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Abstract
We consider and analyze applying a spectral inverse iteration algorithm and its sub-
space iteration variant for computing eigenpairs of an elliptic operator with random
coefficients. With these iterative algorithms the solution is sought from a finite dimen-
sional space formed as the tensor product of the approximation space for the underlying
stochastic function space, and the approximation space for the underlying spatial func-
tion space. Sparse polynomial approximation is employed to obtain the first one, while
classical finite elements are employed to obtain the latter. An error analysis is presented
for the asymptotic convergence of the spectral inverse iteration to the smallest eigen-
value and the associated eigenvector of the problem. A series of detailed numerical
experiments supports the conclusions of this analysis.

Mathematics Subject Classification 65C20 · 65N12 · 65N15 · 65N25 · 65N30

1 Introduction

During the recent years numerical solution of stochastic partial differential equations
(sPDE) has attracted a lot of attention and become a well-established field. However,
the field of stochastic eigenvalue problems (sEVP) and their numerical solution is
still in its infancy. It is natural that, after the source problem, more effort is put on
addressing the eigenvalue problem.
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Afewdifferent algorithms have recently been suggested for computing approximate
eigenpairs of sEVPs. As with sPDEs, the solution methods are typically divided into
intrusive and non-intrusive ones. A benchmark for non-intrusive methods is the sparse
collocation algorithm suggested and thoroughly analyzed by Andreev and Schwab
[1]. An attempt towards a Galerkin-based (intrusive) method was made by Verhoosel
et al. [20], though this method omits uniform normalization of the eigenmodes. Very
recentlyMeidani and Ghanem proposed a spectral power iteration, in which the eigen-
modes are normalized using a quadrature rule over the parameter space [16]. The
algorithm has been further developed and studied by Sousedík and Elman [19]. How-
ever, neither of the papers present a comprehensive error analysis for the method.

Inspired by the originalmethod ofMeidani andGhanemwe have suggested a purely
Galerkin-based spectral inverse iteration, in which normalization of the eigenmodes
is achieved via solution of a simple nonlinear system [11]. This method, and its gen-
eralization to a spectral subspace iteration, is the focus of the current paper. Although
the algorithms in [16,19] differ from ours in the way normalization is performed, the
basic principles are still the same and hence our results on convergence should apply
to these methods as well.

In this work we consider computing eigenpairs of an elliptic operator with random
coefficients. We assume a physical domain D ⊂ R

d and, in order to capture the
random dimension of the system, a parameter domain Γ ⊂ R

∞ with associated
measure ν. One may think of a parametrization that arises from Karhunen-Loève
representations of the random coefficients in the system, for instance. Discretization
in space is achieved by standard FEM and associated with a discretization parameter
h, whereas discretization in the random dimension is achieved using collections of
certain multivariate polynomials. These collections are represented by multi-index
sets Aε of increasing cardinality #Aε as ε → 0.

In the current paper we present a step-by-step analysis that leads to the main result:
the asymptotic convergence of the spectral inverse iteration towards the exact eigenpair
(μ, u). In this context the eigenpair of interest is the ground state, i.e., the smallest
eigenvalue and the associated eigenfunction of the system. However, analogously to
the classical inverse iteration, the computation of other eigenpairs may be possible
by using a suitably chosen shift parameter λ ∈ R. We show that under sufficient
assumptions the iterates of the algorithm (μk, uk) for k = 1, 2, . . . obey

||u − uh,A,k ||L2
ν (Γ )⊗L2(D) � h1+l + (#Aε)

−r + λk
1/2 (1)

and
||μ − μh,A,k ||L2

ν (Γ ) � h2l + (#Aε)
−r + λk

1/2, (2)

where l ∈ N is the degree of polynomials used in the spatial discretization and r > 0
depends on the properties of the region to which the solution, as a function of the
parameter vector, admits a complex-analytic extension. The quantity λ1/2 reflects the
gap between the two smallest eigenvalues of the system and should be less than one.

The first term in the formulas (1) and (2) is justified by standard theory for Galerkin
approximation of eigenvalue problems, a simple consequence of which we have
recapped in Theorem 1. The second term can be deduced from Theorem 2, which

123



Asymptotic convergence of spectral inverse iterations for…

bounds the Galerkin approximation errors by residuals of certain polynomial approx-
imations of the solution. Using best P-term polynomial approximations, we see that
these residuals are ultimately expected to decay at an algebraic rate r > 0, see [5] and
[7]. Finally, the third term follows from Theorem 3, which states that asymptotically
the iterates of the spectral inverse iteration converge to a fixed point in geometric
fashion. Here the analogy to classical inverse iteration is evident. Each of these three
important steps that comprise the main result is separately verified through detailed
numerical examples.

A variant of our algorithm for spectral subspace iteration is also presented. No anal-
ysis of this algorithm is given, but the numerical experiments support the conclusion
that it converges towards the exact subspace of interest, and that the rate of conver-
gence is analogous to what we would expect from classical theory. This is despite
the fact that the individual eigenmodes, as defined by the pointwise order of magni-
tude of the eigenvalues, are not continuous functions over the parameter space due to
an eigenvalue crossing. To the authors’ knowledge such a scenario has not yet been
considered in the scientific literature.

The rest of the paper is organized as follows.Ourmodel problemand its fundamental
properties are assessed in Sects. 2 and 3. A detailed review of the discretization of the
spatial and stochastic approximation spaces is given in Sect. 4. Analysis of the spectral
inverse iteration, supported by thorough numerical experiments, is given in Sect. 5.
Finally, the algorithm of spectral subspace iteration and numerical experiments of its
convergence are presented in Sect. 6.

2 Problem statement

In this work we consider eigenvalue problems of elliptic operators with random coeffi-
cients. It is assumed that the random coefficients admit a parametrization with respect
to countably many independent and bounded random variables. As a model problem
we consider the eigenvalue problem of a diffusion operator with a random diffusion
coefficient. It will be evident, however, that our methods and analysis in fact cover a
much broader class of problems.

2.1 Model problem

Let (Ω,F ,P) be a probability space, Ω being the set of outcomes, F a σ -algebra of
events, and P a probability measure defined on Ω . We denote by L2

P (Ω) the space
of square integrable random variables on Ω and define for v ∈ L2

P (Ω) the expected
value

E[v] =
∫

Ω

v(ω) dP(w)

and variance Var[v] = E[(v − E[v])2].
Let D ⊂ R

d be a bounded convex domain with a sufficiently smooth boundary
and assume a diffusion coefficient a : D × Ω → R that is a random field on D.
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The diffusion coefficient is assumed to be strictly uniformly positive and uniformly
bounded, i.e., for some positive constants amin and amax it holds that

P
(

ω ∈ Ω : amin ≤ ess inf
x∈D

a(x, ω) ≤ ess sup
x∈D

a(x, ω) ≤ amax

)
= 1. (3)

We now formulate the model problem as: find functionsμ : Ω → R and u : D ×Ω →
R such that the equations

{−∇ · (a(·, ω)∇u(·, ω)) = μ(ω)u(·, ω) in D
u(·, ω) = 0 on ∂ D

(4)

hold P-almost surely. In order to make the solutions physically meaningful we also
impose a normalization condition ||u(·, ω)||L2(D) = 1 that should hold P-almost
surely.

2.2 Parametrization of the random input

We make the assumption that the input random field admits a representation of the
form

a(x, ω) = a0(x) +
∞∑

m=1

am(x)ym(ω), (5)

where {ym}∞m=1 are mutually independent and bounded random variables. For sim-
plicity, we assume here that each ym is uniformly distributed. Thus, after possible
rescaling, the dependence on ω is now parametrized by the vector y = (y1, y2, . . .) ∈
Γ := [−1, 1]∞. We denote by ν the underlying uniform product probability measure
and by L2

ν(Γ ) the corresponding weighted L2-space.
The usual convention is that the parametrization (5) results from a Karhunen-Loève

expansion, which gives a(x, ω) as a linear combination of the eigenfunctions of the
associated covariance operator. The distinguishing feature of the Karhunen-Loève
expansion compared to other linear expansions is that it minimizes the mean square
truncation error [9].

It is easy to see that a0 ∈ L∞(D) and

ess inf
x∈D

a0(x) >

∞∑
m=1

||am ||L∞(D) (6)

are sufficient conditions to ensure the assumption (3). In order to ensure analyticity of
the eigenpair (μ, u) with respect to the parameter vector y = (y1, y2, . . .) we assume
that ∞∑

m=1

||am ||p0
L∞(D) < ∞ (7)
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for some p0 ∈ (0, 1) and that for a certain level of smoothness s ∈ N we have
a0 ∈ W s,∞(D) and

∞∑
m=1

||am ||ps
W s,∞(D) < ∞ (8)

for some ps ∈ (0, 1). In particular, we consider the interesting case of algebraic

||am ||L∞(D) ≤ Cm−ς , ς > 1, m = 1, 2, . . .

decay of the coefficients in the series (5).

2.3 Parametric eigenvalue problem and its variational formulation

With the diffusion coefficient given by (5), the model problem (4) becomes an eigen-
value problem of the operator

(A(y)v)(x) := −∇ · (a(x, y)∇v(x)), x ∈ D, y ∈ Γ ,

where

a(x, y) = a0(x) +
∞∑

m=1

am(x)ym .

