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Abstract: A novel and cleaner process for lead and silver recycling from multiple lead-containing
wastes, e.g., lead ash, lead sludge, lead slag, and ferric sludge, by reductive sulfur-fixing smelting was
proposed. In this process, coke and iron-containing wastes were employed as reductive agent and
sulfur-fixing agent, respectively. A Na2CO3-Na2SO4 mixture was added as flux. The feasibility of this
process was detected from thermodynamic and experimental perspectives. The influence of Fe/SiO2

and CaO/SiO2, composition of the molten salt, coke addition, smelting temperature, and smelting
time on direct Pb recovery and sulfur-fixation efficiency were investigated. The optimal process
conditions were determined as follows: WCoke = 15% WPb wastes, WNa2CO3 /WNa2SO4 = 0.7/0.3, Fe/SiO2

= 1.10, CaO/SiO2 = 0.30, smelting temperature 1200 ◦C, and smelting time 2 h, where W represents
weight. Under these optimum conditions, 92.4% Pb and 98.8% Ag were directly recovered in crude
lead bullion in one step treatment, and total 98.6% sulfur was fixed. The generation and emissions
of SO2 can be avoided. The main phases in ferrous matte obtained were FeS, NaFeS2, Fe2Zn3S5,
and a little entrained Pb. The slag was a FeO-SiO2-CaO-Na2O quaternary melt.

Keywords: SO2-free sulfur fixing smelting; lead recycling; wastes co-treatment and recycling;
lead-iron-containing wastes; molten salt; PbO-FeO-SiO2-CaO-Na2O phase diagram

1. Introduction

Today, large amounts of lead-containing wastes are produced in non-ferrous metallurgical
industry [1–3], especially in Pb and Zn metallurgy fields, such as lead ash and lead slag generated
in Pb/Zn smelting, lead anode slime, and lead sludge produced in the electrolytic refining.
Other engineering fields [4–6] are also sources of Pb-bearing substances, including lead scrap and
lead paste separated from spent lead-acid batteries [7]. In many countries, these lead-bearing wastes
are classified as hazardous waste due to the high toxicity of lead [8]. They are greatly detrimental to
environment and human health if left untreated and abandoned directly to the environment [9,10].
However, these wastes generally contain considerable amounts of precious metals, such as gold
(Au) and silver (Ag). It also enormously challenges the circular economy if the valuable metals are
not recycled. Various lead wastes are potential resources for extracting lead and precious metals
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considering the fact that the grades of lead concentrates are decreasing [11] and primary lead ores are
gradually exhausting.

Many studies about the treatment of Pb-containing wastes using pyrometallurgical and
hydrometallurgical processes were reported in recent years [12,13]. The immobilization of lead
slags to prepare construction materials and inorganic polymers were also investigated [14,15].
Hydrometallurgical methods also can be applied for various Pb-bearing wastes treatment. They often
consist of a two-step process of leaching and separation in acid [16], alkaline [17], and other
lixiviants [18,19]. Many hydrometallurgical processes involve shortcomings of a long process chain,
large amounts of reagents consumption, and waste water generation. Most hydrometallurgical disposal
processes of lead wastes are still far from the industrial production scale.

Pyrometallurgy is the predominant methodology around the world for primary lead production.
Reverberatory smelting and bath smelting are the two main technologies [20]. Generally, sulfur content
in the feed required in the reverberatory smelting techniques is lower than 2%. As a result, SO2 emission
is inevitable with Pb-bearing wastes because sulfur contents of lead wastes typically are higher than
2%. Thus, a high energy consumption and heavy pollution are involved when using the reverberatory
smelting technology. At present, many lead and zinc smelters apply bath smelting processes to treat
Pb wastes along with the primary raw materials [21], such as spent lead-acid battery pastes, lead slags,
and other ferrous wastes. However, compared to the primary sulfide concentrate, the sulfur content
in wastes is too low to provide enough heat for the smelting when considering the endothermic
decomposition reactions of sulfate [22]. Therefore, the use of waste materials often leads to an unstable
smelting operation. Moreover, some new technologies [23–25] such as vacuum separation have been
reported to treat lead-bearing residues and lead paste. They need a desulfurization pre-treatment step,
and the operation cost is relatively high.

