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Directional transmission or amplification of microwave signals is indispensable in various applications
involving sensitive measurements. In this work we show experimentally how to use a generic cavity
optomechanical setup to nonreciprocally amplify microwave signals above 3 GHz in one direction by
9 dB and simultaneously attenuate the transmission in the opposite direction by 21 dB. We use a device
including two on-chip superconducting resonators and two metallic drumhead mechanical oscillators.
Application of four microwave pump-tone frequencies allows the design of constructive or destructive
interference for a signal tone depending on the propagation direction. The device can also be configured
as an isolator with lossless nonreciprocal transmission and 18 dB of isolation.
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I. INTRODUCTION

The measurement of weak electromagnetic signals does
not only require proper amplification; it is also essen-
tial to protect the typically fragile signal source from
disturbances by the measurement system even when the
amplification adds very little noise to the measured sig-
nal. In a typical situation in superconducting quantum-
information systems working at microwave frequencies,
Josephson-junction parametric amplifiers (JPAs) are used
as a nearly-quantum-limited read-out technology. Tradi-
tional JPA designs are reciprocal devices (i.e., they amplify
signals the same way in either direction). Therefore, unless
additional precautions are taken, the sample is exposed
to an amplified noise propagating backward from the
amplifier’s output, potentially compromising its quantum
properties.

One way to break the symmetry between forward and
backward transmission is to divide the signal into two
branches with transfer phases chosen such that, once
recombined, signals propagating in each direction interfere
differently. In the microwave domain, this is standardly
used to build isolators and circulators by threading current
loops with a magnetic flux. These components are then
inserted between the sample and low-noise amplifiers to
make the signal transmission nonreciprocal. This design,
however, results in bulky devices that are inconvenient in
the cryogenic systems needed for deep cooling of super-
conducting quantum systems. Moreover, they use strong
magnetic fields that may perturb sensitive signal sources.

In the optical domain, directional propagation is also
desired, and has been implemented in microspheres,
microrings, or toroids where counterpropagating optical
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modes exhibit different optomechanically induced trans-
parencies or amplifications. Optomechanically induced
nonreciprocity [1] led to a variety of realizations of isola-
tors, circulators, and directional amplifiers showing strong
amplification in the optical domain [2–5].

Instead of spatially distinct transfer paths, nonreciprocity
can be obtained if several simultaneous transfer processes
form a fictitious loop: in this case the interference phase
is typically governed by phase-controlled drive. These
ideas have been used in the context of Josephson-junction
nonreciprocal devices [6–11], which do not require the
use of isolators after the sample in microwave quantum
experiments. Optical nonlinearities [12–17] or time modu-
lation of dielectric constants [18–21] have also been used
to build nonreciprocal devices, the interfering processes
generally consisting of simultaneous down-conversions
and up-conversions. Physically spinning devices have also
been proposed and used in sound amplifiers [22] to break
time symmetry.

Even more recently, suitably coupled multimode
optomechanical systems [23–29] have been investigated to
this end. Indeed, the interaction of two optical modes with
ancillary mechanical modes also allows one to produce
multiple interfering transfer paths as required. This type
of system was adapted recently to promote nonreciprocal
coupling between mechanical modes instead and demon-
strate a new cooling mechanism [30]. The engineering of
multiple constructively interfering transduction paths has
also been demonstrated to increase the bandwidth of an
rf-to-optical transducer [31].

Finally, an interesting option to realize directional
amplification is provided by traveling-wave amplifiers, as
recently demonstrated with JPAs in the microwave regime
[32,33]. The latter, however, accept only a limited input
power.
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Nonreciprocal transfer between two cavities featuring
the input and output ports of an optomechanical device
can be obtained by the balancing of their direct cou-
pling with a second transfer path involving one or several
mechanical oscillators (MOs), as suggested [24,34] and
experimentally realized [25], demonstrating amplification
in the optical domain. Xu et al. [35] proposed a sym-
metrized scheme where the two paths each incorporate
one MO, which was used in recently reported implemen-
tations of microwave isolators and circulators [36–38].
While these devices show good isolation, they are not
intended to produce gain, and suffer from insertion losses,
though modest.

Several types of microwave amplifiers based on
microwave optomechanical devices have been demon-
strated recently [39–42]. The best realizations have
achieved very low noise, even below the quantum limit
in a phase-sensitive mode [42]. Optomechanical ampli-
fiers, in comparison with JPA designs, have the benefit
of much higher power-handling capability, which derives
from a lower nonlinearity. All these devices, however, are
reciprocal because multimode interfering pathways were
not specifically designed. In this work, we demonstrate
how one can achieve frequency-converting directional
microwave amplification in a microwave optomechani-
cal system. The system consists of two microwave cavity
modes coupled indirectly via two MOs. Under appro-
priate driving, each MO creates a frequency-converting
amplification path between the cavities as was previously
demonstrated for a single MO [40]. With use of two
MOs, interference between the two paths allows direc-
tional amplification of electromagnetic signals, realizing
the scheme proposed in Ref. [43]. We further generalize
the formalism in Ref. [43] to include internal losses of the
cavity modes present in the experiment.

II. THEORETICAL DESCRIPTION

A. Basic scheme

The frequency-converting directional amplifier with the
pumping scheme schematically illustrated in Fig. 1(a) con-
sists of two microwave cavity modes acting as input and
output ports and two MOs mediating two transfer paths
for excitations, as schematized in Fig. 1(b). The mechani-
cal oscillators have frequencies �1 and �2 and decay rates
γ1 and γ2. The two cavity modes have frequencies ω1 and
ω2, and they couple equally to both mechanical degrees
of freedom. The cavities couple to a read-out and exci-
tation line with external decay rates κe

1 and κe
2, and they

have internal decay rates κ i
1 and κ i

2. The input and output
ports of the amplifier are defined as the frequency ranges
around the cavity resonance frequencies ω1 and ω2, respec-
tively. The optomechanical Hamiltonian for the system of

(a)

(b)

(c)

FIG. 1. Implementation of a directional amplifier. (a) Four-tone
driving scheme. Two optomechanical cavities, which both cou-
ple to two mechanical oscillators, are pumped at frequencies
close to either red or blue motional sidebands of the mechan-
ical modes. (b) Two-tone driving of sideband processes cor-
responding to each mechanical mode [green or purple arrows
in (a)] generates bidirectional frequency-converting amplifica-
tion between cavity modes. Under four-tone driving, interference
between the two processes is governed by the relative pump
phase �, enabling directionality. (c) Schematic representation of
the device. A superconducting circuit couples two microwave
cavity modes (current flow indicated in blue and red) to two
mechanical drumhead resonators. Notice that instead of phys-
ically separated ports, the input and output are connected via
frequency conversion between the cavity modes.

two cavities and two MOs is

Hsys/� =
∑

i

ωia
†
i ai + �ib

†
i bi −

∑
ij

gij a†
i ai(bj + b†

j ),

(1)

where we introduced the intracavity field creation and
annihilation operators (ai, a†

i )i=1,2 and the phononic opera-
tors (bi, b†

i )i=1,2. The parameters gij describe the coupling
at the single-quantum level. We suppose for the moment
that the total linewidths of cavity resonances κj = κ i

j + κe
j

are much smaller than the separation of mechanical fre-
quencies, enabling drive tones to independently address
each mechanical mode. Each cavity is coupled to each MO
through the excitation of one sideband: red sidebands for
the input cavity (hereafter named “cavity 1”) and blue side-
bands for the output cavity (cavity 2), totaling four pump
tones as shown in Fig. 1(a). The inclusion of blue-sideband
drive tones enables amplification, in contrast to previ-
ously demonstrated optomechanical isolators [30,36,37]
that used exclusively drive tones close to the red sidebands.
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The device is pumped at frequencies slightly detuned
from cavity-1 red sidebands [ω1 − (�j − δj )]j =1,2 and
cavity-2 blue sidebands [ω2 + (�j − δj )]j =1,2 [see Fig.
1(a)]. The role of the detunings δ1, δ2 is discussed later.
The pumping enhances and linearizes the coupling, with
the resulting multiphoton optomechanical coupling ener-
gies given by multiplication of the single-photon cou-
pling with a given field amplitude. These are denoted
Gij (Jij ) for the red (blue) sidebands of cavity i and
MO j . In the proposed pumping scheme, only G1j and
J2j are nonzero. The cooperativities corresponding to the
red and blue sidebands [C1j = 4|G1j |2/(γj κ1) and C2j =
4|J2j |2/(γj κ2), respectively] are similar for both MOs:
C11 � C12 and C21 � C22, respectively. Furthermore, only
one phase � = arg(G11) + arg(J21) − arg(G12) − arg(J22)

is relevant to the amplifier.