Thus, we obtain the parametric eigenvalue problem: find μ : Γ → R and u : Γ →
H1
0 (D) such that

A(y)u(y) = μ(y)u(y) ∀y ∈ Γ . (9)

We denote by σ(A(y)) the set of eigenvalues of A(y) for y ∈ Γ .
For any fixed y ∈ Γ the problem (9) reduces to a single deterministic eigenvalue

problem. In variational form this is given by: find μ(y) ∈ R and u(·, y) ∈ H1
0 (D)

such that
b(y; u(·, y), v) = μ(y)〈u(·, y), v〉L2(D) ∀v ∈ H1

0 (D), (10)

where

b(y; u, v) :=
∫

D
a(·, y)∇u · ∇v dx .

Under assumption (6) the bilinear form b(y; u, v) is continuous and elliptic. Thus, as in
[1,11], we deduce that the problem (10) admits a countable number of real eigenvalues
and corresponding eigenfunctions that form an orthogonal basis of L2(D).

3 Analyticity of eigenmodes

A key issue in the analysis of parametric eigenvalue problems is that eigenvalues may
cross within the parameter space. Here we first disregard this possibility and recap
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the main results from [1] for simple eigenvalues that are sufficiently well separated
from the rest of the spectrum. In Sect. 6 we briefly comment on the case of possibly
clustered eigenvalues and associated invariant subspaces.

We call an eigenvalue μ of problem (9) strictly nondegenerate if

(i) μ(y) is simple as an eigenvalue of A(y) for all y ∈ Γ and
(ii) the minimum spectral gap inf y∈Γ dist(μ(y), σ (A(y))\{μ(y)}) is positive.
In the case of strictly nondegenerate eigenvalues, the eigenpair (μ, u) is in fact analytic
with respect to the parameter vector y.

Proposition 1 Consider a strictly nondegenerate eigenvalue μ of the problem (9) and
the corresponding eigenfunction u normalized so that ||u(y)||L2(D) = 1 for all y ∈ Γ .
For s ∈ N assume that a0 ∈ W s,∞(D) and the assumptions (6)–(8) hold for some
p0, ps ∈ (0, 1). Given τ = (τ1, τ2, . . .) ∈ R

∞+ define

E(τ ) := {z ∈ C
∞ | dist(zm, [−1, 1]) ≤ τm}.

Then there exists C1 > 0 independent of m such that with C2 > 0 arbitrary and τ

given by

τm = min
{

C1||am ||p0−1
L∞(D), C2||am ||ps−1

W s,∞(D)

}
, m = 1, 2, . . .

the eigenpair (μ, u) can be extended to a jointly complex-analytic function on E(τ )

with values in C × (Hs+1(D) ∩ H1
0 (D)).

Proof This is analogous to Corollary 2 of Theorem 4 in [1]. �

It is well known that for elliptic operators on a connected domain D the smallest
eigenvalue is simple [12]. Thus, Proposition 1 may at least be applied for the smallest
eigenvalue of problem (9).

4 Stochastic finite elements

Proposition 1, under sufficient assumptions, guarantees the existence of an analytic
eigenpair for problem (9). It now makes sense to look for the eigenvalue in the space
L2

ν(Γ ) and the eigenfunction in the space L2
ν(Γ ) ⊗ H1

0 (D). The space H1
0 (D) may

be discretized by means of the traditional finite element method. For the discretiza-
tion of L2

ν(Γ ), we follow the usual convention in stochastic Galerkin methods and
construct a basis of orthogonal polynomials of the input random variables. Orthogo-
nal polynomials for various probability distributions exist and the use of these as the
approximation basis has been observed to yield optimal rates of convergence [18,21].
Here we consider uniformly distributed random variables which lead to the choice of
tensorized Legendre polynomials.
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4.1 Galerkin discretization in space

Let Vh ⊂ H1
0 (D) denote a finite dimensional approximation space associated with

the discretization parameter h > 0. We assume approximation estimates

inf
vh∈Vh

||v − vh ||L2(D) ≤ Chl+1||v||Hl+1(D) (11)

and
inf

vh∈Vh
||v − vh ||H1

0 (D) ≤ Chl ||v||Hl+1(D) (12)

that are standard for piecewise polynomials of degree l.
Fix y ∈ Γ and let (μh, uh) be the solution to the variational equation

b(y; uh(·, y), vh) = μh(y)〈uh(·, y), vh〉L2(D) ∀vh ∈ Vh, (13)

where b(y; ·, ·) is as in (10). Then we have the following bounds for the discretization
error.

Theorem 1 Assume (11) and (12). For y ∈ Γ let μ(y) be a simple eigenvalue
of (10) and μh(y) an eigenvalue of (13) such that limh→0 μh(y) = μ(y). Let
u(·, y) ∈ H1+l(D) and uh(·, y) ∈ Vh denote the associated eigenfunctions nor-
malized in L2(D). Then there exists C > 0 such that

|μ(y) − μh(y)| ≤ Ch2l , (14)

and
||u(·, y) − uh(·, y)||L2(D) ≤ Ch1+l ||u(·, y)||H1+l (D). (15)

as h → 0.

Proof This follows from the theory of Galerkin approximation for variational eigen-
value problems. See Section 8 in [3] and Section 9 in [8]. �

Let Vh = span{ϕi }i∈J where J := {1, 2, . . . , N }. Then (13) can be written as a
parametric matrix eigenvalue problem: find μh : Γ → R and uh : Γ → R

N such that

(
K(0) +

∞∑
m=1

K(m)ym

)
uh(y) = μh(y)Muh(y) ∀y ∈ Γ , (16)

where uh(x, y) = ∑
i∈J ϕi (x)(uh)i (y). The coefficient matrices are given by

K(m)
i j =

∫
D

am∇ϕi · ∇ϕ j dx, m = 0, 1, . . .

and

Mi j =
∫

D
ϕiϕ j dx .
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For each fixed y ∈ Γ the problem (16) reduces to a positive-definite generalized
matrix eigenvalue problem.

4.2 Legendre chaos

Recall that y = (y1, y2, . . .) ∈ Γ is a vector of mutually independent uniform random
variables and ν is the underlying constant product probablity measure. Now

E[v] =
∫

Γ

v(y) dν(y) (17)

whenever the integral is finite. We define (N∞
0 )c to be the set of all multi-indices with

finite support, i.e.,

(N∞
0 )c := {α ∈ N

∞
0 | # supp(α) < ∞},

where supp(α) = {m ∈ N | αm �= 0}. Given a multi-index α ∈ (N∞
0 )c we now define

the multivariate Legendre polynomial

Λα(y) :=
∏

m∈suppα

Lαm (ym),

where L p(x) denotes the univariate Legendre polynomial of degree p.Wewill assume
the normalization E[Λ2

α] = 1 for all α ∈ (N∞
0 )c.

The system {Λα(y) | α ∈ (N∞
0 )c} forms an orthonormal basis of L2

ν(Γ ). Therefore,
we may write any square integrable random variable v in a series

v(y) =
∑

α∈(N∞
0 )c

vαΛα(y) (18)

with convergence in L2
ν(Γ ). The expansion coefficients are given by vα = E[vΛα].

Due to the orthogonality of the Legendre polynomials we have E[Λα] = δα0 and
E[ΛαΛβ ] = δαβ for all α, β ∈ (N∞

0 )c. Moreover, we denote

cαβγ := E[ΛαΛβΛγ ], α, β, γ ∈ (N∞
0 )c

cmαβ := E[ymΛαΛβ ], m ∈ N, α, β ∈ (N∞
0 )c

c0αβ := δαβ, α, β ∈ (N∞
0 )c.

4.3 Sparse polynomial approximation in the parameter domain

We fix a finite set A ⊂ (N∞
0 )c and employ the approximation space WA =

span{Λα}α∈A ⊂ L2
ν(Γ ). We let PA and RA denote the underlying projection and

residual operators so that v ∈ L2
ν(Γ ) is approximated by
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PA(v)(y) =
∑
α∈A

vαΛα(y)

and the approximation error is given by RA(v) = v − PA(v). Since

||RA(v)||2L2
ν (Γ )

= E

⎡
⎣

( ∑
α∈Ac

vαΛα

)2
⎤
⎦ =

∑
α∈Ac

v2α, (19)

where Ac = {α ∈ (N∞
0 )c | α /∈ A}, we conclude that the choice of the multi-index

set A ultimately determines the accuracy of our expansion.
We proceed as in [5] and use best P-term approximations to prove convergence of

the approximation error.

Proposition 2 Let H be a Hilbert space. Assume that v : Γ → H admits a complex-
analytic extension in the region

E(τ ) := {z ∈ C
∞ | dist(zm, [−1, 1]) ≤ τm}

with
τm ≥ Cm�, � > 1, m = 1, 2, . . . (20)

Given ε > 0 define

Aε :=
⎧⎨
⎩α ∈ (N∞

0 )c

∣∣∣∣∣∣
∏

m∈suppα

ηαm
m > ε

⎫⎬
⎭ ,

where

ηm :=
(

τm +
√
1 + τ 2m

)−1

, m = 1, 2, . . .