Alkaline smelting was first employed by researchers of the former Soviet Union to extract lead
from lead sulfide using molten NaOH [26]. Subsequently, more molten salt systems were further
developed and introduced to extract lead [27], antimony [28], and bismuth [29] due to the high solvent
property, thermal stability, and electrical property of molten salt [30]. In the molten salt smelting,
the traditional FeO-SiO2-CaO slag will be replaced by a molten salt.

In view of environment protection and comprehensive utilization of secondary resources, this
investigation proposed a promising new process, referred to as reducing sulfur-fixing smelting,
to efficiently recover Pb, Ag and recycle iron and sulfur values from lead-bearing wastes in
an environmentally friendly manner. Na2CO3-Na2SO4 binary salt was used as reaction medium.
The novelty of this process is treatment of various iron-lead-bearing wastes, SO2-free sulfur fixation,
a much shorter flowsheet, absence of harmful by-product, and a wide adaptability for different
secondary materials. This work investigated the experimental feasibility of this new process in detail.
The effects of slag property, feed mixture of different raw materials, and smelting temperature and time
on lead recovery and sulfur-fixation efficiency were determined. Furthermore, a series of bench-pilot
experiments were conducted. The distributions of Pb, Fe, and S were also evaluated.

2. Experimental

2.1. Materials

The lead-bearing wastes used in this study come from the processes of Chinese metallurgical
industry. The feed mixture contained lead ash, lead sludge, lead slag, and ferric sludge. In order to have
a steady assay of the feed, 23.9 g lead ash, 48.0 g lead sludge, 5.0 g lead slag, and 23.1 g ferric sludge
were manually and carefully mixed to obtain a mixture containing 30% of Pb and 8% of S. Coke used
as the reducing agent in this research had fixed carbon of 84.3%. The chemical compositions of the
materials are given in Table 1. Figure 1 illustrates the X-ray diffraction analysis results (XRD, D/max
2550PC, Rigaku Co. Ltd, Tokyo, Japan). Other reagents, including Na2CO3 and Na2SO4, flux Fe2O3,
SiO2, and CaO, were analytical purity and supplied by Aladdin Industrial Corporation, China.
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Table 1. Chemical compositions of the materials and their mixture (wt.%).

Materials Pb S Fe Zn Ag * SiO2 CaO

Lead ash 49.08 6.74 3.78 2.22 45 0.89 0.39
Lead sludge 30.51 12.19 3.77 6.72 65 5.93 8.61

Lead slag 18.56 0.72 8.89 0.42 35 44.13 0.79
Iron sludge 11.61 2.17 40.07 0.36 730 6.84 7.83

Mixture 30.00 8.00 12.41 4.2 236 7.19 6.07

Coke
Industrial Analysis/% Chemical Composiztion of the Ash/%

Cfix* Vd* Ad* Fetotal SiO2 CaO Al2O3
81.27 3.30 15.43 25.23 41.23 6.60 25.24

* g/t; Cfix: fixed carbon; Vd: dry basis volatiles; Ad: dry basis ash.
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Figure 1. XRD patterns of the feed materials.

The XRD spectra shows that the main lead-bearing phases in the feed materials were sulfate
(PbSO4), sulfide (PbS), oxide (Pb3O4 and PbO2), and silicate (PbSiO3). At the same time, zinc sulfate
(ZnSO4), zinc oxysulfate (Zn3O(SO4)2), iron sulfate (Fe2(SO4)3), calcium sulfate (CaSO4), a complex
lead-zinc mineral queitite (Pb4Zn2((SO4)(SiO4)(Si2O7)), iron silicate (FeSiO3), and ferric oxide (Fe2O3)
were also detected in the materials. The feed material is thus a polymetallic complex material.
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2.2. Methods