B. Model

We now recall and adapt the formalism developed
in Ref. [43] in particular to include cavity losses. We
show that these losses have some experimentally rele-
vant impact that has to be taken into account in a real-
istic implementation. The evolution equations for pho-
tonic operators involve phononic operators and those
for phononic operators involve photonic operators. By
eliminating phononic operators in the photonic equa-
tions of evolution (see Appendix A for more details
on the theory), one is left with coupled photonic equa-
tions of evolution, with the particularity that the coupling
matrix T is not Hermitian. Defining a common vector for

intracavity field operators A ≡
(

a1 a†
1 a2 a†

2

)T
and

corresponding vectors for field input from the external
coupler Ae

in, noise connected to internal losses Ai
in, and

mechanical noise Bin, one can define the system suscep-
tibility χ(ω) from

A(ω) = χ(ω)
[√

KeAe
in(ω) +

√
KiAi

in(ω) + U(ω)Bin(ω)
]

,

(2)

where
√

Ke ≡ diag
(√

κe
1,
√

κe
1,
√

κe
2,
√

κe
2

)
,

√
Ki ≡ diag(√

κ i
1,
√

κ i
1,
√

κ i
2,
√

κ i
2

)
, and U is a matrix characteriz-

ing the impact of mechanical noise (see Appendix A).
The expressions for the spectra providing in particular the
added noise and backward-propagating noise are detailed
in Appendix B. With this definition, the system susceptibil-
ity χ differs from the susceptibility of two bare, uncoupled
cavities χc,j (ω) = (

κj /2 − iω
)−1 by the coupling matrix

T(ω),

χ−1 = diag[χ−1
c1 , (χ∗

c1)
−1, χ−1

c2 , (χ∗
c2)

−1] + T, (3)

which is half empty:

T(ω) =

⎛
⎜⎝

T11(ω) 0 0 T12(ω)

0 T∗
11(ω) T∗

12(ω) 0
0 T∗

21(ω) T∗
22(ω) 0

T21(ω) 0 0 T22(ω)

⎞
⎟⎠ , (4)

where we used the standard convention [Tij (−ω)]∗ =
T∗

ij (ω). In the following expressions, we took C11 = C12 =
C1 and C21 = C22 = C2 though the data are fitted with
the general expression, allowing these cooperativities to
differ slightly. Each Tij element is the sum of two contri-
butions, one from each MO. In the case of T11 (T22), these
contributions represent back-actions on cavity 1 (cavity
2) from driving both MOs, which are added without any
multiplying phase factors:

T11(ω) = C1κ1/4 [γ1χm1(ω) + γ2χm2(ω)] ,

T22(ω) = −C2κ2/4 [γ1χm1(ω) + γ2χm2(ω)] ,
(5)

with the mechanical susceptibility χm,j (ω) = [
γj /2

−i(ω + δj )
]−1 in the frame defined by the pump frequen-

cies (see the rotating-frame convention in Appendix A).
In off-diagonal coefficients on the other hand, each of the
two contributions accumulates the phase of two different
optomechanical interactions. They are then summed with
different phases:

T12(ω) ∝ [
ei�/2γ1χm1(ω) + e−i�/2γ2χm2(ω)

]
,

T21(ω) ∝ − [
e−i�/2γ1χm1(ω) + ei�/2γ2χm2(ω)

]
,

(6)

where the common factor is
√

C1C2κ1κ2/4. Further defin-
ing the output cavity field Aout analogously to other vectors
and using input-output relations Aout = Ae

in − √
KeA, one

can get the (optical) transfer matrix Sopt defined by Aout =
SoptAe

in when all noise terms are omitted:

Sopt = I4 −
√

Keχ(ω)
√

Ke. (7)

The expression of the nonzero elements of Sopt in terms of
those of T is cumbersome and can be found in Appendix
B. However, it is useful to note that Sopt has the same zero
elements and symmetries as the coupling matrix T. For
cavity 1, each input operator ain,1, a†

in,1 then maps to
one of the output operators a†

out,2, aout,2 of cavity 2 only,
which makes the device a phase-insensitive amplifier [44,
45]. Therefore, standard scattering parameters (S matrix)
can be defined as transfer amplitudes involving a1,in

and a†
2,out: S11 = Sopt|1,1, S22 = Sopt|4,4, S12 = Sopt|1,4, and

S21 = Sopt|4,1.
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C. Working point in lossy cavities

The off-diagonal elements of S that characterize back-
ward and forward transfer are proportional to the off-
diagonal elements of T. Isolation (S12 = 0) can therefore
be obtained by canceling T12 while keeping T21 as large as
possible, which will make T and Sopt non-Hermitian and
a1 and a†

1 eigenvectors of these matrices. However, as can
be seen from Eq. (6), this is possible only at ω = 0 if the
detunings δj are nonzero: the two effective mechanical sus-
ceptibilities’ frequency offset arising from pump detunings
is then the only source of directionality. Isolation S12(0) =
0 is furthermore obtained for detunings that compen-
sate the mechanical linewidths’ imbalance δ1 = γ1δ, δ2 =
−γ2δ, and for the phase � = arg[(−1 + 2iδ)/(1 + 2iδ)].
The isolation quality does not depend on cavity losses,
and the interference can appear at a different frequency if
the detunings do not exactly compensate for the different
mechanical linewidths.

One degree of freedom δ on the detunings is left: it
is generally [36,37] tuned to achieve impedance match-
ing of the amplifier to the input line S11(0) = 0. With
nonzero internal cavity losses, this happens when δ =
1
2

√
2/(2r1 − 1)C1 − 1, where we introduced rj = κe

j /κj .
This can, however, be realized only for C1 > (2r1 − 1)/2
and if r1 > 0.5 (i.e., if the input cavity is not undercou-
pled). In our experimental case the lower-frequency cavity
is undercoupled and is therefore deliberately used as the
output cavity.

When isolation and impedance-matching conditions are
satisfied (provided this is possible), the forward power gain
of the amplifier is

|S21(0)|2 = r2

r1

2C2(2C1 + 1 − 2r1)

[C1/(2r1 − 1) − C2]2 . (8)

As previously observed for the single-MO amplifier, the
cooperativities are best chosen both large and nearly equal
while maintaining C2(2r1 − 1) < C1 to prevent parametric
instability. This expression coincides with the gain calcu-
lated in Ref. [43] in the limit of nonlossy cavities. How-
ever, C1 now compares to a reduced cooperativity (2r1 −
1)C2 in the denominator. The power gain for equal and
large cooperativities C1 = C2 is 2r2(2r1 − 1)2/r1(1 − r1).
Output-cavity losses (low r2) are less detrimental to the
gain than input-cavity losses, which is a second reason for
use of our undercoupled cavity on the output side. A more-
detailed analysis of the impact of cavity losses on gain
is given in Appendix B. While the impedance-matching
condition is required to realize an ideal quantum-limited
amplifier, it restricts the choice of operating parameters,
and in a practical device a better trade-off may be pos-
sible. For example, for our experimental parameters, the
maximum gain while strictly enforcing impedance match-
ing and perfect isolation conditions would be −2.6 dB.
By relaxing the impedance-matching condition, we can

nevertheless realize directional amplification. We note that
impedance mismatch also reduces backward-propagating
added noise of the amplifier [43].