Then
||RAε

(v)||L2
ν (Γ )⊗H ≤ ε||v||L∞(E(τ );H) (21)

and as ε → 0 we have
#Aε ≤ C(�, r)ε−1/r (22)

for any 0 < r < � − 1
2 .

Proof Fix ε > 0 and let P = #Aε . Set M = max{m ∈ N | ∃α ∈ Aε s.t. αm �= 0}
and vM (z) = v(z1, . . . , zM , 0, 0, . . .) so that PAε

(v) = PAε
(vM ). The norm of the

residual may now be separated into two parts in the following sense

||RAε
(v)||L2

ν (Γ )⊗H ≤ ||v − vM ||L2
ν (Γ )⊗H + ||vM − PAε

(vM )||L2
ν (Γ )⊗H . (23)
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For the second term we may apply the proof of Proposition 3.1 in [6] and obtain

||vM − PAε
(vM )||L2

ν (Γ )⊗H ≤ C(�, r)P−r ||vM ||L∞(E(τ );H). (24)

On the other hand, in order to bound the first term we note that

∞∑
m>M

(ηm − 1)−1 ≤ C
∞∑

m>M

m−� ≤ C
∫ ∞

M
x−� dx ≤ C(�)M1−�. (25)

Thus, by Lemmas 4.3. and 4.4 in [2], we obtain

||v − vM ||L2
ν (Γ )⊗H ≤ C ||v||L∞(E(τ );H)

∞∑
m>M

(ηm − 1)−1 ≤ C(�)P−r ||v||L∞(E(τ );H)

(26)
for any M ≥ C(�)Pr/(�−1). The claim follows from combining (24) and (26). �

4.4 Stochastic Galerkin approximation of vectors andmatrices

We now generalize the concept of sparse polynomial approximation to vector and
matrix valued functions. Assume that the dimensions of the approximation spaces
Vh and WA are N and P respectively. We denote by W N

A (or W N×N
A ) the space of

functions v : Γ → R
N (or A : Γ → R

N×N ) whose every component is in WA.
Whenever v ∈ W N

A and α ∈ A we set vαi = (vi )α and use vα to denote the vector
of coefficients {vαi }i∈J ∈ R

N . Moreover, we associate any v ∈ WA with the array
of coefficients v̂ := {vα}α∈A ∈ R

P and similarly any v ∈ W N
A with the array of

coefficients v̂ := {vαi }α∈A,i∈J ∈ R
P N .

We denote by 〈·, ·〉
R

N
M

the inner product on R
N induced by the positive definite

matrixM and by || · ||
R

N
M
the associated norm. Furthermore, we let || · ||RP denote the

standard norm on RP and || · ||
RP⊗R

N
M
denote the tensorized norm on RP N given by

||v̂||2
RP⊗R

N
M

:=
∑
α∈A

∑
i∈J

∑
j∈J

vαiMi jvα j .

Remark 1 Observe that if v ∈ WA ⊗ Vh is written as v(x, y) = ∑
i∈J ϕi (x)vi (y),

then ||v||2L2
ν (Γ )⊗L2(D)

= ||v||2
L2

ν (Γ )⊗R
N
M

= ||v̂||2
RP⊗R

N
M

. (27)

Let us consider the linear system defined by a parametric matrix A ∈ W N×N
A . The

Galerkin approximation of this system is: given f ∈ W N
A find v ∈ W N

A such that

PA(Av)(y) = f(y) ∀y ∈ Γ . (28)

We define moment matrices G(m) ∈ R
P×P for m ∈ N0 and G(α) ∈ R

P×P for α ∈ A
by setting [G(m)]αβ = cmαβ and [G(α)]βγ = cαβγ . Using this notation we may write
(28) as the fully discrete system: given f̂ ∈ R

P N find v̂ ∈ R
P N such that
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(∑
α∈A

G(α) ⊗ Aα

)
v̂ = f̂, (29)

where Aα = E[AΛα] ∈ R
N×N . The existence of a solution, i.e. the invertibility of

the coefficient matrix, is guaranteed by the following lemma.

Lemma 1 If A ∈ W N×N
A is a parametric matrix such that A(y) is positive-definite for

every y ∈ Γ , then for any f ∈ W N
A there exists a unique v ∈ W N

A such that (28) holds.
Furthermore,

||v||L2
ν(Γ )⊗R

N
M

≤ sup
y∈Γ

λ−1(y)||f ||L2
ν (Γ )⊗R

N
M

, (30)

where λ(y) is the smallest eigenvalue of A(y) for each y ∈ Γ .

Proof Observe that the system (28) is equivalent to the variational form

E[vTAw] = E[fTw] ∀w ∈ W N
A . (31)

The left hand side of (31) is a symmetric and elliptic bilinear form so the existence of a
unique solution is guaranteed by the Lax-Milgram Lemma. Moreover, the associated
coefficient matrix in (29) is positive definite.

Now let λ̃ ∈ R be such that λ̃ < inf y∈Γ λ(y). The matrix A(y) − λ̃IN , where IN is
the identity matrix, is positive definite for all y ∈ Γ . Thereby the eigenvalues of the
associated coefficient matrix should be positive. Let χ be an eigenvalue of (29), i.e.,
there exists w ∈ W N

A such that

PA(Aw)(y) = χw(y) ∀y ∈ Γ . (32)

Then

PA((A − λ̃IN )w)(y) = PA(Aw)(y) − λ̃w(y) = (χ − λ̃)w(y) ∀y ∈ Γ (33)

and we deduce that χ > λ̃. Equation (30) now follows from taking the limit λ̃ →
inf y∈Γ λ(y). �

5 Spectral inverse iteration

In this section we introduce the algorithm of spectral inverse iteration, analyze its
asymptotic convergence, and present numerical examples to support our analysis. The
spectral inverse iteration, see [11], can be considered as an extension of the classical
inverse iteration to the case of parametric matrix eigenvalue problems. In the spectral
version each of the elementary operations is computed in Galerkin sense via projecting
to the sparse polynomial basis WA. Optimal convergence of the algorithm requires
that the eigenmode of interest, i.e., the smallest eigenvalue of the parametric matrix,
is strictly nondegenerate.
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5.1 Algorithm description

Fix a finite set of multi-indices A ⊂ (N∞
0 )c and let P = #A. The spectral inverse

iteration for the system (16) is now defined in Algorithm 1. One should note that,
if the projections in the algorithm were precise, the algorithm would correspond to
performing classical inverse iteration pointwise over the parameter spaceΓ .We expect
the algorithm to converge to an approximation of the eigenvector corresponding to the
smallest eigenvalue of the system.

Algorithm 1 (Spectral inverse iteration) Fix tol > 0 and let u(0) ∈ W N
A be an initial

guess for the eigenvector. For k = 1, 2, . . . do

(1) Solve v ∈ W N
A from the linear equation

PA (Kv) = Mu(k−1). (34)

(2) Solve s ∈ WA from the nonlinear equation

PA(s2) = PA
(
||v||2

R
N
M

)
. (35)

(3) Solve u(k) ∈ W N
A from the linear equation

PA
(

su(k)
)

= v. (36)

(4) Stop if ||u(k) −u(k−1)||L2
ν (Γ )⊗R

N
M

< tol and return u(k) as the approximate eigen-
vector.

Once the approximate eigenvector u(k) ∈ W N
A has been computed, the correspond-

ing eigenvalue μ(k) ∈ WA may be evaluated from the Rayleigh quotient, as in [11],
or alternatively from the linear system

PA(sμ(k)) = 1. (37)

Lemma 1 guarantees the invertibility of the linear system (34) and, assuming that
s(y) > 0 for all y ∈ Γ , the invertibility of the systems (36) and (37). The nonlinear
system (35) may be solved using for instance Newton’s method.

Remark 2 For the computation of non-extremal eigenmodes, one may proceed as in
[11] and replace K(y) in (34) with (K(y) − λM), where λ ∈ R is a suitably chosen
parameter. In this case we expect the algorithm to converge to an eigenpair for which
the eigenvalue is close to λ. Note, however, that now the existence of a unique solution
to (34) is not necessarily guaranteed by Lemma 1.