Figure 2 shows a detailed flowchart of this novel process. As an experimental procedure, 100 g
lead-bearing waste mixture was mixed with coke powder, Na2CO3-Na2SO4 mixture, and other fluxes
(CaO, SiO2 and Fe2O3 if necessary). The mixture was placed in an alumina crucible. The crucible was
pushed into the constant temperature zone of a tube furnace at the desired temperature. The schematic
of the tube furnace is illustrated in Figure 3. In the smelting process, a series of reduction and
sulfur-fixation reactions took place between the reactants. Metallic Pb was extracted from the raw
materials and enriched in crude lead bullion. At the same time, the sulfur was fixed as ferrous matte,
instead of emitting SO2. After the required smelting time in air, the crucible was taken out from the hot
zone and cooled to room temperature. Next, the crucible was broken to carefully separate and weigh
the smelting products obtained, crude lead, ferrous matte, and slag. The products were analyzed by
Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES, Optima 3000, Perkin Elmer,
Norwalk, CT, USA) and X-ray diffractometer.
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The direct Pb recovery η and sulfur-fixing rate ξ were calculated using the following equations:

Direct Pb recovery η =
Mass of lead in the crude lead

Mass of lead in the initial feed materials
(1)

Sulfur − fixation rate ξ =
Mass of sulfur in the matte and slag

Mass of sulfur in the initial feed materials
(2)

3. Thermodynamics Consideration

The main lead-bearing phases in the feed materials are lead sulfate (PbSO4), lead sulfide (PbS),
and lead oxide (PbO). In the smelting process, a series of reduction and sulfur-fixation reactions took
place between the reactants at high temperature (1000–1300 ◦C), as shows in Table 2.

Table 2. Possible reactions taking place in the reductive sulfur-fixing smelting process of lead-bearing
complex mixture.

Reactions ∆Gθ
T−T [kJ/mol,◦C] [31] Equation

3Fe2O3 + C = 2Fe3O4 + CO(g) ∆Gθ
T = −0.235 T + 74.482 (3)

3Fe2O3 + CO(g) = Fe3O4 + CO2(g) ∆Gθ
T = −0.061 T − 47.13 (4)

3/16 PbSO4 + 1/16 Fe3O4 + C = 3/16 Pb + 3/16 FeS + CO(g) ∆Gθ
T = −0.177 T + 61.90 (5)

3/16 PbSO4 + 1/16 Fe3O4 + CO(g) = 3/16 Pb + 3/16 FeS + CO2(g)

∆Gθ
T = −0.004 T − 60.39

T ≤ 860 ◦C
∆Gθ

T = 0.004 T − 67.22
T ≥ 860 ◦C

(6)

3/4 PbS + 1/4 Fe3O4 + C = 3/4 Pb + 3/4 FeS + CO(g) ∆Gθ
T = −0.192 T + 117.48 (7)

3/4 PbS + 1/4 Fe3O4 + CO(g) = 3/4 Pb + 3/4 FeS + CO2(g) ∆Gθ
T = −0.017 T − 5.932 (8)

1/5 PbSO4 + 1/5 ZnO + C = 1/5 Pb + 1/5 ZnS + CO(g) ∆Gθ
T = −0.172 T + 51.4 (9)

1/5 PbSO4 + 1/5 ZnO + CO(g) = 1/5 Pb + 1/5 ZnS + CO2(g)

∆Gθ
T = −0.004 T − 353.56

T ≤ 900 ◦C
∆Gθ

T = −0.0096 T − 79.87
T ≥ 900 ◦C

(10)

PbS + ZnO + C = Pb + ZnS + CO(g) ∆Gθ
T = −0.177 T + 83.51 (11)

PbS + ZnO + CO(g) = Pb + ZnS + CO2(g)

∆Gθ
T = −0.007 T− 37.229

T ≤ 1100 ◦C
∆Gθ

T = −0.031 T− 79.884
T ≥ 1100 ◦C

(12)

1/6 PbSO4 + 1/6 Na2CO3 + C = 1/6 Pb + 1/6 Na2S + 7/6 CO(g) ∆Gθ
T = −0.196 T + 92.02 (13)

1/5 PbSO4 + 1/5 Na2CO3 + CO(g) = 1/5 Pb + 1/5 Na2S + 6/5 CO2(g) ∆Gθ
T = −0.025 T − 37.68 (14)

1/2 PbS+ 1/2 Na2CO3 + C = 1/2 Pb + 1/2 Na2S + 3/2 CO(g) ∆Gθ
T = −0.244 T + 189.31 (15)

PbS + Na2CO3 + CO(g) = Pb + Na2S + 2CO2(g) ∆Gθ
T = −0.138 T + 131.78 (16)

