


+ f̃ (t̃ ) + ζ̃(t̃ ) ≡ f̃ tot, (1)

where Γ̃(t̃ ) is the effective friction, the first term in the right
hand side is the entropic force and γ′ is the surface exponent
(γ′ ≈ 0.95,≈ 0.69 for self-avoiding chains in two and three
dimensions, respectively, and γ′ = 0.5 for ideal chains), N0
is the chain length or the total number of beads in the chain
(here, the contour length of the polymer chain is L = aN0),
f̃ (t̃ ) is the external driving force, f̃ tot is the total force,
and the Gaussian white noise, ζ̃(t̃ ), satisfies ⟨ζ(t)⟩ = 0 and
⟨ζ(t)ζ(t ′)⟩ = 2Γ(t)kBTδ(t − t ′).

As both the cis side subchain and the pore friction
contribute to the effective friction Γ̃(t̃ ), it can be written
as Γ̃(t̃ ) = η̃cis(t̃ ) + η̃p(t̃ ). For a fully flexible self-avoiding
polymer chain, the dynamical contribution of the trans side to
the dynamics has been shown to be insignificant27,28,38,58,59 and
it can be absorbed into the pore friction η̃p(t̃ ). Note that here
the pore friction η̃p(t̃ ) is assumed to be a function of time. We
solve the dynamics of the cis side by using the TP equations.
Following the arguments of Rowghanian and Grosberg,25 we
are able to derive the TP equations analytically. We assume
that the monomer flux, φ̃ ≡ ds̃/dt̃, is constant in space on the
mobile domain of the cis side and through the pore, but evolves
in time. The tension front which is the boundary between
the immobile and mobile domains is located at the distance
x̃ = −R̃(t̃ ) from the pore. The external driving force inside the
mobile domain is mediated by the backbone of the chain from
the pore located at x̃ = 0 to the last mobile monomer N which
is located at the tension front. Using the force-balance relation
for the differential element dx̃ located between x̃ and x̃ + dx̃,
the magnitude of the tension force at the distance x̃ from the
pore can be obtained. One can integrate this force-balance
relation over the distance from the entrance of the pore to x̃
to obtain the tension force at x̃ as f̃ (x̃, t̃ ) = f̃0 − φ̃(t̃ )x̃, where
f̃0 ≡ f̃ tot − η̃p(t̃ ) φ̃(t̃ ) is the force at the entrance of the pore
(see Appendix A of Ref. 54 for technical details). As the drag
of all the preceding monomers diminishes, the mediated force
closer to the tension front becomes smaller and it vanishes at
the tension front.

According to the blob theory, the shape of the mobile
part of the chain can be classified into three different regimes.
For a moderate external driving force, i.e., N−ν0 ≪ f̃0 ≪ 1,
the monomer number density close to the pore is greater than
unity, and the chain shape resembles a trumpet- (TR) like
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FIG. 1. (a) A schematic of the translocation process in the propagation stage, i.e., t̃ < t̃tp,T, for the trumpet regime. The time dependent external driving force
f̃ (t̃) acts only on the polymer bead in the pore towards the trans side. N0 is the length of polymer and translocation coordinate, s̃, is the number of beads that
have already been translocated into the trans side. l̃ + s̃ is the number of beads influenced by the tension force on the cis side, which is less than N0 during the
propagation stage. The location of the tension front is determined by R̃. d̃(t̃ ) is the pore width that is varying in time during the translocation process when the
pore is flickering. (b) The translocation process for the trumpet regime during the post-propagation stage that is the regime starting after which the tension front
reaches the chain end. Panels (c) and (d) are the same as panel (a) but for the stem-flower and strong-stretching regimes, respectively. The propagation times for
the trumpet, stem-flower, and strong-stretching regimes are defined by τ̃tp,T, τ̃tp,SF, and τ̃tp,SS, respectively.

shape with the narrow end closer to the pore. This regime
is called TR which is depicted in Figs. 1(a) and 1(b). For a
stronger external driving force, 1 ≪ f̃0 ≪ Nν

0 , the force can
only straighten a small part of the chain which is called the
stem, and the part following it is called the flower. This regime
is called stem-flower (SF) (see Fig. 1(c)). Finally, for a very
strong driving force, i.e., f̃0 ≫ Nν

0 , the force is strong enough
to straighten the whole moving part of the chain, which is
called the strong-stretching (SS) regime (see Fig. 1(d)). In the
TR and SF regimes, the location of the tension front is at the
farthest blob from the pore, while in the latter one, i.e., SS,
the tension front is located at the farthest mobile bead of the
chain from the pore as can be seen in Fig. 1.

The monomer flux can be written as a function of the total
force and linear size of the mobile part by integrating the force
balance equation over the whole mobile part,

φ̃(t̃ ) = f̃ tot(t̃ )
η̃p(t̃ ) + R̃(t̃ ) . (2)

The effective friction can be obtained as

Γ̃(t̃ ) = R̃(t̃ ) + η̃p(t̃ ), (3)

by combining the definition of the flux, φ̃ ≡ ds̃/dt̃, with
Eqs. (1) and (2).