III. EXPERIMENTAL IMPLEMENTATION

A. Experimental details

Our device is fabricated by patterning a microwave cir-
cuit and mechanical oscillators in aluminum on a quartz
substrate. The mechanical elements are circular mem-
branes evaporated on top of a sacrificial amorphous-silicon
layer, which is then removed by isotropic reactive-plasma
etching to release the membranes. The two drumheads
of diameters 19.7 and 16.9 μm vibrate above circular
electrodes to form displacement-dependent capacitors [46]
with fundamental frequencies �1/2π = 9.24 MHz and
�2/2π = 9.82 MHz and decay rates γ1/2π � 310 Hz
and γ2/2π � 290 Hz. The microwave circuit sustains
two eigenmodes with frequencies ω1/2π = 5.63 GHz and
ω2/2π = 3.89 GHz that couple roughly equally to both
mechanical degrees of freedom [see Fig. 1(c)]. The two
cavity modes couple to a line used for both read-out and
excitation with external decay rates κe

1/2π = 406 kHz and
κe

2/2π = 115 kHz (see Fig. 1) and internal decay rates
κ i

1/2π = 197 kHz and κ i
2/2π = 233 kHz, which makes

cavity 1 overcoupled and cavity 2 undercoupled to the
feedline. The total cavity linewidths κj = κ i

j + κe
j sat-

isfy κj /2 < |�1 − �2| as supposed in the basic modeling,
entailing that, up to a reasonable approximation, a given
tone drives one process only. However, as the system is not
very far into this regime, we calculate the effect of the off-
resonant coupling processes in Appendix C and find that
they cause only a minor modification in our experimental
situation.

The system is operated in a dilution refrigerator at a
fixed temperature of 200 mK. The elevated temperature is
used because we find that the mechanical frequencies fluc-
tuate at the base temperature and an accurate drive-tone
detuning cannot be maintained. Four synchronized inde-
pendent generators, whose relative phase drift is less than
4◦/h, are used to pump the device.

We record the transfer parameters using a Rohde &
Schwartz ZVA-50 network analyzer that allows indepen-
dent excitation and measurement frequencies. The probe
is maintained at a very low power, 76 dB below the low-
est pump power to ensure that probing does not modify
the amplifier’s behavior. An independently measured con-
tribution from noise in the recorded frequency-converting
response is subtracted to yield the pure transfer coefficients
as explained in Appendix D. The pump and probe effi-
ciencies around the cavity frequencies are determined by
measuring a large frequency span around the cavities [see
Fig. 2(a)] and are used to calibrate the transfer parame-
ters of the amplifier following the method discussed in
Appendix E.
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(a)

(c)

(b)

FIG. 2. Preparation of interference of amplification channels.
(a) Uncalibrated reflection coefficient on cavity 1 (red) and cav-
ity 2 (blue) over a broad frequency span around the resonance
frequency of either cavity. Here two independent single-MO
amplification processes are active (see the text). Cavity response
is used to determine pump and read-out efficiencies through the
whole cryogenic attenuation and amplification stage around each
frequency range, indicated as dashed lines: −61.2 dB around
cavity 1, −58.8 dB around cavity 2. Small features detuned by
about 0.6 MHz from cavity frequencies correspond to field oscil-
lations at the mechanical frequency difference. Larger spurious
peaks on |S22| above the cavity frequency arise from inter-
modulation of the pump tones in the measurement system. (b)
Backward power transmission |S12| of single-MO amplifiers built
from MO 1 only (green) and MO 2 only (purple), once balanced,
with respect to frequency detuning from cavity 1 (the output
frequency in this case). (c) Forward |S21| and backward |S12|
transmission for different phase values � of one of the generators
relative to the others. MO1, MO 1; MO2, MO2.

B. Directional amplifier

To prepare the interference effect, we first drive each
MO independently through its red and blue sidebands,
reproducing two single-MO optomechanical reciprocal
amplifiers as described in Ref. [40]. The blue-sideband
drive powers are tuned to produce similar amplification for
both single-MO amplifiers in the backward direction S12,
as shown in Fig. 2(b). In the experimental situation, the
cooperativities used are different for each MO, C11 = 1.27
and C12 = 3.20 for the red sidebands of MO 1 and MO
2, respectively, and C21 = 1.33 and C22 = 2.05 for the
blue sidebands. The pump tones are detuned by δ1/2π =
−δ2/2π = 600 Hz from the sidebands. We then turn on
all pumps simultaneously, and the phase of one of them

relative to the others is tuned to achieve destructive inter-
ference in the backward direction as shown in Fig. 2(c).
Further fine-tuning of the frequencies, phase, and powers is
generally required to compensate for slow phase and power
drift of the generators and slight power dependence of the
cavity frequencies.

The amplifier maps bijectively a frequency range around
ω1/2π to a frequency range centered on and mirrored
about ω2/2π . A minimum backward transmission gain
of −21.3 ± 1.1 dB is observed, as displayed in Fig. 3,
while the forward gain reaches 9.4 ± 1.1 dB at the same
frequency. The uncertainty corresponds to the estimated
maximum gain-calibration uncertainty (see Appendix E).
The maximum nonreciprocity factor |S21/S12| is therefore
30.7 ± 2.2 dB, which compares well with isolator imple-
mentations [36,37]. While perfect impedance matching
is not enforced, the reflection attenuation (S11) reaches
3.9 dB. The isolation bandwidth, defined as the frequency
range where the backward transmitted power is attenu-
ated by more than 3 dB, is 500 Hz, as expected since it
is governed by the mechanical linewidths. If we take the
amplification bandwidth as the frequency range amplified
by more than half the maximum gain, the latter amounts to
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FIG. 3. S-parameter amplitudes of the amplifier with respect
to frequency. (a) |S11|, (b) |S22|, and (c) |S12| (orange) and |S21|
(blue). Dashed gray lines are simultaneous fits of all four data
sets with the expressions in the text, where the phase is left free.
The amplifier bijectively maps a frequency range around the res-
onance of one cavity to a mirrored range around the resonance
of the other cavity: only one increasing frequency range around
ω1/2π is used as the horizontal axis of all plots for comparison.
The maximum nonreciprocity frequency is indicated by a dashed
vertical line.
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FIG. 4. |S12| (orange) and |S21| (blue) transfer parameters of a
lossless isolator. Dashed gray lines are fits with the expressions
in the text, where the phase is left free.

675 Hz, also on the order of magnitude of the mechanical
linewidth because of the interference effect on the forward
transfer.

C. Lossless isolator

In another configuration (C11 = 0.47, C12 = 0.74,
C21 = 0.84, C22 = 0.96, δ1/2π = 450 Hz, δ2/2π =
−405 Hz), the same device can be used as an isola-
tor free from any insertion loss and whose forward and
backward transfer gains are represented in Fig. 4. In this
configuration, we obtain isolation by 18.0 dB of backward-
propagating signals.