2/7 Na2SO4 + 2/7 FeS + C = 2/7 NaFeS2 + 1/7 Na2O + CO(g) ∆Gθ
T = −0.150 T + 107.28 (17)

2/7 Na2SO4 + 2/7 FeS + CO(g) = 2/7 NaFeS2 + 1/7 Na2O + CO2(g) ∆Gθ
T = 0.025 T − 16.13 (18)

PbO + C = Pb + CO(g) ∆Gθ
T = −0.178 T + 51.425 (19)

PbO + CO(g) = Pb + CO2(g)

∆Gθ
T = −0.112 T − 67.781

T ≤ 880 ◦C
∆Gθ

T = 0.014 T − 91.033
T ≥ 880 ◦C

(20)

The Gibbs energy change ∆Gθ
T of all above reactions was calculated using HSC Chemistry 9.2.6

and its database [31]. Figure 4 shows the ∆Gθ
T vs.T diagrams of Reactions (3)–(20). It illustrates that

lead extraction reactions in the presence of sulfur-fixing agents and reductant are thermodynamically
favorable in the temperature range of 900–1300 ◦C. Increase in temperature will promote the positive
trends of the reactions. The reductive sulfur-fixing reactions in this smelting process are feasible.
Metallic Pb can be extracted from PbSO4, PbS, and PbO, and enriched in crude lead bullion. At the
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same time, the sulfur in the initial raw materials was transferred to FeS, NaFeS2, ZnS, and ultimately
fixed as ferrous matte, instead of emitting SO2.
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4. Results and Discussion

4.1. Effect of Fe/SiO2

The effect of Fe/SiO2 on the direct Pb recovery and the sulfur-fixing rates was investigated
in the range from Fe/SiO2 = 0.65 to 1.3 (w/w), with a fixed conditions of Wcoke = 10%
Wraw materials, molten salt addition WNa2CO3 + Na2SO4 = 18% Wraw materials and molten salt composition
WNa2CO3/WNa2SO4 = 0.3/0.7 (where W represents weight), CaO/SiO2 = 0.3, smelting at 1200 ◦C
for 2 h. The results are illustrated in Figure 5. It can be observed that the direct Pb recovery
increased gradually with increasing Fe/SiO2 and peaked at Fe/SiO2 = 1.1 where 85.3% Pb was
directly recovered. However, a steady declining trend was observed when the Fe/SiO2 was above 1.1.
Otherwise, the sulfur-fixing rate increased slowly from 89.5% to 95.5% as Fe/SiO2 increased from 0.65
to 1.3, and reached a maximum sulfur-fixing rate of 96.7% at Fe/SiO2 = 1.25. This can be explained by
the fact that a large fraction of iron oxide in the slag promotes the sulfur-fixing reactions.

Figure 6 illustrates a liquidus surface diagram of the PbO-FeO-SiO2-CaO-Na2O system with fixed
ratio of WNa2O/WSiO2 = 0.5 and WCaO/WSiO2 = 1/3. It reveals that the temperature of liquid phase
boundaries deceased with the increasing FeO fraction. This indicates that a suitable FeO addition
decreases the melting point of the slag; at the same time, the viscosity and fluidity will also be improved.
As a result, the reduction and settling environment of lead particles are improved. However, it is also
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observed that excessive FeO fraction will also lead to a higher melt density and higher melting point
in slag. It is unbeneficial to the settling and elimination of Pb droplets. At the same time, the blue
liquidus lines gradually moved to PbO corner with the increasing FeO fraction. This indicates that the
solubility of lead increase in the slag. Therefore, a moderate addition of iron helps to obtain a suitable
FeO-SiO2-CaO-Na2O slag for effective lead recovery and sulfur-fixation.
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Figure 5. Effect of Fe/SiO2 on the Pb recovery and sulfur-fixing efficiency. (Wcoke = 10% Wraw materials,
WNa2CO3 + Na2SO4 = 18% Wraw materials, WNa2CO3 /WNa2SO4 = 0.3/0.7, CaO/SiO2 = 0.3, 1200 ◦C, 2 h).
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Figure 6. Liquidus contour diagram of the PbO-FeO-SiO2-CaO-Na2O system, the data was taken from
MTDATA vers. 8.2 [32] MTOX database [33].