Eqs. (1)–(3) together with the knowledge of R̃(t̃ ) deter-
mine the full solution for s̃. Therefore, the only equation
remaining is the equation of motion for R̃(t̃ ) that must be
derived separately for the propagation and post-propagation
stages. In the propagation stage, as shown in Figs. 1(a), 1(c),
and 1(d), the tension has not reached the last monomer of
the chain, i.e., N = l̃ + s̃ < N0, where N is the number of
total beads that have been already influenced by the tension
force and l̃ is the number of dragged monomers in the cis
side. Using the scaling relation of the end-to-end distance of
the self-avoiding chain, R̃ = ÃνNν, where Ãν is a constant
prefactor and N is the last monomer inside the mobile domain
at the tension front, together with the blob theory and N = l̃ + s̃
(see Appendix B of Ref. 54 for details), the equation of motion
for the tension front in the propagation stage can be derived as

˙̃R(t̃ ) = ν Ã
1
ν
ν R̃(t̃ ) ν−1

ν φ̃(t̃ )
1 − ν Ã

1
ν
ν R̃(t̃ ) ν−1

ν

, (4)

for the SS regime, and

˙̃R(t̃ ) = ν Ã
1
ν
ν R̃(t̃ ) ν−1

ν
�(L̃a + G̃a)� ˙̃f tot(t̃ ) − φ̃(t̃ ) ˙̃ηp(t̃ )

�
+ φ̃(t̃ )	

1 + ν Ã
1
ν
ν R̃(t̃ ) ν−1

ν L̃a × φ̃(t̃ )
,

(5)

for the TR and SF regimes. Here, the subscript “a” in L̃a and
G̃a stands for the trumpet regime as TR+ and TR− correspond
to positive and negative values of φ̃, respectively. For the stem-
flower regime “a” denotes SF. The time derivative of f̃ tot is
˙̃f tot. L̃a and G̃a are given by

L̃TR+ =
1

η̃p(t̃ ) + R̃(t̃ )

− ν

(2ν − 1)φ̃(t̃ )2
�
φ̃(t̃ )R̃(t̃ )� 2ν−1

ν

−
η̃p(t̃ )
φ̃(t̃ )

�
φ̃(t̃ )R̃(t̃ )� ν−1

ν


: φ̃(t̃ ) > 0, (6a)

L̃TR− =
1

η̃p(t̃ ) + R̃(t̃ )


ν

(2ν − 1)φ̃(t̃ )2
�
− φ̃(t̃ )R̃(t̃ )� 2ν−1

ν

−
η̃p(t̃ )
φ̃(t̃ )

�
− φ̃(t̃ )R̃(t̃ )� ν−1

ν


: φ̃(t̃ ) < 0, (6b)

G̃TR+ =
1
φ̃(t̃ )

�
φ̃(t̃ )R̃(t̃ )� ν−1

ν : φ̃(t̃ ) > 0, (6c)

G̃TR− =
1
φ̃(t̃ )

�
− φ̃(t̃ )R̃(t̃ )� ν−1

ν : φ̃(t̃ ) < 0, (6d)

L̃SF = −
1
φ̃(t̃ ) +

ν − 1
(2ν − 1)�η̃p(t̃ ) + R̃(t̃ )�φ̃(t̃ )2 , (6e)

G̃SF =
1
φ̃(t̃ ) . (6f)

In the post-propagation stage which is schematically shown
in Fig. 1(b) for the TR regime, all monomers on the cis side
have already been affected by the tension force. Therefore,
the correct closure relation for the post-propagation stage is
l̃ + s̃ = N0. Therefore, one can derive the equation of motion
for the tension front as

˙̃R(t̃ ) = −φ̃(t̃ ), (7)

for the SS regime, while for the TR and SF regimes, it can be
written as

˙̃R(t̃ ) = (L̃a + G̃a)� ˙̃f tot(t̃ ) − φ̃(t̃ ) ˙̃ηp(t̃ )
�
+ φ̃(t̃ )

φ̃(t̃ ) × L̃a
. (8)

For more details, the interested reader is referred to Appendix
B of Ref. 54.
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Equations (1)–(5) must be solved self-consistently to find
the solution for the model in the propagation stage, while in the
post-propagation stage, one must solve the set of Eqs. (1)–(3),
(7), and (8).

III. SCALING OF TRANSLOCATION TIME FOR SS
REGIME

A. Static pore and oscillating force

To obtain analytical results, we assume that only the
external driving force has contribution to the total force in the
BD equation (1), i.e., we ignore both the entropic and thermal
noise terms here. We choose the external driving force as a
combination of a constant force F̃ and an oscillatory term
Ãf (t̃ ) as

f̃ tot = f̃ (t̃ ) = F̃ + Ãf (t̃ ), (9)

where Ãf (t̃ ) = ã f sin(ω̃ f t̃ + ψ f ), and ã f , ω̃ f and ψ f are
the amplitude, frequency, and initial phase of the force,
respectively. For simplicity, we first consider a static pore with
a constant pore friction, i.e., η̃p(t̃ ) = η̃p0. Then, Eq. (2) reduces
to φ̃(t̃ ) = �

F̃ + Ãf (t̃ )�/�R̃(t̃ ) + η̃p0
�
. In the strong-stretching

regime considered here, the number of mobile monomers on
the cis side is given by l̃SS = R̃. Knowing the external driving
force as a function of time and pore friction together with the
conservation of mass, N = s̃ + l̃, the propagation time τ̃tp can
be solved by integration of N from 0 to N0.36,54 The result is

τ̃tp =
1
F̃

  N0

0
R̃(N)dN + η̃p0N0


− ∆τ̃tp, (10)

where

∆τ̃tp =
1
F̃


1
2

R̃2(N0) + η̃p0R̃(N0) +
 τ̃tp

0
Ãf (t̃ )dt̃


. (11)

In the post-propagation stage, one sets the condition dN/dt̃
= 0 and integrates R̃ from R̃(N0) to 0 to obtain the post-
propagation time, τ̃pp, as

τ̃pp =
1
F̃



1
2

R̃2(N0) + η̃p0R̃(N0) −
 τ̃

τ̃tp

Ãf (t̃ )dt̃

. (12)

Finally, the total translocation time is then given by

τ̃ = τ̃tp + τ̃pp

=
1
F̃

 N0

0
R̃(N)dN + η̃p0N0 −

 τ̃

0
Ãf (t̃ )dt̃



= τ̃stat −
1
F̃

 τ̃

0
Ãf (t̃ )dt̃, (13)

where

τ̃stat =
Ãν

(1 + ν)F̃ N1+ν
0 +

η̃p0

F̃
N0 (14)

is the translocation time in the absence of the oscillatory term
in the external driving force.28,54 Here, we have used the same
value of the amplitude Ãν = 1.15 as in Ref. 38.

In Fig. 2, we plot the translocation time from Eq. (13)
normalized with Eq. (14), as a function of the normalized
frequency ω̃ f /ω̃stat for various values of ψ f in the SS regime
(F = 25 and a f = 2.5). Here, ω̃stat = 2π/τ̃stat is the frequency

FIG. 2. Analytic approximation for the normalized translocation time,
τ̃/τ̃stat, as a function of normalized force frequency, ω̃ f /ω̃stat, for vari-
ous values of initial phases of ψ f = 0, π/2, π, and 3π/2 in the SS regime.
Here, the pore is static with constant pore friction ηp0= 3.5, the chain
length is N0= 128, and the time dependent external driving force is f̃ (t̃ )
= F̃ + ã f sin(ω̃ f t̃ +ψ f ), where F = 25 and a f = 2.5. The green diamonds
show the normalized translocation time for the full IFTP model which in-
cludes the entropic force term. The magenta dashed-dashed-dotted curve
presents the normalized translocation time in the small amplitude approxi-
mation.

related to the whole translocation process when the pore is
not flickering, i.e., η̃p(t̃ ) = η̃p0 and the external driving force is
constant, i.e., f̃ (t̃ ) = F̃. For comparison, we also show results
from the full deterministic IFTP model (green diamonds)
where the entropic force term has been included. It can be
seen that the agreement with the analytic approximation in the
SS regime is very good for a wide range of frequencies.

Using the explicit form of Ãf (t̃ ) = ã f sin(ω̃ f t̃ + ψ f ), we
can now examine Eq. (13) in different limits. First, in the high
frequency limit, i.e., ω̃ f ≫ τ̃−1, the integral

 τ̃
0 Ãf (t̃ )dt̃ simply

vanishes and the total translocation time in the presence of
the oscillatory term is the same as the translocation time in
the absence of it, i.e., τ̃ = τ̃stat, as can also be seen in the
high-frequency limit of Fig. 2.

In the opposite limit of a very small frequency, ω̃ f ≪ τ̃−1,
the integral gives

− 1
F̃

 τ̃

0
Ãf (t̃ )dt̃ = − 1

F̃

 τ̃

0
ã f sin(ω̃ f t̃ + ψ f )dt̃

= −
ã f

F̃ω̃ f


cos(ψ f ) − cos(ω̃ f τ̃ + ψ f )


. (15)

The expansion of cos(ω̃ f τ̃ + ψ f ) to first order yields cos(ω̃ f τ̃
+ ψ f ) ∼ cos(ψ f ) − ω̃ f τ̃ sin(ψ f ) and thus

τ̃ =
τ̃stat�

1 + ã f sin(ψ f )/F̃� . (16)

As can be seen from Eq. (13), the scaling form for the
average translocation time is the same for both static and
high frequency limits. In the low frequency limit, the scaling
with respect to the chain length is also the same, but the
scaling form with respect to the external driving force becomes
τ̃ ∼ [F̃ + ã f sin(ψ f )]−1.