IV. DISCUSSION

Generation of interference between the paths linking
the cavities requires mechanical oscillators with similar
linewidths and optomechanical couplings. However, non-
reciprocal multimode devices also require very unequal
mechanical frequencies—in the sense that the spacing of
the frequencies generally needs to be a rather large frac-
tion of their value—to allow each mechanical oscillator to
be addressed separately. This condition, which one could
call “resolved sideband difference” (RSBD) analogously
to “resolved sideband,” appears to be very relevant as par-
asitic cross-driving of mechanical modes has been shown
to significantly increase insertion loss of optomechanical
isolators [37]. The present scheme balances these opposite
requirements of equal couplings but different frequencies
by involving two separate drum resonators, contrary to
what was done previously in Refs. [36–38], where differ-
ent eigenmodes of the same resonator were used. For this
reason this scheme is also immune to any direct coupling
between modes through geometrical nonlinearities.

While the current device represents a technological step
forward in multimode optomechanical applications, the

RSBD condition was attained here at the price of our delib-
erately reducing the external decay rates of the cavities,
thus departing from the ideal far-overcoupled situation.
The question of cavity dissipation might become essen-
tial in the description of real multimode optomechanical
systems, which is why in this article we attempt to draw
particular attention to them. On the experimental side,
achieving the RSBD condition while maintaining overcou-
pled cavities is one of the next endeavors to manufac-
ture high-quality nonreciprocal devices from multimode
optomechanical systems. Another goal is to carefully char-
acterize the noise properties of the amplifier. One can
realistically achieve an added noise near the quantum limit;
however, this requires operation at temperatures appre-
ciably lower than the temperature we used in the current
experiment for stability reasons.

V. CONCLUSIONS

We report on a multimode optomechanical directional
amplifier, demonstrating both high isolation between for-
ward and backward transfer and gain in the forward direc-
tion. We also demonstrate a nonreciprocal optomechanical
device using two separate mechanical resonators. More-
over, we formulate some guidelines for the design of such
devices in the real situation where dissipation rates of
cavities compare with other system frequencies.
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APPENDIX A: THEORY

1. General expression for the coupling matrices

Creation and annihilation operators for cavity j are
denoted aj and a†

j , and the same operators for MO j are
denoted bj and b†

j . The total Hamiltonian of the system is
given in Eq. (1).

Following Ref. [43], we consider for generality a more-
complete pumping scheme than was used in the article. In
the complete scheme, each cavity i can be driven by four
tones with frequencies [ωi ± (�j + δj )]j =1,2; that is, the
frequencies of the two sidebands of each of the two oscil-
lators. The photon field ai(t) in cavity i can be decomposed
into a coherent driven part of amplitude αi(t) oscillating at
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pump frequencies and a fluctuation δai(t):

ai(t) = e−iωitαi(t) + δai(t),

αi(t) ≡
∑

j

αij − e+i(�j +δj )t + αij + e−i(�j +δj )t, (A1)

where we introduced the intracavity field amplitudes at
the frequencies of the red-detuned (blue-detuned) side-
bands αij − (αij +). The Hamiltonian can be linearized in
the fluctuations δai in a standard semiclassical approach.
The quantum photon-field fluctuation δai is now renamed
ai for convenience. In the frame rotating with

H0/� =
∑

i

ωia
†
i ai +

∑
j

(�j + δj )b
†
j bj , (A2)

the linearized Hamiltonian is rewritten

Hrot/� = −
∑

j

δj b†
j bj

−
∑

ij

gij

[
α∗

i (t)ai

(
bj e−i(�j +δj )t + b†

j e+i(�j +δj )t
)

+ H.c.
]

.

(A3)

The hierarchy of the system frequencies is δ1, δ2 �
γ1, γ2 � κ1, κ2 < |�2 − �1| < �1, �2 � ω1, ω2. The sys-
tem is in the resolved-sideband regime. However, some
terms in the last equation are also oscillating at the
mechanical frequency difference, which is greater than the
linewidths of the cavities by only some tens of percent.

Ignoring any term oscillating faster than γj in the evo-
lution equation for phononic operators bj and any term
oscillating faster than κi in the evolution equation for
photonic operators ai, one obtains the following effective
time-independent Hamiltonian:

Hrot/� = −
∑

j

δj b†
j bj −

∑
ij

gij (αij +a†
i b†

j + αij −a†
i bj

+ α∗
ij +aibj + α∗

ij −aib
†
j ). (A4)

The Fourier transform of the evolution equations gives

bj (ω) = χm, j (ω)

{
i

2∑
i=1

gij [α∗
ij −ai(ω) + αij +a†

i (ω)]

+ √
γj bin,j (ω)

}
,

ai(ω) = χc,i(ω)

⎧⎨
⎩i

2∑
j =1

gij [αij +b†
j (ω) + αij −bj (ω)]

+
√

κ i
i a

i
in,i(ω) +√

κe
i ae

in, i(ω)

}
,

(A5)

with the effective mechanical and cavity susceptibilities

χm,j (ω) ≡
[γj

2
− i(ω + δj )

]−1

χc,i(ω) ≡
(κi

2
− iω

)−1
.

(A6)

Here we used the same convention for operators and func-
tions: for any annihilation operator [c(ω)]† = c†(−ω) and
for any function [f (ω)]∗ = f ∗(−ω).

The effective couplings to each cavity that appear
in the previous equations are now written Gij ≡ gij αij −
and Jij ≡ gij αij +. Gij (Jij ) therefore corresponds to the
enhanced optomechanical coupling from red-sideband
(blue-sideband) pumping; the first index is attached to the
cavity and the second one is attached to the MO.

We now simplify the problem involving four pho-
tonic and four phononic operators to a problem
involving only one photonic vector operator and one
phononic vector operator. To this end we define A(ω) ≡(

a1(ω) a†
1(ω) a2(ω) a†

2(ω)

)T
and B ≡

(
b1(ω)

b†
1(ω) b2(ω) b†

2(ω)
)T

and the corresponding Ae
in(ω),

Ai
in(ω), and Bin(ω). We also define the susceptibility matri-

ces for the cavities and mechanical oscillators,

�c(ω) ≡ diag
[
χc,1(ω), χ∗

c,1(ω), χc,2(ω), χ∗
c,2(ω)

]
,

�m(ω) ≡ diag[χm,1(ω), χ∗
m,1(ω), χm,2(ω), χ∗

m,2(ω)],
(A7)

the total cavity and mechanical decay-rate vectors,

K ≡ diag(κ1, κ1, κ2, κ2), � ≡ diag(γ1, γ1, γ2, γ2), (A8)

and Ki and Ke, the internal cavity and external cavity
decay-rate matrices, with analogous definitions. Having
established this matrix formalism, we can now rewrite the
two coupled equations for photonic and phononic fields:

A(ω) = �c(ω)[GB(ω) +
√

KeAe
in(ω) +

√
KiAi

in(ω)],

B(ω) = �m(ω)[HA(ω) +
√

�Bin(ω)],
(A9)

where the coupling matrices are

G ≡ i

⎛
⎜⎝

G11 J11 G12 J12
−J ∗

11 −G∗
11 −J ∗

12 −G∗
12

G21 J21 G22 J22
−J ∗

21 −G∗
21 −J ∗

22 −G∗
22

⎞
⎟⎠ , (A10)

H ≡ i

⎛
⎜⎝

G∗
11 J11 G∗

21 J21
−J ∗

11 −G11 −J ∗
21 −G21

G∗
12 J12 G∗

22 J22
−J ∗

12 −G12 −J ∗
22 −G22

⎞
⎟⎠ . (A11)
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Replacing the phononic matrix operator in the photonic
matrix equation, one gets the expression for photonic fields
perturbed by the coupling to phononic fields:

[�c(ω)−1 − G�m(ω)H]A(ω)

=
√

KeAe
in(ω) +

√
KiAi

in(ω) + G�m(ω)
√

�Bin(ω).
(A12)