4.2. Effect of CaO/SiO2 Ratio of the Slag

Figure 7 shows the effect of CaO/SiO2 ratio of the silicate slag on the lead extraction and sulfur
fixation. It is observed that the direct Pb recovery dropped sharply from 86.4% to 69.4% when
CaO/SiO2 was increased from 0.3 to 0.45. This indicates that the increasing CaO/SiO2 was harmful to
the settling of metallic lead. However, the change of CaO/SiO2 had almost no effect on sulfur-fixing
rate. It remained nearly constant in around 97%. Figure 8 illustrates a liquidus contour diagram of the
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CaO-FeO-SiO2-Na2O system in fixed WNa2O/WSiO2 ratio of 0.5. It also indicates that increasing addition
of CaO will lead to an increase in melting point of the slag. As a result, the viscosity and fluidity of
slag will also deteriorate. The Pb recovery showed a diminishing trend at higher CaO additions.
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Figure 7. Effect of CaO/SiO2 ratio on the direct Pb recovery and sulfur-fixing efficiency.
(Wcoke = 10%Wraw materials, WNa2CO3 + Na2SO4 = 18%Wraw materials, WNa2CO3 /WNa2SO4 = 0.3/0.7,
Fe/SiO2 = 1.1, 1200 ◦C, 2 h).
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Figure 8. Liquidus contour diagram of the CaO-FeO-Na2O-SiO2 system with WNa2O/WSiO2 = 0.5.
The data was taken from MTDATA vers. 8.2 MTOX database.

4.3. Effect of WNa2CO3 /WNa2SO4

The relationship between WNa2CO3 /WNa2SO4 and Pb recovery and sulfur-fixing rates are presented
in Figure 9. It can be seen that the direct Pb recovery increased steadily from 85.3% to 90.8%
as the WNa2CO3/WNa2SO4 increased from 0.3/0.7 to 0.9/0.1. However, the sulfur-fixing rate was
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constant on around 95.5%. Molten salt can simultaneously decrease the melting point, density,
viscosity [34,35], and improve the fluidity of the slag [36]. Therefore, Na2CO3-Na2SO4 mixture can
provide a flexible reaction medium and significantly promote the smelting reactions. Figure 10 illustrates
the phase diagram of the binary Na2CO3-Na2SO4 system. It shows that the melting temperature
of Na2CO3-Na2SO4 mixture decreases with increasing Na2CO3 fraction, and reaches the minimum
in WNa2CO3/WNa2SO4 = 0.54/0.45. Therefore, with increasing WNa2CO3/WNa2SO4 ratio, the settling
environment of lead particles was improved. More metallic Pb was settled and collected in crude lead.
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Figure 9. Effect of Na2CO3/Na2SO4 ratio on the Pb recovery and sulfur-fixing efficiency (Wcoke

= 10%Wraw materials, WNa2CO3 + Na2SO4 = 18%Wraw materials, Fe/SiO2 = 1.1, CaO/SiO2 = 0.3, 1200 ◦C, 2 h).
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Figure 10. Phase diagram of the Na2CO3-Na2SO4 system; the data was taken from FactSage 7.2 and its
FTsalt database [37].

4.4. Effect of Coke Addition

Figure 11 illustrates the effect of coke addition on the smelting yields. When coke dosage was
increased from 5% to 25%, Pb extraction was found to increase from 81.3% to 91.5%, and it reached
a maximum of 92.4% at 20% coke addition. The sulfur-fixing rate increased from 91.7% to 94.8%,
and peaked at 97.2% with 15% coke addition. However, a small decrease of sulfur-fixation was
observed when the coke addition was more than 15%. Strong reductive atmosphere was beneficial to
the reduction and enrichment of lead. It was also intended to promote iron oxide reduction. More FexOy
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was reduced to generate metallic Fe and then transferred into crude lead phase. Afterwards, iron oxide
acting as sulfur-fixation agent correspondingly decreased. As a result, the slag composition was turned
to a direction that was against the Pb recovery, as shown in Figure 6. Therefore, a slight decrease was
observed in both the Pb recovery and sulfur-fixation beyond 15% coke addition.
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Figure 11. Effect of coke dosage on the Pb recovery and sulfur-fixing efficiency (WNa2CO3 + Na2SO4 =
18%WPb materials, WNa2CO3 /WNa2SO4 = 0.7/0.3, Fe/SiO2 = 1.1, CaO/SiO2 = 0.3, 1200 ◦C, 2 h).