Finally, if the amplitude of the oscillating term, ã f , is
much smaller than the static force, F̃, then we can use a small
amplitude approximation (SAA), where the value of the upper
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FIG. 3. (a) The normalized translocation time, τ̃/τ̃stat, as a function of normalized force frequency, ω̃ f /ω̃stat, for fixed value of the initial phase of ψ f = 0. The
pore is static with a constant pore friction ηp0= 3.5, the chain length is N0= 128, and the time dependent external driving force is f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ),
where F = 25.0 and a f /F = 0.1,0.2,0.4, and 0.8 (from top to bottom). Solid line curves show the results for the full deterministic model while the other curves
present the results for the small amplitude approximation (SAA). (b) The normalized translocation time, τ̃/τ̃SAA, as a function of normalized force frequency,
ω̃ f /ω̃stat. Here, the values of the initial phase, pore friction, chain length, and the time dependent external driving force are the same as in panel (a).

limit in the integral over time in Eq. (13) can be replaced by
τ̃stat. The translocation time for SAA can then be written as

τ̃SAA = τ̃stat


1 +

ã f

2πF̃

cos(2π ω̃ f

ω̃stat
+ ψ f ) − cos(ψ f )
ω̃ f

ω̃stat


. (17)

This equation predicts an oscillatory dependence of the
translocation time on the driving frequency. In Fig. 2, we plot
the small amplitude expansion result for the case where the
amplitude ratio a f /F = 0.1 (magenta dashed-dashed-dotted
line). For this relatively small ratio, the agreement with the
solution of the full deterministic model (green diamonds) is
good for a wide range of frequencies.

To investigate the regime where the small amplitude
approximation is well behaved, in Fig. 3(a), the normalized
translocation time, τ̃/τ̃stat, has been plotted as a function of
normalized force frequency, ω̃ f /ω̃stat, for the full deterministic
model (solid line curves) and also for SAA (dashed line
curves). Here, the pore is static with constant pore friction
ηp0 = 3.5, the chain length is N0 = 128, and the time dependent
external driving force is f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ), where
F = 25.0, a f /F = 0.1,0.2,0.4, and 0.8, and ψ f = 0. The
difference between the results of the full deterministic model
and SAA increases by increasing the ratio a f /F. To show
this more clearly, in Fig. 3(b), the ratio of the translocation
time for the full deterministic model and for SAA in Eq. (17),
τ̃/τ̃SAA, has been plotted as a function of the normalized
force frequency, ω̃ f /ω̃stat. The values of the initial phase,
pore friction, chain length, and the time dependent external
driving force are the same as in panel (a). As it can be
seen, the ratio τ̃/τ̃SAA is a function of ω̃ f /ω̃stat and also of
a f /F. By increasing the ratio a f /F, the difference between
the magnitude of τ̃f /τ̃SAA and unity increases. To show the
sensitivity of the normalized translocation time on the chain
length, N0 in Fig. 4, the normalized translocation time based
on the deterministically solved IFTP model, τ̃/τ̃stat, has been
plotted as a function of the normalized force frequency, the
same as in Fig. 3(a) but for fixed value of a f /F = 0.4 and
different values of the chain length N0 = 50-5000. All curves
collapse on a single master curve. Similar results have been
confirmed for other values of the ratio a f /F.

B. Flickering pore and oscillating force

We consider next the most general case of an oscillating
force and a flickering pore in the SS regime. We again
neglect both the entropic force and thermal noise, and take
the oscillatory force to be the same as in Sec. III A. The
flickering pore has the following time dependent pore friction:

η̃p(t̃ ) = η̃p0 + Ãp(t̃ ), (18)

where Ãp(t̃ ) = ãp sin(ω̃pt̃ + ψp) and ãp, ω̃p, and ψp are the
amplitude, frequency, and initial phase of the pore friction,
respectively. Then, Eq. (2) reduces to φ̃(t̃ ) = �

F̃ + Ãf (t̃ )�/�
R̃(t̃ ) + η̃p0 + Ãp(t̃ )�. As in Sec. III A, we solve the propagation

time by integration of N from 0 to N0 and the post-
propagation time by integration of R̃ from R̃(N0) to 0. The
total translocation time is then given by

τ̃ = τ̃stat −
1
F̃

 τ̃

0
Ãf (t̃ )dt̃ +

1
F̃

 N0

0
Ãp(t̃ )dN. (19)

Using the explicit form of Ãp(t̃ ) = ãp sin(ω̃pt̃ + ψp), at the
high frequency limit, ω̃p ≫ τ̃−1, and for very long chains,

FIG. 4. The normalized translocation time, τ̃/τ̃stat, as a function of normal-
ized force frequency, ω̃ f /ω̃stat, for a fixed value of the initial phase ofψ f = 0
and different values of the chain length N0= 50−5000. The pore is static with
constant pore friction ηp0= 3.5, and the time dependent external driving force
is f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ), where F = 25.0 and a f /F = 0.4.
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the integral
 N0

0 Ãp(t̃ )dN vanishes and the whole translocation
time in the presence of the oscillatory force is the same as the
translocation time with a constant pore friction η̃p0. We note,
however, that for short chains, the integral

 N0
0 Ãp(t̃ )dN can

be non-zero due to the interaction of the polymer beads with
the pore.39

In the opposite limit of a low frequency, the integral gives

1
F̃

 N0

0
Ãp(t̃ )dN =

1
F̃

 N0

0
ãp sin(ω̃pt̃ + ψp)dN

=
ãp sin(ψp)

F̃
N0. (20)

Therefore,

τ̃ =
1
F̃

  N0

0
R̃(N)dN + {η̃p0 + ãp sin(ψp)}N0

−
 τ̃

0
Ãf (t̃ )dt̃


= τ̃stat +

1
F̃


ãp sin(ψp)N0 −

 τ̃

0
Ãf (t̃ )dt̃


.