Here we get an explicit expression for the coupling matrix
as defined in the main text,

T(ω) ≡ −G�m(ω)H, (A13)

which contains coupling amplitudes for all phonon-
mediated photon-photon couplings. Furthermore, we iden-
tify as in the main text the global photonic system
susceptibility:

χ(ω) ≡ �c(ω)−1 − G�m(ω)H
= �c(ω)−1 + T(ω). (A14)

We also get the expression for the matrix U(ω) in the main
text that characterizes cavity heating due to mechanical
thermal or quantum noise:

U(ω) ≡ G �m(ω)
√

� (A15)

2. Phase-insensitive directional amplifier

In the experimental case, cavity 1 is pumped only on red
sidebands so that J1i = 0 and cavity 2 is pump only on blue
sidebands so that G2i = 0, which yields the hollow T(ω)

coupling matrix given in the main text, with coefficients

T11(ω) = |G11|2χm,1(ω) + |G12|2χm,2(ω),

T12(ω) = G11J21 χm,1(ω) + G12J22 χm,2(ω),

T21(ω) = −[G∗
11J ∗

21 χm,1(ω) + G∗
12J ∗

22 χm,2(ω)],

T22(ω) = −[|J21|2χm,1(ω) + |J22|2χm,2(ω)], (A16)

which leads to the expressions given in the main text in
terms of cooperativities, decay rates, and pump relative
phases.

APPENDIX B: AMPLIFIER PARAMETERS

1. Sopt elements

Sopt has the same structure as the T matrix; that is,

Sopt(ω) =

⎛
⎜⎝

S11(ω) 0 0 S12(ω)

0 S∗
11(ω) S∗

12(ω) 0
0 S∗

21(ω) S∗
22(ω) 0

S21(ω) 0 0 S22(ω)

⎞
⎟⎠

(B1)

with the following coefficients:

S11 = 1 − κe
1χc,1

1 + χc,2T22

D
,

S12 =
√

κe
1κ

e
2
χc,1χc,2T12

D
,

S21 =
√

κe
1κ

e
2
χc,1χc,2T21

D
,

S22 = 1 − κe
2χc,2

1 + χc,1T11

D
,

(B2)

with the common denominator

D = (1 + χc,1T11)(1 + χc,2T22) − χc,1χc,2T12T21. (B3)

2. Impedance matching

The reflection coefficient is

|S11(0)| = 1 − 2r1

2C1/(1 + 4δ2) + 1
. (B4)

There is no reflection on the input cavity if this coefficient
is 0; that is, for r1 	= 1

2 (input cavity not critically coupled,
κe

1 	= κ i
1), and

δ = 1
2

√
2C1

1 − 2r1
− 1 =

√
2C1[κ1/(κ

e
1 − κ i

1)] − 1

2
. (B5)

For nonlossy cavities, one recovers the criterion from the
proposal δ = (2C1 − 1)/2, which is possible for C1 > 0.5.
However, this criterion can never be met if the input cavity
is undercoupled κ i

1 ≤ κe
1, and is met only for

C1 > 0.5
κe

1 − κ i
1

κ1
(B6)

in the general lossy case. This indicates that, unsurpris-
ingly, as losses will require increased red-sideband coop-
erativities, they will also require increased blue-sideband
cooperativities for some gain to be observed, so gain
is more difficult to obtain with lossy cavities if the
impedance-matching condition is to be met.

3. Isolation

The isolation condition S12(0) = 0 is achieved when
T12(0) = 0; that is,

ei(θ11+θ21−θ12−θ22) γ1

γ1/2 − iδ1
= − γ2

γ2/2 − iδ2
. (B7)

Hence there are two conditions concerning the modulus
and phase of the members of this equality. The condition
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on the modulus reduces to

1
4

+ δ2
1

γ 2
1

= 1
4

+ δ2
2

γ 2
2

→ δ2
1γ

2
2 = δ2

2γ
2
1 . (B8)

With the proposition [43] δ1 = δγ1 and δ2 = −δγ2 and
by denoting � = θ11 + θ21 − θ12 − θ22, the previous phase
equality is equivalent to

� = arg
(−1 + 2iδ

1 + 2iδ

)
. (B9)

This condition can be met regardless of cavity losses and
even if the isolation conditions on δ and � are independent
of the losses.

4. Gain

The power gain of the amplifier is

|S21(0)|2 =
∣∣∣∣∣

T21
√

κe
1κ

e
2χc1χc2

1 + T11χc1 + T22χc2 + T11T22χc1χc2

∣∣∣∣∣
2

= r1r2
64δ2C1C2(1 + 4δ2)2

(2C1 + 1 + 4δ2)2(1 + 4δ2 − 2C2)2 ,

(B10)

where we defined rj ≡ κe
j /(κ

e
j + κ i

j ). The impedance-
matching condition in the case of a lossy input cavity is 1 +
4δ2 = 2C1/(1 − 2r1). The gain in the impedance-matched
condition is then

|S21(0)|2 = r1r2

(
2r1 − 1

r1

)2 2C2(2C1 + 1 − 2r1)

[C1 + C2(1 − 2r1)]2 .

(B11)

In the case C1 = C2 and the limit C1, C2 → ∞, the gain is

lim
C1,C2→∞

|S21(0)|2 = 2r2

r1

(2r1 − 1)2

1 − r1
. (B12)

For r1 > 0.5 (required by the impedance-matching con-
dition) and r2 > 0, this is a growing function of both r1
and r2 (plotted in Fig. 5). From Fig. 5 it becomes clear
that the internal losses of the input cavity are much more
deleterious to the amplifier gain than those of the output
cavity.

5. Added noise

The output field is written

Aout = M e
c Ae

in + M i
cAi

in + MmBi
in, (B13)

where we defined three matrices of interest, M e
c ≡ Sopt,

M i
c ≡ −√

Keχ
√

Ki, and Mm ≡ −√
KeχU, that character-

ize how noise due to the thermal occupations of the cavity

FIG. 5. Gain |S21(0)|2 in the limit of high cooperativities,
C1 = C2 and in the impedance-matched case as a function of
r1 = κe

1/κ1 and r2 = κe
2/κ2.

modes and the mechanical oscillators is distributed on the
two ports of the device.

The total output spectrum displays two frequency ranges
of interest, around each cavity’s resonance, which we can
identify as the output spectrum at each port of the device.
We can then define the total output spectrum at port 2 (the
output port) as

Sout,2(ω)≡ 1
2

〈
a†

out,2(ω)aout,2(−ω)+ aout,2(ω)a†
out,2(−ω)

〉
,

(B14)

and similarly for port 1.
The added noise is due to quantum noise, as well as

excess thermal occupation in both the cavities and the
MOs. The cavity noise can have two origins; namely,
internal and external noise, represented by source terms
Ai

in(ω) and Ae
in(ω) with corresponding thermal occupations

ni
c,1, ni

c,2 and ne
c,1, ne

c,2, summing up to the total cavity
occupations nc1 and nc2.