4.5. Effect of Smelting Temperature

The direct Pb recovery and sulfur-fixing rates at different temperatures are shown in Figure 12.
Below 1200 ◦C, Pb recovery and sulfur-fixing rates presented a sharp rising trend with increasing
temperatures. The Pb recovery increased from 58.3% to 93.3% and sulfur-fixing rate increased at the
same time from 75.9% to 96.2%. The phase diagram of the PbO-FeO-SiO2-CaO-Na2O system shown in
Figure 6 also indicates that increasing temperature is beneficial to decrease the PbO content in the slag.
However, direct Pb recovery steadily decreased when the temperature was higher than 1200 ◦C due to
the intensified volatilization of metallic Pb, but sulfur-fixation continued to increase slightly. Therefore,
a suitable smelting temperature was critical to achieve a high direct Pb recovery to the molten metal,
and to avoid lead losses in the off-gas fumes.Minerals 2019, 9, x FOR PEER REVIEW 11 of 16 
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Figure 12. Effect of temperature on the Pb recovery and sulfur-fixing efficiency (Wcoke = 15%WPb materials,
WNa2CO3 + Na2SO4 = 18%WPb materials, WNa2CO3/WNa2SO4 = 0.7/0.3, Fe/SiO2 = 1.1, CaO/SiO2 = 0.3, 2 h).
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4.6. Effect of Smelting Time

Figure 13 shows the effect of smelting time on the Pb recovery and sulfur-fixation. It illustrates
that extending the smelting time can promote the recovery of Pb and sulfur fixation. 93.3% Pb and
97.5% sulfur were recovered and immobilized within 2 h of reaction. After 3 h, Pb recovery and
sulfur-immobilization rates were 92.6% and 98.3%, respectively. This indicates 2 h reaction time was
enough for the settling and enrichment of the Pb product in the bullion. The further extension of
smelting time would lead to a gradual decline in Pb recovery due to volatilization of metallic Pb.
When the smelting time was increased from 2 h to 3 h, the sulfur-fixing rate showed a slight increase
from 97.5% to 98.3%. Considering the volatilization of Pb and energy consumption, the optimum
smelting time was suggested to be around 2 h.
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Figure 13. Effect of smelting time on the Pb recovery and sulfur-fixing efficiency (Wcoke =
15% WPb materials, WNa2CO3 + Na2SO4 = 18%WPb materials, WNa2CO3 /WNa2SO4 = 0.7/0.3, Fe/SiO2 = 1.1,
CaO/SiO2 = 0.3, 1200 ◦C).

4.7. Bench-Pilot Experiments

Based on the above detailed experiments in the laboratory, the optimum processing
conditions were obtained as: Wcoke/Wraw materials = 15%, WNa2CO3 + Na2SO4 = 18% Wraw materials,
WNa2CO3/WNa2SO4 = 0.7/0.3, Fe/SiO2 = 1.1, CaO/SiO2 = 0.3, smelting temperature 1200 ◦C,
and smelting time 2 h. These conditions were then applied to carry out two bench-pilot experiments
with 200g Pb-bearing materials mixture. The chemical compositions of different products obtained,
crude Pb, ferrous matte and slag, were presented in Table 3. It was found that lead concentrations in
the ferrous matte and slag were below 2.4% and 0.7%, respectively. Purity of the crude lead was higher
than 96.5%, and its main impurity was metallic Fe.

Table 3. Chemical compositions of smelting products in the bench-pilot experiments (wt.%).