(21)

As we can see in Eq. (21), at the low frequency limit, the pore
behaves like a static pore with pore friction η̃p0 + ãp sin(ψp).

Equations (19) and (21) show that the scaling form for the
average translocation time for a very long chain at the high and
also at the low pore frequency limits is the same as in the case
where only the driving force is alternating and the pore is static
(as discussed in Subsection III A). For a short chain at both
the high and the low pore frequency limits, the scaling may be
affected by the value of the integral (1/F̃)  N0

0 Ãp(t̃ )dN .
When the driving force is constant, if the amplitude of

the oscillating term, ãp, is much smaller than the static pore
friction, η̃p0, then we can also use here a small amplitude
approximation, where the value of the time in the second
integral in Eq. (19) must be replaced by t̃(Ñ(η̃p0)). Then, for
Ãp(t̃ ) = ãp sin(ω̃pt̃ + ψp), Eq. (19) can be cast into

τ̃ = τ̃stat +
ãp

νF̃ A1/ν
ν

 R̃(N0)

0
dR̃ R̃

1−ν
ν sin[ω̃p t̃(R̃) + ψp], (22)

where t̃(R̃) = 1
F̃


R̃

1+ν
ν

(1+ν)A1/ν
ν

− R̃2

2 +
�
R̃1/ν

A
1/ν
ν

− R̃
�
η̃p0


. The result

of Eq. (22) has been checked and it matches very well with
the result of the full deterministic model in a wide range of
frequencies.

IV. AVERAGE TRANSLOCATION TIME

Next, we consider the average translocation time, τ̃, in all
the different regimes using the full IFTP theory. To this end,
we numerically solve the IFTP Eqs. (1)–(5), (7), and (8) to
obtain the total translocation time. We study the behavior of
the translocation time first for a time-dependent force, time-
dependent pore friction, and finally when both the force and
the pore friction are functions of time.

In Fig. 5, the normalized translocation time, τ̃/τ̃stat, has
been plotted as a function of normalized frequency, ω̃ f /ω̃stat,
for various values of the initial phases of ψ f = 0, π/2, π, and
3π/2. The pore is static with the pore friction ηp0 = 3.5, chain
length is N0 = 128, and the time dependent external driving
force is given by f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ), where F = 5.0

FIG. 5. The normalized translocation time, τ̃/τ̃stat, as a function of nor-
malized force frequency, ω̃ f /ω̃stat, for various values of initial phases of
ψ f = 0, π/2, π, and 3π/2. Here, the pore is static with a constant pore friction
ηp0= 3.5, the chain length is N0= 128, and the time dependent external
driving force is f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ), where F = 5.0 and a f = 0.5.
The black circles and green squares show the normalized translocation time
for ψ f = 0 and 3π/2, respectively, for the full model which includes thermal
noise and initial shape distribution of the chain.

and a f = 0.5. For ψ f = 0 (black solid curve) at the very low
frequencies, the magnitude of the translocation time is the
same as of the static force case. At the low frequency limit,
the translocation process occurs during the first half of the
period of the oscillating force. During this first half of the
cycle, the value of the force increases from its static value to its
maximum and back to the static value at ω̃ f /ω̃stat = 0.5, being
always greater than its static value. Therefore, the translocation
time gradually decreases for small frequencies and has a
minimum at ω̃ f /ω̃stat = 0.5. For frequencies higher than
ω̃ f /ω̃stat = 0.5, the chain starts experiencing the second half of
the cycle where the value of the force is always smaller than its
static limit, and thus there is a first maximum at ω̃ f /ω̃stat = 1.
For higher frequencies, i.e., ω̃ f /ω̃stat > 1, the chain again
experiences the following half of the cycle, i.e., T̃f < t̃ < 3T̃f /2
(T̃f = 2π/ω̃ f ), where again the value of the force is greater
than its static limit and the translocation time increases.
With increasing frequency, the translocation time displays
oscillations between minima and maxima with a decreasing
amplitude upon approaching the high-frequency limit, where
the rapidly oscillating force component averages to zero, as
discussed in Sec. III. For comparison, we have also solved the
full stochastic IFTP model for the initial phases ψ f = 0 and
3π/2, with results shown in black circles and green squares,
respectively, in Fig. 5. In these cases, we take into account
both thermal noise and the initial shape distribution of the
chain as explained in detail in Ref. 54. The results are in very
good agreement with the deterministically solved equations.