We try to write Algorithm 1 in a computationally more convenient form. The pro-
jections in the algorithm can be computed explicitly using the notation introduced in
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Sect. 4. It is easy to verify that Eqs. (34)–(36) become

∞∑
m=0

∑
β∈A

K(m)vβcmαβ = Mu(k−1)
α ∀α ∈ A, (38)

∑
β∈A

∑
γ∈A

sβsγ cαβγ =
∑
β∈A

∑
γ∈A

〈vβ, vγ 〉
R

N
M

cαβγ ∀α ∈ A, (39)

∑
β∈A

∑
γ∈A

sβu(k)
γ cαβγ = vα ∀α ∈ A (40)

respectively. Given ŝ = {sα}α∈A ∈ R
P we define matrices

Δ(ŝ) :=
∑
α∈A

G(α)sα,

K̂ :=
M(A)∑
m=0

G(m) ⊗ K(m),

M̂ := IP ⊗ M,

S := M̂−1K̂,

T(ŝ) := Δ(ŝ) ⊗ IN ,

where M(A) := max{m ∈ N | ∃α ∈ A s.t. αm �= 0} and IP ∈ R
P×P and IN ∈ R

N×N

are identity matrices. We also define the nonlinear function F : RP × R
P N → R

P

via

Fα(ŝ, v̂) := ŝ · G(α)ŝ − v̂ · (G(α) ⊗ M)v̂, α ∈ A

and let Fs : RP × R
P → R

P and Fv : RP N × R
P N → R

P denote the associated
bilinear forms given by Fs

α(ŝ, t̂) := ŝ · G(α) t̂ and Fv
α (v̂, ŵ) := v̂ · (G(α) ⊗M)ŵ. Now

Algorithm 1 may be rewritten in the following form.

Algorithm 2 (Spectral inverse iteration in tensor form) Fix tol > 0 and let û(0) =
{u(0)

αi }α∈A,i∈J ∈ R
P N be an initial guess for the eigenvector. For k = 1, 2, . . . do

(1) Solve v̂ = {vαi }α∈A,i∈J ∈ R
P N from the linear system

K̂v̂ = M̂û(k−1). (41)

(2) Solve ŝ = {sα}α∈A ∈ R
P from the nonlinear system

F(ŝ, v̂) = 0 (42)

with the initial guess sα = ||v̂||
RP⊗R

N
M

δα0 for α ∈ A.

123



H. Hakula, M. Laaksonen

(3) Solve û(k) = {u(k)
αi }α∈A,i∈J ∈ R

P N from the linear system

T(ŝ)û(k) = v̂. (43)

(4) Stop if ||û(k) − û(k−1)||
RP⊗R

N
M

< tol and return û(k) as the approximate eigen-
vector.

The approximate eigenvalue μ̂(k) ∈ R
P may now be solved from the equation

Δ(ŝ)μ̂(k) = ê1, (44)

where ê1 = {δα0}α∈A ∈ R
P .

Remark 3 In [11] Newton’smethodwith the initial guess sα = ||vα||
R

N
M
was suggested

for the system of Eq. (42). Here the initial guess is somewhat different and corresponds
to s0 = ||v||L2

ν(Γ )⊗R
N
M
(and sα = 0 for α �= 0).

In general it is not guaranteed that theNewton iteration for the system (42) converges
to a solution. The following proposition will give some insight to the conditions under
which this happens to be the case.

Proposition 3 Fix v̂ ∈ R
P N and let ŝ(0) = {s(0)

α }α∈A ∈ R
P be given by s(0)

α =
||v̂||

RP⊗R
N
M

δα0 for α ∈ A. Assume that there is a norm || · ||∗ on R
P and r > 0 such

that

||Fs(ŝ, t̂)||∗ ≤ CF ||ŝ||∗||t̂ ||∗

for all ŝ, t̂ in B(ŝ(0), r) := {ŝ ∈ R
P | ||ŝ − ŝ(0)||∗ ≤ r}. If

||F(ŝ(0), v̂)||∗ < C−1
F ||v̂||2

RP⊗R
N
M

then the Newton method for F(·, v̂) = 0 with the initial guess ŝ(0) converges to a
unique solution in B(ŝ(0), r).

Proof This is a direct application of the Newton-Kantorovich theorem for the equation
F(·, v̂) = 0, see [13] (Theorem 6, 1.XVIII). Note that the first derivative (Jacobian) of
F(·, v̂) at ŝ(0) is 2||v̂||

RP⊗R
N
M

IP and the second derivative is represented by the tensor
of coefficients 2cαβγ . �

From Proposition 3 we see that convergence of the Newton iteration is a conse-
quence of the boundedness of the function Fs , which again is ultimately determined
by the structure of the multi-index set A.
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5.2 Analysis of convergence

Due to a lack of generalmathematical theory formulti-parametric eigenvalue problems
we rely on a slightly unconventional approach in analyzing our algorithm. First of all,
we restrict ourselves to asymptotic analysis since the underlying problem is nonlinear
and thus hard to analyze globally. Second, we will analyze the solutions pointwise
in the parameter space and deduce convergence theorems from classical eigenvalue
perturbation bounds.

5.2.1 Characterization of the dominant fixed point

The classical inverse iteration converges to the dominant eigenpair of the inverse
matrix. In a somewhat similar fashion the spectral inverse iteration tends to converge
to a certain fixed point, which we shall refer to as the dominant fixed point. Here we
will establish a connection between this dominant fixed point of the spectral inverse
iteration and the dominant eigenpair of the inverse of the parametric matrix under
consideration. This connection is obtained by considering the fixed point as a pointwise
perturbation of the eigenvalue problem of the parametric matrix.

If uA ∈ W N
A is a fixed point of the Algorithm 1, then there exists a pair (s, v) ∈

WA × W N
A such that uA = M−1PA(Kv) and

⎧⎨
⎩

PA (s PA(Kv)) = Mv

PA
(

s2 − ||v||2
R

N
M

)
= 0.

(45)

We call uA the dominant fixed point if, whenever (s̃, ṽ) �= (s, v) also solves the system
(45), then s(y) > s̃(y) for all y ∈ Γ . For any fixed y ∈ Γ we may write (45) as

⎧⎨
⎩

s(y)K(y)v(y) = Mv(y) + s(y)RA(Kv)(y) + RA(s PA(Kv))(y)

s2(y) = ||v(y)||2
R

N
M

+ RA
(

s2 − ||v||2
R

N
M

)
(y).

(46)

The following Lemma will be helpful in establishing a connection between the eigen-
pair of interest and the system (46).

Lemma 2 Denote by ||·|| the standard Euclidean norm onRN . Assume that S ∈ R
N×N

can be diagonalized as

S(x X) = (x X)

(
λ1 0
0 Λ

)
, (47)

where λ1 ∈ R, Λ = diag(λ2, . . . , λN ) is real, and (x X) is orthogonal. Assume also
that λ1 > λ2 ≥ . . . ≥ λN and denote λ̂ := λ1 − λ2. Let ρ ∈ R and r ∈ R

N be such
that |ρ| ≤ 1/2 and ||r || ≤ λ̂/8. Then there exist κ ≥ 1/2 and π ∈ R

N−1 such that

(i) The pair (s, w) given by s = λ1 − κ−1xT r and w = κx + Xπ solves the system

{
Sw = sw + r
||w||2 = 1 + ρ.

(48)
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(ii) If (s̃, w̃) �= (s, w) also solves the system (48), then s > s̃ or xT w̃ < 0.
(iii) There exists C > 0 such that |κ −1| ≤ C(|ρ|+ λ̂−2||r ||2) and ||π || ≤ C λ̂−1||r ||.
Proof (i) Let s(κ) = λ1 − κ−1xT r . For any κ ≥ 1/2 we have |κ−1xT r | ≤ λ̂/4 so

that

min
2≤i≤N

|λi − s(κ)| = min
2≤i≤N

|λ1 − λi − κ−1xT r | ≥ λ̂ − 1

4
λ̂ >

1

2
λ̂ (49)

and
||(Λ − s(κ)I )−1|| ≤ 2λ̂−1. (50)

The function
f (κ) = κ2 + ||(Λ − s(κ)I )−1X T r ||2 − 1 − ρ (51)

is strictly increasing for κ ≥ 1/2 since

κ2 f ′(κ) = 2κ3 + 2xT r ||(Λ − s(κ)I )−
3
2 X T r ||2

≥ 2(κ3 − (2λ̂−1)3||r ||3)
> 2(κ3 − 2−3) ≥ 0. (52)

Onemay also verify that f (1/2) < 0 and f (2) > 0. Thus, wemay choose κ > 1/2
such that f (κ) = 0. For w = κx + Xπ we obtain

Sw − sw = κSx + SXπ − κsx − s Xπ = κ(λ1 − s)x + X(Λ − s I )π (53)

so the equation Sw = sw + r is equivalent to

{
xT (Sw − sw − r) = κ(λ1 − s) − xT r = 0
X T (Sw − sw − r) = (Λ − s I )π − X T r = 0.

(54)

Choosing s = s(κ) and π = (Λ − s I )−1X T r we see that both equations are
satisfied. Moreover

||w||2 = κ2 + ||π ||2 = f (κ) + 1 + ρ = 1 + ρ. (55)

(ii) Suppose (s̃, w̃) also solves the system (48) and write w̃ = κ̃x + X π̃ for some
κ̃ ∈ R and π̃ ∈ R

N−1. In the nontrivial case we have κ̃ = xT w̃ > 0. Assume first
that 0 ≤ κ̃ ≤ 1/2. We have

s̃ = w̃T Sw̃ − w̃T r

||w̃||2 = λ1κ̃
2 + π̃T Λπ̃ − w̃T r

||w̃||2 ≤ λ1κ̃
2 + λ2||π̃ ||2 + ||w̃||||r ||

||w̃||2

= λ2 + κ̃2

1 + ρ
λ̂ + ||r ||

(1 + ρ)
1
2

. (56)
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Since s ≥ λ1 − κ−1||r ||, we deduce that

s − s̃ ≥ λ̂−κ−1||r ||− κ̃2

1 + ρ
λ̂− ||r ||

(1 + ρ)
1
2

>

(
1 − 1

4
− 1

2
−

√
2

8

)
λ̂ > 0. (57)

Now let κ̃ ≥ 1/2. If (s̃, w̃) is to solve (48) then, as in part (i), we should have

{
κ̃(λ1 − s̃) − xT r = 0
(Λ − s̃ I )π̃ − X T r = 0.