Eventually, the external thermal noise can be safely
ignored in a typical experimental case near the quantum
regime. The internal noise, however, can reach thermal
occupations on the order of one quantum in a typical
experiment due to technical heating, and it needs to be con-
sidered. We make the standard assumption that all noises
driving the system are uncorrelated, so the final contri-
butions are only due to terms such as 〈ai†

in,j ai
in,j 〉 ≡ ni

c,j ,

〈ae†
in,j ae

in,j 〉 ≡ ne
c,j , and 〈b†

in,kbin,k〉 ≡ nm,k, where nm,k is MO
k’s thermal occupancy. We can then separate contribu-
tions to the output noise arising from the cavities’ internal
and external noise and from mechanical noise: Sout,2 =
Si

out,2 + Se
out + Sm

out (and similar definitions for port 1).
The matrix M i

c has the same structure and symmetry as
Sopt and T. Its elements, denoted in the same way as those
of Sopt and T, are

M i
c11 =

√
κe

1κ
i
1χc,1

1 + χc,2T22

D
,

M i
c12 =

√
κe

1κ
i
2

χc,1χc,2T12

D
,
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M i
c21 =

√
κ i

1κ
e
2

χc,1χc,2T21

D
,

M i
c22 =

√
κe

2κ
i
2χc,2

1 + χc,1T11

D
, (B15)

with the same common denominator as Sopt elements [Eq.
(B3)]. On resonance, the noise at the input and output ports
from the cavity modes’ thermal occupation is then

Si
out,1 = |M i

c11|2
(

ni
c,1 + 1

2

)
+ |M i

c12|2
(

ni
c,2 + 1

2

)
,

Si
out,2 = |M i

c21|2
(

ni
c,1 + 1

2

)
+ |M i

c22|2
(

ni
c,2 + 1

2

)
,

(B16)

where ni
c,1 (ni

c,2) is the thermal occupation of cavity 1 (cav-
ity 2). Noise from the external type of heating follows the
same rule, with superscript e instead of i. For M i

c12 = 0
(and also M e

c12 = S12 = 0) at resonance the same destruc-
tive interference that suppresses backward-propagating
signal suppresses all backward-propagating cavity noise,
regardless of the quality of the cavities. The other elements
of M i

c on resonance are

M i
c11 = 2

√
r1(1 − r1)(1 + 4δ2)

2C1 + 4δ2 + 1
,

M i
c21 = S21(0)

√
1 − r1

r1
,

M i
c22 = −2

√
r2(1 − r2)(1 + 4δ2)

−2C2 + 4δ2 + 1
. (B17)

Finally, in the case of impedance matching,

M i
c11 =

√
1 − r1

r1
,

M i
c21 = S21(0)

√
1 − r1

r1
,

M i
c22 = − 2C1

√
r2(1 − r2)

C1 + (2r1 − 1)C2
. (B18)

We now turn to the calculation of the Mm matrix. It
includes the matrix U ≡ G�m

√
� [see Eq. (A15)]. Matri-

ces
√

� and �m are diagonal matrices, so U conserves the
structure and symmetry of G:

U =

⎛
⎜⎝

U11 0 U12 0
0 U∗

11 0 U∗
12

0 U∗
21 0 U∗

22
U21 0 U22 0

⎞
⎟⎠ . (B19)

This matrix has relatively simple elements in the case
where isolation is implemented:

U11 = −U∗
12 = −

√
C1κ1

1 + 4δ2 ,

U21 = −U∗
22 =

√
C2κ2

2δ + i
.

(B20)

The structure of U from Eq. (B19) is transferred to Mm,
whose elements are then denoted following the same
pattern and are

Mm11 =
√

κe
1χc,1

(1 + χc,2T22)U11 − χc,2T12U21

D
,

Mm12 =
√

κe
1χc,1

(1 + χc,2T22)U12 − χc,2T12U22

D
,

Mm21 =
√

κe
2χc,2

(1 + χc,1T11)U21 − χc,1T21U11

D
,

Mm22 =
√

κe
2χc,2

(1 + χc,1T11)U22 − χc,1T21U12

D
,

(B21)

with again the same denominator D [Eq. (B3)]. With this
notation, the contribution of mechanical noise to the noise
at input and output ports is

Sm
out,1 = |Mm11|2

(
nm,1 + 1

2

)
+ |Mm12|2

(
nm,2+ 1

2

)
,

Sm
out,2 = |Mm21|2

(
nm,1 + 1

2

)
+ |Mm22|2

(
nm,2 + 1

2

)
,

(B22)

where nm,1 (nm,2) is the thermal occupation of mechanical
mode 1 (mechanical mode 2). The coefficients in Eq. (B22)
are

Mm11 = 2
√

C1
√

r1(1 + 4δ2)

(2C1 + 1 + 4δ2)
= −M ∗

m12,

Mm21 = 2
√

C2r2(2δ + i)(1 + 2C1 + 4iδ − 4δ2)

(1 + 2C1 + 4δ2)(1 − 2C2 + 4δ2)

= −M ∗
m22. (B23)

In the impedance-matched case they become

Mm11 = −Mm12 = −
√

2r1 − 1
2r1

,

Mm21 = − (2r1 − 1)
√

C2r2
[√

2C1/(2r1 − 1) − 1 (1/r1 − 1) − i
]

C1 − C2(2r1 − 1)

= −M ∗
m22. (B24)

The noise added by the amplifier is defined as the total
noise at the output port, scaled in terms of the number of
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photons at the input port, minus the external noise injected
at the input port:

Sadd ≡ Se
out,2 + Si

out,2 + Sm
out,2

|S21|2 − Se
in,1. (B25)

To show the impact of cavity losses on added noise, Fig.
6 presents the contribution of each mode occupancy to the
added noise in the situation C1 = C2 and where impedance
matching is enforced. As noticed in the previous section,
the gain |S21|2 collapses for critical input-cavity coupling
r1 → 0.5: any noise from the output cavity is then inter-
preted as a large number of photons from the input cavity,
which reinforces the argument to use low-loss input cavi-
ties. Meanwhile, r2 has a very little impact. However, in the
case of lossy cavities, the main source of noise is typically
the output-cavity occupancy (M i

c22 > {M i
c21, Mm21}), which

increases with κ i
2: a low-loss and therefore little-thermally-

excited output cavity is still desirable even though the
reason for this is less directly observable with this analysis.

FIG. 6. Contributions to added noise by cavity and mechanical
noise: coefficients of the occupancies in the added noise of the
input cavity (top), of the output cavity (middle), and of either
mechanical mode (bottom) in the case of an impedance-matched
device, lossy cavities, C1 = C2, and large cooperativities where
these coefficients do not depend on cooperativities anymore.

Finally we comment on the lossless case r1 = r2 = 1 as
well as the impedance-matched case. One obtains

M i
c11 = M i

c12 = M i
c21 = M i

c22 = 0, (B26)

which is of course expected since there is no coupling
channel to the environment if κ i = 0.

The impact of cavity heating from the external line is

|M e
c11|2 = |M e

c12|2 = 0; (B27)

that is, no cavity noise propagates back to port 1,

|M e
c21|2 = |S21|2, (B28)

so cavity-1 noise is transmitted and amplified at port 2 with
the same gain as the signal (i.e., it does not contribute to
added noise), and

|M e
c22|2 = |S22|2 = (C1 + C2)

2

(C1 − C2)2 , (B29)

so external heating of cavity 2 does contribute to the added
noise. The impact of mechanical noise is

|Mm11|2 = |Mm12|2 = 1
2

(B30)

at port 1, and

|Mm21|2 = |Mm22|2 = C2

(C1 − C2)2 , (B31)

which contributes to the noise added at port 2. Scaling this
noise by the forward gain S21, one recovers the expressions
given in the theoretical proposal [43] for the added noise
in the case of lossless cavities,

Sadd = 1
4C1

(
nm,1 + nm,2 + 1

)+ (C1 + C2)
2

4C1C2

(
nc,2 + 1

2

)
,

(B32)

and for the noise at port 1,

Sback ≡ Sout,1 = 1
2
(
nm,1 + nm,2 + 1

)
. (B33)