Next, we consider the case of a flickering pore with a
constant drive. In Fig. 6, the normalized translocation time,
τ̃/τ̃stat, has been plotted as a function of normalized frequency
of the flickering pore, ω̃p/ω̃stat, for a constant driving force,
F = 5.0, chain length of N0 = 128, and time dependent pore
friction η̃p(t̃ ) = η̃p0 + ãp sin(ω̃pt̃ + ψp) with static pore friction
ηp0 = 3.5 and amplitude ap = 1.275, for various values of the
initial phases of ψp = 0, π/2, π, and 3π/2. As we can see for
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FIG. 6. The normalized translocation time, τ̃/τ̃stat, as a function of nor-
malized frequency of the flickering pore, ω̃p/ω̃stat, for various values of
initial phases ofψp= 0, π/2, π, and 3π/2. Here, the driving force is constant,
F = 5.0, the chain length is N0= 128, and the time dependent pore friction
is η̃p(t̃ )= η̃p0+ ãp sin(ω̃pt̃ +ψp), where ηp0= 3.5 and ap= 1.275. The blue
circles show the normalized translocation time for the full model which
includes thermal noise and initial shape distribution of the chain. The arrows
indicate which way the pore moves at the beginning of the drive, due to the
initial phase ψp.

ψp = 0, in the low frequency limit, the value of the translo-
cation time reduces to its static value, where τ̃/τ̃stat = 1. As
the pore oscillation frequency increases, the value of the pore
friction also increases, which means that the pore width, d̃(t̃ ),
decreases (see Fig. 1(a)). Therefore, the effective interaction
between the pore and the beads becomes stronger and the
result is that the value of the translocation time grows and
reaches its maximum at ω̃p/ω̃stat = 0.5. At this frequency, the
translocation process occurs during the first half period of the
pore motion. During this first half of the cycle, the radius of the
pore decreases from its static value to its minimum and back to
the static limit at ω̃p/ω̃stat = 0.5, being always smaller than the
radius of the static pore. Therefore, the translocation time grad-
ually increases for low frequencies, and then it has a maximum

at ω̃p/ω̃stat = 0.5. For frequencies higher than ω̃p/ω̃stat = 0.5,
the chain experiences the second half of the cycle where the
radius of the pore is larger than the radius of the static pore,
and thus there is a strong minimum at ω̃p/ω̃stat = 1. For even
higher frequencies, i.e., ω̃p/ω̃stat > 1, the chain experiences
the next half of the cycle, i.e., T̃p < t̃ < 3T̃p/2 (T̃p = 2π/ω̃p),
where the radius of the pore is again smaller than its static value
and the translocation time increases. This alternation of high
and low pore friction creates successive minima and maxima
in a way similar to the case of the time-dependent drive,
except that increasing the pore friction leads to increasing
translocation time, while increasing the drive leads to more
rapid translocation. To compare, we have also solved the full
stochastic IFTP model54 for the initial phase ψ f = π, with
results shown in blue circles in Fig. 6. The results are in very
good agreement with the deterministically solved equations.

Finally, we consider the combination of an oscillating
drive and pore. The fact that increasing the drive or increasing
friction work in the opposite directions with respect to the
translocation time suggests that it could be minimized by
out-of-phase combination of the two forces. In Fig. 7(a),
we present the normalized translocation time as a function
of either the normalized pore frequency or force frequency,
for mixed initial phases ψ f = π/2 and ψp = 3π/2, ψ f = 3π/2
and ψp = π/2, ψ f = π/2 and ψp = π, and ψ f = π and ψp
= π/2. Here, the pore is flickering and the pore friction
is given by η̃p(t̃ ) = η̃p0 + ãp sin(ω̃pt̃ + ψp), where ηp0 = 3.5
and ap = 1.275 while the oscillating external driving force
is f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ) where F = 5.0 and a f = 0.5.
The pore frequency is equal to the force frequency during the
translocation process here. For fixed values of F, a f , ηp0, and
ap, the minimum value of the normalized translocation time,
τ̃min/τ̃stat, occurs at very low frequency limit when the force
phase is ψ f = π/2 and pore phase is ψp = 3π/2, because the
driving force has its maximum value and the pore friction has
its minimum value. Then, the normalized translocation time
gets its maximum value, τ̃max/τ̃stat, when ψ f = 3π/2 and pore
phase is ψp = π/2, because the driving force has its minimum

FIG. 7. (a) The normalized translocation time, τ̃/τ̃stat, as a function of either normalized pore frequency, ω̃p/ω̃stat, or force frequency, ω̃ f /ω̃stat, for mixed initial
phasesψ f = π/2 andψp= 3π/2,ψ f = 3π/2 andψp= π/2,ψ f = π/2 andψp= π, andψ f = π andψp= π/2. The black circles show the normalized translocation
time for ψ f = π/2 and ψp= 3π/2, for the full model which includes thermal noise and initial shape distribution of the chain. Here, the pore is flickering and the
pore friction is given by η̃p(t̃ )= η̃p0+ ãpsin(ω̃pt̃ +ψp), whereηp0= 3.5 and ap= 1.275 while the oscillating external driving force is f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ),
where F = 5.0 and a f = 0.5. (b) The normalized translocation time as a function of either ω̃p/ω̃stat or ω̃ f /ω̃stat, but for the identical initial pore and force phases
ψ f =ψp= 0, π/2, π, and 3π/2, with the same parameters as of (a). The arrows show the direction of the motion of a point on the pore wall at the starting of the
translocation process. For both panels (a) and (b), the chain length is N0= 128 and ω̃p/ω̃stat= ω̃ f /ω̃stat.
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value while the pore friction has its maximum value. All other
values of the normalized translocation times, τ̃/τ̃stat, for the
other values of the force and the pore phases at different force
or pore frequencies are between these two extremum values,
i.e., τ̃min/τ̃stat < τ̃/τ̃stat < τ̃Max/τ̃stat. For comparison, we have
also solved the full stochastic IFTP model54 for the initial
phases ψ f = π/2 and ψp = 3π/2, with results shown in black
circles in Fig. 7(a). The results are in very good agreement
with the deterministically solved equations.