(58)

From the first equation we obtain s̃ = λ1 − κ̃−1xT r . Due to |κ̃−1xT r | ≤ λ̂/4 the
matrix (Λ − s̃ I ) is invertible so the second equation gives π̃ = (Λ − s̃ I )−1X T r .
Here κ̃ ≥ 1/2 must be chosen so that f (κ̃) = 0 and therefore (s̃, w̃) = (s, w).

(iii) From f (κ) = 0 and κ ≥ 1/2 we deduce that

|κ − 1| ≤ (κ + 1)−1(|ρ| + ||(Λ − s(κ)I )−1X T r ||2) ≤ |ρ| + 4λ̂−2||r ||2 (59)

and
||π || = ||(Λ − s(κ)I )−1X T r || ≤ 2λ̂−1||r ||. (60)

Thus, the claim follows. �
Applying Lemma 2 to the system (46) pointwise for y ∈ Γ we obtain the following

result.

Proposition 4 Let uA ∈ W N
A be the dominant fixed point of Algorithm 1 and denote

by (s, v) the associated pair in WA× W N
A that solves (45). Let μA ∈ WA be such that

PA(sμA) = 1. For y ∈ Γ denote by λ̂(y) the gap between the two largest eigenvalues
of K−1(y)M. Assume that inf y∈Γ s(y) > 0 and inf y∈Γ λ̂(y) > 0. For y ∈ Γ define

r(y) := K−1(y)RA(Kv)(y) + s−1(y)K−1(y)RA(s PA(Kv))(y)

and

ρ(y) := s−2(y)RA
(

s2 − ||v||2
R

N
M

)
(y).

If

r∗ := sup
y∈Γ

λ̂−1(y)||r(y)||
R

N
M

<
1

8

and

ρ∗ := sup
y∈Γ

|ρ(y)| <
1

2
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then there exists C > 0 such that

|μA(y) − μh(y)| ≤ C
(
max{μ2

h(y), s−2(y)}||r(y)||
R

N
M

+ s−1(y)|RA(sμA)(y)|
)
(61)

and

||uA(y) − uh(y)||
R

N
M

≤ C
(
|ρ(y)| + λ̂−1(y)||r(y)||

R
N
M

+ s−1(y)||M−1RA(s PA(Kv))(y)||
R

N
M

)
, (62)

where μh : Γ → R is the smallest eigenvalue of M−1K(y) and uh : Γ → R
N is the

corresponding eigenvector normalized in || · ||
R

N
M

(and with appropriate sign).

Proof It is easy to see that the system (46) is equivalent to

{
M

1
2K−1(y)M

1
2w(y) = s(y)w(y) − M

1
2 r(y)

||w(y)||2
RN = 1 − ρ(y),

(63)

where w(y) = s−1(y)M
1
2 v(y). By Lemma 2 the solution with the pointwise largest

s(y) can be written as

{
s(y) = λ1(y) + κ−1(y)xT (y)M

1
2 r(y)

w(y) = κ(y)x(y) + X(y)π(y),
(64)

where κ : Γ → [1/2,∞) and π : Γ → R
N−1 are such that

|κ(y) − 1|2 + ||π(y)||2
RN ≤ C

(
|ρ(y)| + λ̂−2(y)||r(y)||2

R
N
M

)2 + C λ̂−2(y)||r(y)||2
R

N
M

,

λ1(y) = μ−1
h (y) is the pointwise largest eigenvalue of S(y) and x(y) = M

1
2 uh(y)

is the corresponding eigenvector. The matrix (x(y) X(y)) is orthonormal for every
y ∈ Γ . A Taylor expansion of s−1(y) yields

|s−1(y) − μh(y)| = C(μ−1
h (y) + ξ(y))−2||r(y)||

R
N
M

≤ C max{μ2
h(y), s−2(y)}||r(y)||

R
N
M

, (65)

where ξ(y) is such that 0 ≤ ξ(y) ≤ κ−1(y)xT (y)M
1
2 r(y). Combining this with the

equation
μA(y) = s−1(y) + s−1(y)RA(sμA)(y) (66)

obtained from the condition PA(sμA) = 1, we have altogether that

|μA(y)−μh(y)| ≤ C max{μ2
h(y), s−2(y)}||r(y)||

R
N
M

+s−1(y)|RA(sμA)(y)|. (67)
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Furthermore,

M
1
2 uA(y) = M− 1

2 PA(Kv)(y) = s−1(y)M− 1
2 RA(s PA(Kv))(y) + w(y) (68)

from which it follows that

||uA(y) − uh(y)||2
R

N
M

= ||M 1
2 uA(y) − w(y)||2

RN + ||w(y) − M
1
2 uh(y)||2

RN

= ||s−1(y)M− 1
2 RA(s PA(Kv))(y)||2

RN + ||(κ(y) − 1)x(y) + X(y)π(y)||2
RN

= s−1(y)||M−1RA(s PA(Kv))(y)||2
R

N
M

+ |κ(y) − 1|2 + ||π(y)||2
RN

≤ C
(
|ρ(y)| + λ̂−1(y)||r(y)||

R
N
M

+ s−1(y)||M−1RA(s PA(Kv))(y)||
R

N
M

)2
.

(69)

This concludes the proof. �
Remark 4 Note that we have not proven the existence of a dominant fixed point of
the Algorithm 1. The residuals r and ρ in Proposition 4 depend on the pair (s, v) ∈
WA × W N

A and hence Lemma 2 by itself is not sufficient to guarantee the existence
of a dominant fixed point.

5.2.2 Convergence of the dominant fixed point to a parametric eigenpair

The next step in our analysis is to bound the error between the dominant fixed point
of Algorithm 1 and the dominant eigenpair of the inverse of the parametric matrix. To
this end we will use the pointwise estimate obtained previously.

From Proposition 4 we may easily deduce the following result.

Theorem 2 Let uA ∈ W N
A be the dominant fixed point of Algorithm 1 and denote by

(s, v) the associated pair in WA × W N
A that solves (45). Let μA ∈ WA be such that

PA(sμA) = 1. For y ∈ Γ denote by λ̂(y) the gap between the two largest eigenvalues
of K−1(y)M. Assume that s∗ := inf y∈Γ s(y) > 0, λ̂∗ := inf y∈Γ λ̂(y) > 0 and that
the quantity

||RA(Kv)||L∞(Γ )⊗R
N
M

+||RA (s PA(Kv)) ||L∞(Γ )⊗R
N
M

+
∣∣∣
∣∣∣RA

(
s2 − ||v||2

R
N
M

)∣∣∣
∣∣∣
L∞(Γ )

is small enough. Then there exists C > 0 such that

||μA − μh ||L2
ν (Γ ) ≤ C

(
||RA(Kv)||L2

ν (Γ )⊗R
N
M

+ ||RA(s PA(Kv))||L2
ν (Γ )⊗R

N
M

+ ||RA (sμA)||L2
ν (Γ )

)
(70)
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and

||uA − uh ||L2
ν (Γ )⊗R

N
M

≤ C

(
||RA(Kv)||L2

ν (Γ )⊗R
N
M

+ ||RA(s PA(Kv))||L2
ν (Γ )⊗R

N
M

+
∣∣∣
∣∣∣RA

(
s2 − ||v||2

R
N
M

)∣∣∣
∣∣∣
L2

ν (Γ )

)
, (71)

where μh : Γ → R is the smallest eigenvalue of M−1K(y) and uh : Γ → R
N is the

corresponding eigenvector normalized in || · ||
R

N
M

(and with appropriate sign). Here

C depends only on s∗, λ̂∗, μ∗
h := supy∈Γ μh(y), K∗ = supy∈Γ ||K−1(y)||

R
N
M

, and

M∗ = ||M−1||
R

N
M

.

Proof With r defined as in Proposition 4 we have

||r||L2
ν (Γ )⊗R

N
M

≤ K∗
(
||RA(Kv)||L2

ν (Γ )⊗R
N
M

+ s−1∗ ||RA(s PA(Kv))||L2
ν (Γ )⊗R

N
M

)
,

(72)
and

||M−1RA(s PA(Kv))(y)||L2
ν (Γ )⊗R

N
M

≤ M∗||RA(s PA(Kv))(y)||L2
ν (Γ )⊗R

N
M

. (73)

The bounds (70) and (71) now follow from Proposition 4. �
By Proposition 1 the exact eigenvalue and eigenvector of problem (9) are analytic

functions of the parameter vector y ∈ Γ . This suggests that the residuals on the right
hand side of Eqs. (70) and (71) can be asymptotically estimated from Proposition 2.