APPENDIX C: PARASITIC DRIVING OF
MECHANICAL OSCILLATORS

In the case where the RSBD condition is not completely
achieved (�2 − �1 � κ1, κ2), some of the oscillating field
components in Eq. (A3) that were ignored should be taken
into account: those oscillating at ±(�2 − �1). Then the
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following terms are added to the right-hand side of the
expressions for b1(ω) and b2(ω) in Eq. (A5):

b′
1(ω) = χm,1(ω) i

∑
i

[(gi1α
∗
i2−) ai(ω − ��)+

(gi1αi2+) a†
i (ω − ��)],

b′
2(ω) = χm,2(ω) i

∑
i

[(gi2α
∗
i1−) ai(ω + ��)+

(gi2αi1+) a†
i (ω + ��)],

(C1)

where �� = (�1 + δ1) − (�2 + δ2). Similarly, the fol-
lowing term is added to the right-hand side of the expres-
sion for ai(ω) in Eq. (A5):

a′
i(ω) = χc,i(ω) i[(gi1αi2−) b1(ω + ��)

+ (gi1αi2+) b†
1(ω − ��)

+ (gi2αi1−) b2(ω − ��)

+ (gi2αi1+) b†
2(ω + ��)]. (C2)

Replacing the phononic operators in the expressions
for photonic operators, we obtain ai(ω) containing all
ak(ω), a†

k(ω), ak(ω ± ��), a†
k(ω ± ��), ak(ω ± 2��),

and a†
k(ω ± 2��). We now determine what are the rele-

vant generated terms if χc,i(±��) is not ignored.

1. First-order perturbation from interaction with
off-resonant cavity photons

Let us temporarily use the notation An = (a1(ω +
n��) a†

1(ω + n��) a2(ω + n��) a†
2(ω + n��))T for

n ∈ Z, and similar notation for all other frequency-
dependent quantities. Under the rotating-wave approxima-
tion (RWA), the expression for An involves a coupling
matrix Tn, itself involving the mechanical susceptibility
�m,n. Now that one of the RWAs is dropped, it involves
many more coupling matrices containing mechanical sus-
ceptibilities �m,n detuned by n��, denoted Qn, Rn, Sn, Vn,
Wn, Xn, Yn, and Zn, representing different coupling mech-
anisms between cavity fields via mechanical oscillators,
now that more of these mechanisms are driven. The expres-
sion for these matrices is determined below. Momentarily
omitting any input signal or noise, we give the following
result:

An = −�c,n[Qn−1An−2 + (Rn−1 + Sn) An−1

+ (Vn−1 + Tn + Wn+1)An

+ (Xn + Yn+1) An+1

+ Zn+1 An+2]. (C3)

Since they all involve strong filtering by mechani-
cal susceptibilities, all the coupling matrices can be

ignored off resonance: Qn, Rn, Sn, Vn, Wn, Xn, Yn, Zn = 0 for
|n| > 0. Writing Eq. (C3) for n = 0, one gets

A0 = −�c,0(T0A0 + S0A−1 + X0A1). (C4)

Inserting the expressions for A±1, one obtains

A0 = −�c,0[(T0 + S0�c,−1Y0 + X0�c,1R0)A0

+ (S0�c,−1W0 + X0�c,1Q0)A−1

+ (S0�c,−1Z0 + X0�c,1V0)A1]. (C5)

All terms generated by the replacement of A±1 in this new
expression will contain products of off-resonant cavity sus-
ceptibilities such as �c,±1�c,±1. They are therefore ignored
as higher-order terms. The development is then truncated
at

A0 � −�c,0

(
T0 + S0�c,−1Y0 + X0�c,1R0

)
A0. (C6)

To this order of development the coupling matrix around
the resonance is modified by two terms representing
interactions assisted by cavity photons from other man-
ifolds. These two coefficients count because, for exam-
ple, fields aj (ω) involving bj (ω + ��)—and therefore
χm,j (ω + ��)—were initially invoked at the frequency
ω − �� and finally contributed with χm,j (ω), which is
non-negligible at ω � 0. In other words, trips on other fre-
quency manifolds ω � ±�� are allowed provided excita-
tions come back from them to the ω � 0 manifold.

2. Explicit expressions of additional terms

Equations (C1) and (C2) lead to the matrix form:

An = �c,n

(
GBn + G−Bn−1 + G+Bn+1

)
,

Bn = �m,n

(
HAn + H−An−1 + H+An+1

)
,

(C7)

with new coupling matrices G± and H± that couple pho-
tons or phonons to the previous or next manifold of
phonons or photons. We introduce G̃ij (J̃ij ), the multipho-
ton optomechanical coupling of MO j to cavity i enhanced
by the red (blue) sideband intended for the MO other than
j (e.g., G̃11 = g11α12−). The expressions for the additional
coupling matrices are

G− ≡ −i

⎛
⎜⎜⎝

0 J̃11 G̃12 0
0 −G̃∗

11 −J̃ ∗
12 0

0 J̃21 G̃22 0
0 −G̃∗

21 −J̃ ∗
22 0

⎞
⎟⎟⎠ , (C8)

G+ ≡ −i

⎛
⎜⎜⎝

G̃11 0 0 J̃12

−J̃ ∗
11 0 0 −G̃∗

12
G̃21 0 0 J̃22

−J̃ ∗
21 0 0 −G̃∗

22

⎞
⎟⎟⎠ , (C9)
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H− ≡ −i

⎛
⎜⎜⎝

G̃∗
11 J̃11 G̃∗

21 J̃21
0 0 0 0
0 0 0 0

−J̃ ∗
12 −G̃12 −J̃ ∗

22 −G̃22

⎞
⎟⎟⎠ , (C10)

H+ ≡ −i

⎛
⎜⎜⎝

0 0 0 0
−J̃ ∗

11 −G̃11 −J̃ ∗
21 −G̃21

G̃∗
12 J̃12 G̃∗

22 J̃22
0 0 0 0

⎞
⎟⎟⎠ . (C11)

Replacing the phononic operators by their expression in
the expression for the photonic operators, one identifies
the expressions for coefficients Q0, R0, S0, V0, W0, X0, Y0,
and Z0. Among these, the interesting ones according to Eq.
(C6) are

S0 = −G�m(ω)H−, Y0 = −G+�m(ω)H,

X0 = −G�m(ω)H+, R0 = −G−�m(ω)H,
(C12)

Both additional terms, S0�c,−1Y0 and X0�c,1R0, in the cou-
pling matrix T have the same symmetry and the same
zero elements as T; therefore, the phase-conjugating nature
of the frequency conversion is not modified when this
first-order perturbation is taken into account.

3. Application to the case of the directional amplifier

In the case of the directional amplifier studied here, the
self-coupling coefficient T11(ω) has two terms in the RWA
framework:

T11(ω) = C1κ1

4
[γ1χm,1(ω) + γ2χm,2(ω)], (C13)

which can be represented by the graphs in Fig. 7.
The first-order perturbation adds the following terms to

T11(ω):

T11(ω) → T11(ω)

+ χ2
m,1(ω)[|G11G̃11|2χc,1(ω − ��)

− |G11J̃21|2χ∗
c,2(ω − ��)]

+ χ2
m,2(ω)[|G12G̃12|2χc,1(ω + ��)

− |G12J̃22|2χ∗
c,2(ω + ��)], (C14)

FIG. 7. RWA contributions to T11. C1, cavity 1; C2, cavity 2;
MO1, MO 1; MO2, MO 2.

FIG. 8. Perturbations to T11 to first order in κ/��. C1, cavity
1; C2, cavity 2; MO1, MO 1; MO2, MO 2.

which are represented in several-manifold graphs as shown
in Fig. 8.

These additional contributions are the result of the
dynamical back-action due to the off-resonant terms from
each cavity on each MO:

χm,1(ω) → χm,1(ω)[1 + χm,1(ω)|G̃11|2χc,1(ω − ��)

− χm,1(ω)|J̃21|2χ∗
c,2(ω − ��)]

χm,2(ω) → χm,1(ω)[1 + χm,2(ω)|G̃12|2χc,1(ω + ��)

− χm,2(ω)|J̃22|2χ∗
c,2(ω + ��)].