No.
Crude Pb Ferrous Matte Slag

Pb Fe Ag * Pb Fe S Zn Na Pb Fe S Zn Na CaO SiO2

1 96.06 2.12 821 2.54 48.80 24.07 2.36 7.47 0.61 23.01 4.21 1.51 8.65 8.59 27.30
2 97.02 1.72 845 2.30 50.19 24.51 3.30 6.94 0.72 24.58 3.07 1.83 8.24 8.97 28.71

AVG. 96.54 1.92 833 2.42 49.50 24.29 2.83 6.71 0.67 23.80 3.64 1.67 8.45 8.78 28.01

* g/t.
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The optical macrograph and XRD results of smelting products are illustrated in Figure 14. It was
observed that the product was separated to three layers: slag, ferrous matte, and crude lead. Slag floats
on the surface of the ferrous matte, and metallic Pb subsides at the bottom due to their density
differences, which guarantees a good separation and recovery during the smelting process. In addition,
the main components in the solidified matte were FeS, NaFeS2, and Fe2Zn3S5. It indicated that sulfur
was fixed in the matte in form of sulfide matte. A little entrained metallic Pb phase was also detected
in it. The slag was a FeO-SiO2-CaO-Na2O quaternary and solidified as a vitreous slag system.
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The distribution behaviors of Pb, Ag, Fe, and S in the bench-pilot experiments are summarized
in Figure 15. As shown, 92.4% Pb could be directly enriched in the crude lead, and only 5.5% and
1.8% of Pb distributed into the ferrous matte and slag, respectively. 98.8% of Ag was also enriched
in crude lead. 71.0% of iron was divided into ferrous matte as sulfide and the rest of 28.7% was in
the FeO-SiO2-CaO-Na2O slag, respectively. Total sulfur-fixed rate was 98.6% to condensed phases,
with 91.3% in matte, 7.3% in slag. At the same time, 0.2% sulfur was in crude lead. Only 1.2%
distributed to the fume. Therefore, this novel reductive sulfur-fixing smelting process can significantly
inhibit the generation of SO2 and largely decrease the SO2 emissions.Minerals 2019, 9, x FOR PEER REVIEW 13 of 16 
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Recently, this novel Pb recycling process from polymetallic complex materials was industrially
adopted [38] in several recycling plants in China, such as Guoda Nonferrous Metals Metallurgy Co.,
Ltd. [39] and Yongchang Precious Metals Co., Ltd. It has practically proved feasible. The industrial
application results indicate that this process can be steadily executed on a continuous basis and offers
advantages of low dust generation and high production capacity in currently available smelting
furnaces. The operating expenditure was reduced significantly. The off-gas emissions met the
relevant Chinese standards. Furthermore, the matte produced can be sold directly for sulfuric acid
manufacture and regenerated as sulfur-fixing agent. The slag is harmless and can be used as a raw
material for cement production after water-quenching and granulation. Otherwise, in addition to
LAB paste recycling, it also can be used for treating antimony- [28,30], bismuth- [40], zinc- [41],
and copper-containing [42] wastes and residues. Sb and Bi are enriched and recovered in the bullion.
Zinc and copper are primarily distributed to the sulfide matte. Direct recoveries of the metals,
i.e., yields without subsequent slag cleaning and matte processing, reach more than 90%, and the
sulfur-fixing rate is generally higher than 95%.

5. Conclusions

Cleaner extraction of lead from complex polymetallic lead-containing wastes using reductive
sulfur-fixing smelting process was fundamentally and experimentally confirmed to be feasible.
The optimum smelting conditions were determined in this study as: Wcoke = 15%Wraw materials,
WNa2CO3 /WNa2SO4 = 0.7/0.3, Fe/SiO2 = 1.1, CaO/SiO2 = 0.3, smelting temperature 1200 ◦C and
smelting time 2 h. Under these conditions, three smelting products, crude lead, ferrous matte, and slag,
were obtained. While 92.4% Pb was directly recovered as crude lead, 98.8% Ag was enriched in the
crude lead. Lead concentration in the produced ferrous matte and slag were less than 2.4% and 0.7%,
respectively. Purity of the crude lead was higher than 96.5%. Sulfur was fixed in the matte and slag
as sulfide. The total sulfur-fixing rate was 98.3%, including 90.3% in the matte and 8.0% in the slag.
Gaseous SO2 generation and emissions could be essentially eliminated. This process is a promising
high-efficiency technique that is cleaner and offers multiple application prospects in the fields of lead-,
antimony-, bismuth-, zinc-, and copper-containing secondary materials, wastes, and residues recycling.
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