5.2.3 Convergence of the spectral inverse iteration to the dominant fixed point

The classical inverse iteration converges to the dominant eigenpair of the inverse
matrix at a speed characterized by the gap between the two largest eigenvalues. Here
we will establish a similar asymptotic result for the convergence of the spectral inverse
iteration towards the dominant fixed point.

Fixed points of the spectral inverse iteration may be characterized using the tensor
notation ofAlgorithm2. Let ûA ∈ R

P N be a fixed point of the algorithm, i.e., ûA = Sv̂
and (ŝ, v̂) ∈ R

P × R
P N are such that

{
v̂ = T(ŝ)Sv̂
F(ŝ, v̂) = 0.

(74)

Define a linear operator R(ŝ, v̂) : RP N → R
P N by

R(ŝ, v̂)ŵ := ŵ − T
(
Δ−1(ŝ)Fv(v̂, ŵ)

)
T−1(ŝ)v̂.

The convergence of the spectral inverse iteration to the fixed point ûA can now be
related to the ratio of the norms of Δ−1(ŝ) and R(ŝ, v̂)S−1.
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Theorem 3 Let ûA ∈ R
P N be a fixed point of the Algorithm 2 and (ŝ, v̂) ∈ R

P ×
R

P N a corresponding solution to (74). Assume that Δ(ŝ) is invertible. Let μ̂A =
Δ−1(ŝ)ê1, where ê1 = {δα0}α∈A ∈ R

P . Set φmin := ||Δ−1(ŝ)||−1
RP and ψmax :=

||R(ŝ, v̂)S−1||
RP⊗R

N
M

. Then for any ε > 0 the iterates of Algorithm 2 satisfy

||û(k) − ûA||
RP⊗R

N
M

≤
(

ψmax

φmin
+ ε

)
||û(k−1) − ûA||

RP⊗R
N
M

, k ∈ N (75)

whenever û(k) is sufficiently close to ûA. Furthermore, there exists C > 0 such that

||μ̂(k) − μ̂A||RP ≤ C ||û(k) − ûA||
RP⊗R

N
M

, k ∈ N. (76)

Proof The partial derivative (Jacobian) of the function F(ŝ + t̂, v̂ + ŵ) with respect
to t̂ at t̂ = 0 is given by 2Δ(ŝ). The implicit function theorem now guarantees that
there is a unique differentiable function t̂(ŵ) defined in a neighbourhood of ŵ = 0
such that F(ŝ + t̂(ŵ), v̂ + ŵ) = 0. Computing the first order approximation of this
function we see that for ŵ small enough

t̂(ŵ) = Δ−1(ŝ)Fv(v̂, ŵ) + h.o.t. in ŵ, (77)

where h.o.t. stands for higher order terms. From (77) we obtain

T−1 (
ŝ + t̂(w)

) =
(
T(ŝ) + T

(
Δ−1(ŝ)Fv(v̂, ŵ)

)
+ h.o.t. in ŵ

)−1

= T−1(ŝ) − T−1(ŝ)T
(
Δ−1(ŝ)Fv(v̂, ŵ)

)
T−1(ŝ) + h.o.t. in ŵ.

(78)

Set v̂(k) = S−1û(k) and ŵ(k) = v̂(k) − v̂. Now

Sŵ(k) = T−1
(

ŝ + t̂(w(k−1))
) (

v̂ + ŵ(k−1)
)

− Sv̂

= T−1(ŝ)
(
v̂ + ŵ(k−1)

)
− T−1(ŝ)T

(
Δ−1(ŝ)Fv(v̂, ŵ(k−1))

)
T−1(ŝ)v̂ − Sv̂

+ h.o.t. in ŵ(k−1)

= T−1(ŝ)
(
ŵ(k−1) − T

(
Δ−1(ŝ)Fv(v̂, ŵ(k−1))

)
T−1(ŝ)v̂

)
+ h.o.t. in ŵ(k−1)

= T−1(ŝ)R(ŝ, v̂)ŵ(k−1) + h.o.t. in ŵ(k−1). (79)

Since Sŵ(k) = û(k) − ûA we have that

û(k) − ûA = T−1(ŝ)R(ŝ, v̂)S−1
(
û(k−1) − ûA

)
+ h.o.t. in

(
û(k−1) − ûA

)
. (80)

Equations (75) and (76) now follow from (80) and the fact that μ̂(k) is asymptotically
given as a linear function of û(k). �
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Adapting Theorem 3 to the context of Algorithm 1 we obtain the following Corol-
lary.

Corollary 1 Let uA ∈ W N
A be a fixed point of the Algorithm 1 and (s, v) ∈ WA × W N

A
a corresponding solution to (45). Let μA ∈ WA be such that PA(sμA) = 1. Assume
that s∗ := inf y∈Γ s(y) > 0 and let ψmax be as in Theorem 3. Then for any ε > 0 the
iterates of Algorithm 1 satisfy

||u(k) − uA||L2
ν (Γ )⊗R

N
M

≤
(

ψmax

s∗
+ ε

)
||u(k−1) − uA||L2

ν (Γ )⊗R
N
M

, k ∈ N

whenever u(k) is sufficiently close to uA. Furthermore, there exists C > 0 such that

||μ(k) − μA||L2
ν (Γ ) ≤ C ||u(k) − uA||L2

ν (Γ )⊗R
N
M

, k ∈ N. (81)

Proof Interpret Theorem 3 in the context of Algorithm 1. The bound φmin ≥ s∗ is a
consequence of Lemma 1. �

Obviously the previous Corollary has practical value only if ψmax < s∗. Here we
will briefly discuss the value of ψmax in the case that (ŝ, v̂) ∈ R

P ×R
P N is associated

to the dominant fixed point of Algorithm 2. Observe that the equation ẑ = R(ŝ, v̂)ŵ
is equivalent to the system

{
z(y) = w(y) − PA(tuA)(y)

PA(st)(y) = PA
(
〈v,w〉

R
N
M

)
(y)

(82)

for all y ∈ Γ . We see that, if w = v then z = 0, whereas, if 〈w(y), v(y)〉
R

N
M

= 0 for

all y ∈ Γ then z = w. Thus, the matrix R(ŝ, v̂) acts as a deflation that shrinks vectors
that are close to v(y) and preserves vectors that are almost orthogonal to v(y). From
Proposition 4 we know that s−1(y) is an approximation of the smallest eigenvalue
of M−1K(y) and v(y) is an approximation of the corresponding eigenvector. By
Lemma 1 the operator norm of S−1 is bounded by supy∈Γ λ−1

1 (y), where λ1(y) is the
smallest eigenvalue of M−1K(y). Analogously, since the eigenvector corresponding
to this smallest eigenvalue is deflated by R(ŝ, v̂), we expect the norm of R(ŝ, v̂)S−1

to be bounded by a value close to supy∈Γ λ−1
2 (y), where λ2(y) is the second smallest

eigenvalue of M−1K(y). With this reasoning, if the deflation is sufficient, there is
ψ∗
max ∈ R such that

ψmax

s∗
≤ ψ∗

max

s∗
≈ λ1/2 := supy∈Γ λ−1

2 (y)

inf y∈Γ λ−1
1 (y)

= supy∈Γ λ1(y)

inf y∈Γ λ2(y)
. (83)

One might suspect that the speed of convergence of the spectral inverse iteration is
characterized by the largest value of the ratio λ1(y)/λ2(y). The bound obtained from
(83) is slightly more pessimistic, though not necessarily optimal.
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5.2.4 Combined error analysis

Let (μ, u) ∈ L2
ν(Γ )× L2

ν(Γ )⊗ H1
0 (D) be the smallest eigenvalue and the associated

eigenfunction of the continuous problem (9). Let (μh, uh) ∈ L2
ν(Γ ) × L2

ν(Γ ) ⊗ Vh

be the corresponding eigenpair of the semi-discrete problem (13). Assume that there
exists a dominant fixed point uA ∈ W N

A of Algorithm 1 and an associated eigenvalue
approximation μh,A := μA ∈ WA as in Proposition 4. Denote by u(k) ∈ W N

A the k:th
iterate of Algorithm 1 and by μh,A,k := μ(k) ∈ WA the associated solution to (37).
Let uh,A and uh,A,k denote the functions in WA ⊗ Vh , whose coordinates are defined
by the vectors uA and u(k) respectively. The spatial, stochastic, and iteration errors
may now be separated in the following sense:

||μ − μh,A,k ||L2
ν (Γ ) ≤ ||μ − μh ||L2

ν (Γ )

+||μh − μh,A||L2
ν (Γ ) + ||μh,A − μh,A,k ||L2

ν (Γ ) (84)

and

||u − uh,A,k ||L2
ν (Γ )⊗L2(D) ≤ ||u − uh ||L2

ν (Γ )⊗L2(D) + ||uh − uh,A||L2
ν (Γ )⊗L2(D)

+ ||uh,A − uh,A,k ||L2
ν (Γ )⊗L2(D). (85)

Under sufficient conditions we may now bound each term in the Eqs. (84) and (85)
separately using the theory developed earlier in this section. The first term may be
approximated using Theorem 1, the second term may be approximated using Theo-
rem 2 and Proposition 2, and the third term may be approximated using Corollary 1 of
Theorem 3 and the hypothesis (83). We therefore expect that, with an optimal choice
the multi-index setsAε for ε > 0, the output of the spectral inverse iteration converges
to the exact solution according to

||u − uh,Aε ,k ||L2
ν (Γ )⊗L2(D) � h1+l + (#Aε)

−r + λk
1/2 (86)

and similarly
||μ − μh,Aε ,k ||L2

ν (Γ ) � h2l + (#Aε)
−r + λk

1/2 (87)

for certain rates r > 0 and l > 0.