In Fig. 7(b), we show the same quantity as a function of
either ω̃p/ω̃stat or ω̃ f /ω̃stat, but the initial pore and force phases
are now identical, and ψ f = ψp = 0, π/2, π, and 3π/2, with the
same parameters as of Fig. 7(a). Both the pore friction and
the driving force are time dependent with the same forms and
the same parameters as of Fig. 7(a). As expected, the two
effects now work against each other, and there is an almost
complete cancellation in the low and high frequency limits.
As the effect of time dependent driving force and pore friction
are dynamically coupled to each other, it is very difficult to
find parameters in such a way that at low frequency limit,
they exactly cancel the effect of each other. For intermediate
frequencies, there are some oscillations due to the fact that
the total effective friction, Eq. (3), is determined dynamically
by tension propagation on the cis side chain and cannot be
completely controlled externally. In the end, adding a time-
dependent component to the pore friction and the drive is
fundamentally different.

Finally, it is interesting to see how the (effective)
translocation exponent α, defined as α(N0) = d ln τ̃/d ln N0,
is affected by the presence of an alternating external driving
force. For a static driving force, the correction-to-scaling
term due to the pore friction is large here and α slowly
approaches the value 1 + ν ≈ 1.588 with increasing chain
length,27,28,38,54 as shown in Fig. 8. For the oscillating force,

FIG. 8. The effective translocation exponent, α(N0), as a function of the
chain length, N0, for two different values of initial phasesψ f = 0 (red dashed
curve) and π/2 (green dashed-dotted curve). The black solid circle-line
curve shows the static case where both the pore friction and the external
driving force are constant with the values ηp0= 3.5 and F = 5.0. Red and
green curves are for the cases where the pore friction is constant, ηp0
= 3.5, but the external driving force is time-dependent and given by f̃ (t̃ )
= F̃ + ã f sin(ω̃ f t̃ +ψ f ), with F = 5.0, a f = 0.5, and fixed ω̃ f = 0.5
ω̃stat(N0= 1000)= 9.5×10−4. The horizontal blue solid line is the asymptotic
value of the translocation exponent which is 1+ν in the limit of very long
chains.

f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ) with F = 5.0, a f = 0.5, constant
pore friction ηp0 = 3.5, and fixed ω̃ f = 0.5ω̃stat(N0 = 1000),
we see a very strong oscillatory behavior of α. The chosen
frequency ω̃ f = 0.5ω̃stat(N0 = 1000) = 9.5 × 10−4 is moderate
compared to the translocation time of the chain of length
N0 = 1000, low for a short chain such as N0 = 40, and very
high for a long chain such as N0 = 105. By fixing the frequency
when the chain length is changed, the limits of low, moderate,
and high frequencies are all explored. At the very short
and very long chain limits, the translocation exponent is the
same as for constant driving and independent of the value
of the initial phase ψ f . However, close to N0 = 1000, the
translocation exponent oscillates due to the oscillation of the
translocation time (see Fig. 5). It is worth noting that while the
amplitude of the exponent’s oscillation depends on the ratio of
a f /F, even with a moderate value of the ratio of a f /F = 0.1,
the exponent varies between 1.40 and 1.74, going well beyond
1 + ν. In addition, the oscillation amplitude decreases towards
long chains, as the system effectively enters the high frequency
limit and the average driving force approaches the static force
value.

V. DYNAMICS OF THE TRANSLOCATION PROCESS

To understand the effect of the oscillating pore and force
on the translocation process, it is necessary to examine also the
dynamics of the process and not just the resulting translocation
time. Often the translocation process has been characterized by
calculating the time evolution of the translocation coordinate
s̃. However, a more sensitive measure is the monomer waiting
time distribution that measures the time a monomer spends
inside the pore. The tension propagation (increasing waiting
time) and post-propagation (decreasing waiting time) stages
are also easy to distinguish from the distribution. For the
oscillating force and static pore, the waiting time distributions
are shown in Fig. 9. For the oscillating pore, the waiting times
are not shown, but they are analogous to the oscillating force
and consistent with the results discussed in Sec. IV.

In Fig. 9(a), the waiting time, w(s̃), is plotted as a function
of the translocation coordinate, s̃, for various values of initial
force phases ψ f = 0, π/2, π, and 3π/2. Here, the alternating
external driving force is given by f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ),
where F = 5 and a f = 0.5, the pore friction is constant,
ηp0 = 3.5, and the force frequency isω f = 0. The chain length
is N0 = 128, and the black solid curve has been plotted for
the completely static case, where the external driving force is
constant, F = 5, and the constant pore friction is ηp0 = 3.5.
With the initial phases ψ f = 0 and π, the waiting time
distribution curves collapse on the waiting time distribution
curve for the static case, and as a result, the corresponding
translocation times for these two initial phases are exactly the
same as it can be seen in Fig. 5. With ψ f = π/2, the value of
the force at ω̃ f = 0 is greater than its value for the static case
and therefore the waiting time is consistently below the static
force curve and the overall translocation time is smaller. For
ψ f = 3π/2 the opposite is true.