5.3 Numerical examples

Wepresent numerical evidence to verify the Eqs. (86) and (87). In each of the following
examples we compute the smallest eigenvalue and the corresponding eigenfunction
of the model problem (4) in the unit square D = [0, 1]2 using the Algorithm 1. We
use the smallest eigenvector at y = 0 as an initial guess. For the diffusion coefficient
we assume the form (5) with a0 := 1 and

am(x) :=
{

(m + 1)−ς sin(mπx1), m = 1, 3, . . .
(m + 1)−ς sin(mπx2), m = 2, 4, . . .

x = (x1, x2) ∈ D,
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(a) (b)

Fig. 1 The mean and variance of the eigenfunction as computed by Algorithm 1

where we set ς = 3.2. Now ||am ||L∞(D) ≤ Cm−ς and ||am ||W 2,∞(D) ≤ Cm−ς+2 so
that the assumptions (6)–(8) for s = 2 are satisfiedwith p0 > ς−1 and p2 > (ς−2)−1.
We therefore expect the regions of analyticity in Proposition 1 to increase according
to τm ≥ Cmς−1.

The deterministic mesh is a uniform grid of second order quadrilateral elements
in all computations. The discretization in the parameter space is obtained by setting
τm := (m + 1)ς−1 for m = 1, 2, . . . and using the multi-index sets Aε as defined in
Proposition 2. Multi-index sets of this form have been introduced in [7] and in [5] an
algorithm for generating them has been suggested.

We use a matrix free formulation of the conjugate gradient method for solving the
linear systems (41) and (43). The preconditioner is constructed using the mean of the
parametric matrix in question [17] and as an initial guess we set the solution of the
system from the previous iteration. We wish to note that in this setting only a very
few iterations of the conjugate gradient method are needed at each step of the spectral
inverse iteration.

In the lack of an exact solution we compute an overkill solution (μ∗, u∗) for which
the number of deterministic degrees of freedom is N = 36741, the parameter ε is
chosen such that #Aε = 264, and the number of iterations is k = 16. This results
in roughly 107 total degrees of freedom. The number of active dimensions in the
overkill solution is M(Aε) = 113. All the numerical examples in this section have
been computed using this overkill solution as a reference. The expected value and
variance of the eigenfunction are presented in Fig. 1.

5.3.1 Convergence in space

Keeping the number of stochastic degrees of freedom #Aε = 264 and the number of
iterations k = 16fixed,wemay investigate the convergence of the solution (μ∗,h , u∗,h)

as a function of the spatial discretization parameter h. This convergence for piecewise
quadratic basis functions is illustrated in Fig. 2. We observe algebraic convergence
rates of order 3 and 4 for the eigenfunction and eigenvalue respectively, exactly as
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(a) (b)

Fig. 2 Convergence of the spatial errors for the eigenfunction and eigenvalue as computed by Algorithm 1.
The points represent a log–log plot of the errors as a function of h. The dashes lines represent the rates h3

and h4 respectively

predicted by Theorem 1. Thus, the error behaves like N−3/2 and N−2 with respect to
the number of deterministic degrees of freedom.

5.3.2 Convergence in the parameter domain

Keeping the number of spatial degrees of freedom N = 36,741 and the number of iter-
ations k = 16 fixed, wemay investigate the convergence of the solution (μ∗,Aε

, u∗,Aε
)

as a function of #Aε as ε → 0. This convergence is illustrated in Fig. 3. We observe
approximate algebraic convergence rates of order − r = − 1.9 with respect to the
number of stochastic degrees of freedom #Aε .

In Fig. 4 we have presented the norms of the Legendre coefficients of the overkill
solution. The ordering of the coefficients is the same as the order in which they would
appear in the multi-index set #Aε as ε → 0. We see that the norms converge at the
rate − r − 1/2 = − 2.4 exactly as we would expect from the proof of Proposition 2.
In Fig. 5 we have presented the norms of the same Legendre coefficients sorted by
decreasing magnitude. From this Figure we estimate that, with an optimal selection
of the multi-index sets we could in fact observe a rate of convergence −r = −2.3 for

(a) (b)

Fig. 3 Convergence of the stochastic errors for the eigenfunction and eigenvalue as computed by Algo-
rithm 1. The points represent a log–log plot of the errors as a function of #Aε . The dashed lines represent
the rate (#Aε)

−1.9
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(a) (b)

Fig. 4 A log–log plot of the norms of the Legendre coefficients of the overkill solution. The dashed lines
represent the algebraic rate − 2.4

(a) (b)

Fig. 5 A log–log plot of the norms of the Legendre coefficients of the overkill solution sorted by decrasing
magnitude. The dashed lines represent the algebraic rate − 2.8

the error of the solution. This ideal rate of convergence is somewhat faster than the
asymptotic theoretical bound of −r = −ς + 3/2 = −1.7 predicted by Proposition 2.

Interestingly we observe two well separated clusters of values in Fig. 4b. It seems
that many of the multi-indices that correspond to relatively large Legendre coefficients
of the eigenfunction, account only for a marginal contribution to the eigenvalue.

5.3.3 Convergence of the iteration error

Keeping the number of spatial basis functions N = 36,741 and the parameter ε fixed
so that #Aε = 264, we may investigate the convergence of the solution (μ∗,k, u∗,k)

as a function of the number of iterations k. This convergence is illustrated in Fig. 6.
Assuming that the variation in the eigenvalues within the parameter space is small,
the value λ1/2 defined in (83) may be approximated by the ratio of the two smallest
eigenvalues of the problem at y = 0. Thus, Fig. 6 suggests that the error behaves
asymptotically like λk

1/2, just as predicted by Corollary 1.
It is worth noting that, from the analysis of the classical inverse iteration, one might

expect the eigenvalue to converge faster than the eigenfunction. In fact, the eigenvalue
exhibits a faster rate of convergence at first and the error behaves like λ2k

1/2. Comparing
to the results of the previous example, we see that k ≈ 9 represents a turning point
after which the stochastic error in the eigenfunction starts to dominate the iteration
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(a) (b)

Fig. 6 Convergence of the iteration errors for the eigenfunction and eigenvalue as computed byAlgorithm 1.
The points represent a log plot of the errors as a function of k. The dashed lines represent the rates λ̄k

1/2

and λ̄2k
1/2, where λ̄1/2 is the ratio of the two smallest eigenvalues of the problem at y = 0

error. Hence, for k ≥ 9 the polynomial approximation in the parameter domain is
insufficient to guarantee the degree of accuracy that is required for the eigenvalue to
exhibit the faster rate of convergence that is otherwise characteristic to it.

5.3.4 Concluding remarks and comparison to sparse collocation

Using the finest levels of discretization, i.e., N = 9296 degrees of freedom for approxi-
mation in space and #Aε = 121 degrees of freedom for approximation in the parameter
domain, and computing k = 9 steps of the inverse iteration we obtain a solution for
which the L2

ν(Γ ) ⊗ L2(D) error of the eigenfunction is approximately 3× 10−6. The
number of total degrees of freedom in this case is more than 106 and the number of
active dimensions is M(Aε) = 60. The total computational time on a standard desk-
top machine is approximately five minutes, most of which is spent in the conjugate
gradient method for the linear systems (41) and (43).

When the solution computed via the spectral inverse iteration is compared to the
results of the non-composite version of the sparse collocation method introduced
in [4] and employed in e.g. [1] (see equations (5.12)–(5.13) and (5.16)–(5.17)), the
statistics of the two solutions seem to almost coincide. Again using the finest levels
of discretization (N = 9296 and #Aε = 121) for both methods, the L2(D) errors of
mean and variance of the eigenfunction are both less than 3 × 10−8 and the errors
in the eigenvalue are less than 3 × 10−11 and 3 × 10−9 for the mean and variance
respectively.

6 Spectral subspace iteration

In this section we extend the spectral inverse iteration to a spectral subspace iteration,
withwhichwe can compute dominant subspaces of the inverse of the parametricmatrix
under consideration. The underlying assumption is that the subspace is sufficiently
smooth with respect to the parameters. Convergence of the spectral subspace iteration
is verified through numerical experiments.
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6.1 On the analyticity of finite dimensional subspaces

Let us consider invariant subspaces for which the corresponding cluster of eigenvalues
is sufficiently well separated from the rest of the spectrum. Assume a clusterM(y) =
{μq(y)}Q

q=1 of eigenvalues of (9) so that

(i) each μq(y) is of finite multiplicity as an eigenvalue of A(y) for all y ∈ Γ and
(ii) the minimum spectral gap inf y∈Γ dist(M(y), σ (A(y))\M(y)) is positive.

It is in general difficult to consider the analyticity of each of the eigenmodes separately.
However, we might still expect the associated invariant subspace to be analytic as a

function of y. More precisely, let {uq(y)}Q′
q=1 be a maximal collection of linearly

independent eigenfunctions corresponding to the eigenvalues M(y) for all y ∈ Γ .

It is not completely unreasonable to assume that span{uq(y)}Q′
q=1 is analytic, in a

suitable sense, as a function of the parameter vector y. This assumption is the basis of
our algorithm of spectral subspace iteration. For more information on the regularity
of perturbed eigenvalues see [14,15].

6.2 Algorithm description

As with the classical subspace iteration, the idea in the spectral version is to perform
inverse iteration for a set of vectors and orthogonalize these vectors at each step.
Orthogonality should here be understood in a sense that the vectors are orthogonal for
all points in the parameter spaceΓ . This can be approximately achieved by performing
the Gram-Schmidt orthogonalization process for the vectors in the Galerkin sense, i.e.,
by projecting each elementary operation to the basis WA.

Fix a finite set of multi-indices A ⊂ (N∞
0 )c and let P = #A. The spectral sub-

space iteration for the system (16) is now defined in Algorithm 3. Observe that, if
the projections were precise, then the Algorithm would correspond to performing the
classical subspace iteration pointwise on Γ . Orhtogonalization of the basis vectors via
the Gram-Schmidt process is achieved in step (2). We expect Algorithm 3 to converge
to an approximate basis for the Q-dimensional invariant subspace associated to the
smallest eigenvalues of the system.

Algorithm 3 (Spectral subspace iteration) Fix tol > 0 and let {u(0,q)}Q
q=1 ⊂ W N

A be
an initial guess for the basis of the subspace. For k = 1, 2, . . . do

(1) For each q = 1, . . . , Q solve v(q) ∈ W N
A from the linear equation

PA
(
Kv(q)

)
= Mu(k−1,q). (88)

(2) For q = 1, . . . , Q do

(2.1) Set

w(q) = v(q) −
q−1∑
i=1

PA
(
u(k,i) PA

(
〈v(q),u(k,i)〉

R
N
M

))
. (89)
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(2.2) Solve s(q) ∈ WA from the nonlinear equation

PA
(
(s(q))2

)
= PA

(
||w(q)||2

R
N
M

)
. (90)

(2.3) Solve u(k,q) ∈ W N
A from the linear equation

PA
(

s(q)u(k,q)
)

= w(q). (91)

(3) Stop if a suitable criterion is satisfied and return {u(k,q)}Q
q=1 ⊂ W N

A as the
approximate basis for the subspace.

In general we can not expect the output vectors {u(k,q)}Q
q=1 ⊂ W N

A of Algorithm 3
to converge to any particular eigenvectors of the system (16). However, we still expect
them to approximately span the subspace associated to the smallest eigenvalues of the
system. In view of Sect. 6.1, if a cluster of eigenvalues is sufficiently well separated
from the rest of the spectrum, then we assume the associated subspace to be analytic
with respect to the parameter vector y ∈ Γ . In this case we may expect optimal
convergence of the projections in the Algorithm.

Remark 5 In order to measure convergence of the Algorithm 3 we should be able to
estimate the angle between subspaces over the parameter space Γ . It is not entirely
trivial to perform this kind of a computation in practise. The numerical examples in
Sect. 6.3 will hopefully give some more insight on this.

Remark 6 As noted in Sect. 3, the smallest eigenvalue of the problem (9) is always
simple, hence analytic. For more general problems this might not be the case. For
instance, in the event of an eigenvalue crossing, the eigenmode corresponding to the
pointwise smallest eigenvalue is not (in general) even a continuous function of the
parameter vector y. In this case we can modify the Algorithm 3 by adding the step

(2.0) Set v(1) = ∑Q
q=1 v

(q)

before step (2.1). This should ensure optimal convergence, since even if the eigen-
modes change places, we still expect their sum to be smooth with respect to y.

Using the tensors defined in Sect. 5 we may write Algorithm 3 in the following
form.

Algorithm 4 (Spectral subspace iteration in tensor form) Fix tol > 0 and let
{û(0,q)}Q

q=1 ⊂ R
P N be an initial guess for the basis of the subspace. For k = 1, 2, . . .

do

(1) For each q = 1, . . . , Q solve v̂(q) ∈ R
P N from the linear system

K̂v̂(q) = M̂û(k−1,q). (92)

(2) For q = 1, . . . , Q do
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(2.1) Set

ŵ(q) = v̂(q) −
q−1∑
i=1

T
(

Fv(v̂(q), û(k,i))
)
û(k,i). (93)

(2.2) Solve ŝ(q) ∈ R
P from the nonlinear system

F(ŝ(q), ŵ(q)) = 0 (94)

with the initial guess s(q)
α = ||ŵ(q)||

RP⊗R
N
M

δα0 for α ∈ A.

(2.3) Solve û(k,q) ∈ R
P N from the linear system

T(ŝ(q))û(k,q) = ŵ(q). (95)

(3) Stop if a suitable criterion is satisfied and return {û(k,q)}Q
q=1 ⊂ R

P N as the
approximate basis for the subspace.

6.3 Numerical examples

We use Algorithm 3 to compute the 3-dimensional subspace associated with the small-
est eigenvalues of the model problem considered in Sect. 5.3. We let the deterministic
mesh be a uniform grid of second order quadrilateral elements with N = 2465 degrees
of freedom. As an initial guess we use the smallest eigenvectors of the problem at
y = 0. In Fig. 7 we have presented the four smallest eigenvalues of the problem as
a function of y1, when y2, y3, . . . are held constant. We observe an eigenvalue cross-
ing due to which the eigenvectors corresponding to the pointwise second and third
smallest eigenvalues are discontinuous as functions of y.

In order to investigate the convergence of the spectral subspace iteration, we attempt
to estimate the angle between the exact invariant subspace and the approximate one
computed by Algorithm 3. For any fixed y ∈ Γ we let v1(y), . . . , vQ(y) be a set of
R

N
M orthonormal exact eigenvectors corresponding to the Q-smallest eigenvalues of

the problem. We define

(a) (b)

Fig. 7 A few smallest eigenvalues of the model problem as a function of y1 when y2 = y3 = · · · = 0.
The smallest eigenvalue is well-separated. However, we observe a crossing of the second and third smallest
eigenvalues

123



Asymptotic convergence of spectral inverse iterations for…

(a) (b)

(c) (d)

Fig. 8 Convergence of the Algorithm 3 for Q = 3. The points represent a log plot of approximate statistics
of the error measure θ(k) as a function of k. The dashed lines represent the rates λ̄k

3/4 and λ̄4k
3/4 for the top

and bottom row plots respectively. Here λ̄3/4 is the ratio of the third and fourth smallest eigenvalues of the
problem at y = 0

θk(y) := | det(Θ(k)(y))|,

where Θ(k)(y) ∈ RQ×Q is a matrix with elements Θ
(k)
i j (y) = 〈u(k)

i (y), v j (y)〉
R

N
M
.

Now θk(y) can be viewed as the cosine of the angle between the two subspaces at
y ∈ Γ (see for instance [10] formula (2.2)). Thus, convergence of the algorithm
can be measured in terms of the statistics of θk . In the following examples we have
estimated the mean and variance of θk using the non-composite version of the sparse
collocation operator employed in [1]. For the definition of the collocation operator we
have used the overkill multi-index set of Sect. 5.3 (#Aε = 264).

Convergence of the spectral subspace iteration for Q = 3 is illustrated in Fig. 8.We
see that the values arccos(E[θk]) behave like λk

3/4, where λ3/4 is the ratio of the third
and fourth smallest eigenvalues of the problem. Simultaneously the values Var[θk]
converge to zero. These results suggest that the angle between the exact subspace and
the approximation computed by Algorithm 3 converges to zero on Γ . Furthermore,
the rate of convergence is characterised by the rate λk

3/4 much like for the classical
subspace iteration.Note however, thatwith afixedbasis for polynomial approximation,
i.e. a fixed multi-index setAε , only a certain accuracy for the output may be reached.
Increasing the number of basis polynomialsmakesmore accurate solutions achievable.
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7 Conclusions and future prospects

We have presented a comprehensive error analysis for the spectral inverse iteration,
when applied to solving the ground state of a stochastic elliptic operator. We have
also proposed a method of spectral subspace iteration and, using numerical examples,
shown its potential in computing approximate subspaces associated to possibly clus-
tered eigenvalues. Further analysis, both numerical and theoretical, of this algorithm
is left for future research.

The numerical examples suggest that our algorithms are both accurate and efficient.
However, theoretical estimates for the computational complexity are not entirely trivial
to obtain as thiswould require information on the structure of the tensor of coeffiecients
cαβγ . Moreover, when iterative solvers are used, the optimal strategy is to increase the
associated tolerances in the course of the iteration. We note that sparse products of
the spatial and stochastic approximation spaces, as in [5], may be applied to further
reduce the computational effort, and that matrix free algorithms also allow for easy
parallelization.
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