In Figs. 9(b)–9(d), the waiting time distributions are
shown for low, intermediate, and high frequencies. In the low
frequency regime, the waiting time gradually deviates from
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FIG. 9. (a) The waiting time, w(s̃), as a function of the translocation coordinate, s̃, for various values of initial force phases ψ f = 0, π/2, π, and 3π/2. Here,
the alternating external driving force is given by f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ), where F = 5 and a f = 0.5, the pore friction is constant, ηp0= 3.5, and the force
frequency is ω̃ f = 0. Panels (b)–(d) are the same as (a) but for different values of normalized force frequencies ω̃ f /ω̃static= 0.2,1, and 4, respectively. In all
panels, the chain length is N0= 128, and the black solid curve has been plotted for completely static case where the external driving force is constant, F = 5, and
the constant pore friction is ηp0= 3.5.

the static force distribution, while for the high frequency, the
distribution oscillates between the large and small force values.
As the translocation time is the integral of the waiting time, it
is clear from the high frequency distribution (Fig. 9(d)) why
the effect of the oscillating force is averaged out. On the other
hand, for the intermediate frequencies, the waiting time and
thus the translocation time can be higher or lower depending
on the initial phase.

In addition to the waiting time, we have also solved for
the time evolution of the translocation coordinate s̃. In this

case, we have used the full stochastic model including the
fluctuations due to thermal noise and initial configuration such
that we can extract the variance of s̃ in addition to the mean
value. In addition, we have also increased the driving force
and the amplitude to make the oscillations more visible. The
simulation parameters are thus f̃ (t̃ ) = F̃ + ã f sin(ω̃ f t̃ + ψ f ),
where F = 7, a f = 3, ψ f = π, pore friction ηp0 = 3.5, and
chain length N0 = 128. The results for the mean value ⟨s̃(t)⟩
and the variance ⟨δ s̃2(t)⟩ = ⟨s̃2(t)⟩ − ⟨s̃(t)⟩2 are shown in
Figs. 10(a)–10(c). The oscillations in the mean value of s̃(t) are

FIG. 10. (a) The averaged translocation coordinate, s̃(t), as a function of time, t , for the static case with constant external driving force F = 7 and constant
pore friction ηp0= 3.5 (solid black curve), and also when the external driving force is alternating with f̃ (t̃ )= F̃ + ã f sin(ω̃ f t̃ +ψ f ) where F = 7, a f = 3 and
ψ f = π, and the constant pore friction is ηp0= 3.5, for various values of force frequencies ω̃ f /ω̃stat= 0.5,1,2, and 4 (red dashed, green dashed-dotted, blue
dashed-dotted-dotted, and pink dashed-dashed-dotted curves, respectively). Panels (b) and (c) present the variance ⟨δ s̃2(t)⟩= ⟨s̃2(t)⟩− ⟨s̃(t)⟩2 as a function of
time for the same parameters as of panel (a) in normal-normal and log-log scales, respectively. The chain length is N0= 128 in all panels.
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visible for the intermediate frequencies similar to the waiting
time distribution.

VI. CONCLUSIONS

We have extended the recently developed iso-flux tension
propagation theory to polymer translocation driven by a
time-dependent external force and through an oscillating
nanopore. Specifically, we take into account a periodically
oscillating term in the external driving force and describe
the flickering of the pore with a similar term in the pore
friction. We have derived analytical approximations for the
translocation time in the low and high frequency limits, and
also in the intermediate frequency regime for small oscillation
amplitudes. The analytical expressions can be used to interpret
the numerical results obtained from solving the full model.
The theory can also be easily generalized for other types of
oscillations, including non-periodic ones.

We have shown that in the low and high frequency
limits, the dynamics of the translocation process reduces
to the non-oscillating cases; the translocation time is found
to scale similarly to the static force and pore simulations,
following the finite size scaling relation τ̃ = c1N1+ν

0 + c2ηpN0.
However, in the intermediate frequency regime, determined
by the characteristic time scale of the process, the effective
scaling exponent, α(N0) = d ln τ̃/d ln N0, is shown to be
extremely sensitive to small periodic fluctuations. The results
indicate that such periodic fluctuations can indeed be used
to either speed up or slow down the translocation process.
Additionally, it is proposed that such control can be achieved
either by tuning the oscillations in the driving force or in
the pore characteristics. On the other hand, it is plausible
that such oscillations may have significant influence on
the experimentally measured translocation times and scaling
exponents.

Our results shed light on the role that small oscillations
in the external driving force and in the pore characteristics
have on the dynamics of polymer translocation. The developed
theory and the results may help in understanding both
biological functions and experiments, which are being done
on increasingly complex nanopore systems.
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