(C15)

In the RWA framework, the device’s behavior is governed
by the bare mechanical susceptibilities; that is, it is insen-
sitive to back-action from the pump tones that drive each
MO. Only the back-action due to tones not intended to
drive each mode matters to the amplifier’s quality (to first
order in κ/��). In terms of experimental parameters, the
additional terms in T11 are

γ1γ2χ
2
m,1(ω)

[(
g11

g12

)2 C2
1κ

2
1

16
χc,1(ω − ��)

−
(

g21

g22

)2 C2
2κ

2
2

16
χ∗

c,2(ω − ��)

]

+ γ1γ2χ
2
m,2(ω)

[(
g12

g11

)2 C2
1κ

2
1

16
χc,1(ω + ��)

−
(

g22

g21

)2 C2
2κ

2
2

16
χ∗

c,2(ω + ��)

]
. (C16)
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FIG. 9. RWA contributions to T12. C1, cavity 1; C2, cavity 2;
MO1, MO 1; MO2, MO 2.

With the same idea, the zero-order expression for T12(ω)

involves two terms (made to interfere destructively)

T12(ω) =
√

C1C2κ1κ2

4
[ei�/2γ1χm,1(ω) + e−i�/2γ2χm,2(ω)],

(C17)

which can be represented as in Fig. 9.
The first-order perturbation adds the terms

T12(ω) → T12(ω)

+ χ2
m,1(ω)[|G̃11|2G11J21χc,1(ω − ��)

− |J̃21|2G11J21χ
∗
c,2[ω − ��)]

+ χ2
m,2(ω)[|G̃12|2G12J22χc,1(ω + ��)

− |J̃22|2G12J22χ
∗
c,2(ω + ��)],

(C18)

which are shown in a graph representation in
Fig. 10.

In terms of experimental parameters, the additional
terms are

γ1γ2
√

C1C2κ2κ1

16

×
{

χ2
m,1(ω)ei�/2

[(
g11

g12

)2 √
C1κ1χc,1(ω − ��)

−
(

g21

g22

)2 √
C2κ2χ

∗
c,2(ω − ��)

]

+ χ2
m,2(ω)e−i�/2

[(
g12

g11

)2 √
C1κ1χc,1(ω + ��)

−
(

g22

g21

)2 √
C2κ2χ

∗
c,2(ω + ��)

]}
. (C19)

Notably, only the phase � appears in these terms. Fur-
thermore, the off-resonant cavity susceptibilities have real
parts of different signs for back-action on MO 1 and MO
2: pump conditions calibrated for the RWA-framework
terms to interfere destructively will not result in destructive
interference of the terms developed in this section.

FIG. 10. Perturbations to T12 to first order in κ/��. C1, cavity
1; C2, cavity 2; MO1, MO 1; MO2, MO 2.

As a summary of the effect of these additional terms, we
show the following:

(a) Each pump tone does not only address one mechan-
ical mode but also induces a dynamical back-action on the
second mechanical mode, which has consequences for the
device (unlike the back-action of tones present within the
RWA picture, which has no effect on the amplifier). The
exact form of the effect is strongly dependent on the ratio
of single-photon couplings, and generally influences the
working point and bandwidth.

(b) The phase-insensitive (phase-conjugating) nature of
the device is conserved.

(c) Only one pump phase appears as in the RWA pic-
ture, so, for example, there is no way to cancel out parasitic
effects by tuning additional phase degrees of freedom.

(d) The ideal working point of the device will be mod-
ified and its quality may be altered since first-order terms
do not interfere in the same way as zero-order terms. How-
ever, the additional dynamical back-action may happen to
increase the device bandwidth if the modified mechani-
cal resonances are broadened. This was observed in Ref.
[37], where only red sidebands were driven, but is not
necessarily the case here since the modes are subjected
to back-action of different signs from the red and blue
sidebands.

APPENDIX D: NOISE SUBTRACTION

The network analyzer measures the ratio of input power
to output power Sij ,meas(ω) = Pin,i(ω)/Pout,j where i and j
denote the frequency ranges around cavities i and j (note
that here input and output denominations are chosen with
respect to the measurement instrument and not the device).
Along with the power obtained from the amplifier excita-
tion, the power corresponding to noise integration on the
network analyzer’s bandwidth B (B = 20 Hz) also con-
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tributes to Pin,i. The noise is therefore independently mea-
sured with a spectrum analyzer that gives the power Pnoise
integrated on the spectrum analyzer’s resolution bandwidth
R (R = 30 Hz). Subsequently this noise is removed from
the measured S parameters, taking into account the differ-
ent integration bandwidths, to yield the pure transmission
coefficients:

Sij (ω) = Sij ,meas(ω) − B
R

Pnoise,i(ω)

Pout,j
. (D1)

APPENDIX E: GAIN CALIBRATION

After noise subtraction, the transfer parameters of the
amplifier are extracted from the measured signals; that is,
these signals are corrected by a factor taking into account
the total attenuation and amplification from cables, ampli-
fiers, and other elements on the input and output lines of
the cryostat.

The input and output sides of these measurement lines
show a frequency dependence. The four transfer parame-
ters are measured by pumping and probing very different
frequency ranges around the two resonances of the super-
conducting circuit (5.6 and 3.9 GHz); therefore, they are
affected by different gains. More precisely, the raw mea-
sured transfer coefficients are related to the device transfer
coefficients by

Sraw
11 = ηin

1 ηout
1 S11,

Sraw
12 =

√
ω1/ω2η

in
2 ηout

1 S12,

Sraw
21 =

√
ω2/ω1η

in
1 ηout

2 S21,

Sraw
22 = ηin

2 ηout
2 S22,

(E1)

where ηin are pump efficiencies characterizing the total
attenuation on the input side, ηout are measurement effi-
ciencies denoting the total amplification on the output side,
and indices 1 and 2 represent the two ranges of frequen-
cies (around cavity 1 and cavity 2). The factor

√
ω2/ω1

and its inverse scale the transfer parameters measured in
terms of power by the network analyzer into parameters
in terms of photon numbers when the frequencies of the
probe and pump photons are not the same. These gains
are assumed not to vary significantly in each of these
frequency ranges, which seems a very reasonable assump-
tion from their typical frequency dependence out of cavity
resonance.

The two measurement system gains affecting S11 and
S22 are easily measured from the response of the device
out of, but close to, the cavity resonances, as explained
in the main text: 20 log10(η

in
1 ηout

1 ) = −61.2 ± 0.1 dB
and 20 log10(η

in
2 ηout

2 ) = −58.8 ± 0.2 dB. The uncertainties
represent the typical standard deviations of S11 and S22 out
of resonance.

However, the two other gains, which affect S12 and
S21, cannot be estimated in the same way since there
is no frequency-converting transfer out of cavity reso-
nances. The product of these transmission gains is, how-
ever, known (equal to the product of the two reflection
gains):

20 log10
(
ηin

2 ηout
1 × ηin

1 ηout
2

) = −120.0 ± 0.3 dB. (E2)

Single-mechanical-oscillator amplifiers are reciprocal
S12 = S21 [40]. The raw transmissions of both ampli-
fiers built with each of the mechanical oscillators, whose
measurement is presented in Fig. 11, satisfy

20 log10
(|Sraw

12 /Sraw
21 |) = 20 log10

(
ηin

2 ηout
1 ω1/η

in
1 ηout

2 ω2
)

= 10.0 ± 0.8 dB. (E3)

The uncertainty corresponds to the sum of the standard
deviations of S12 and S21 data for single-MO amplifiers
from which the fit value was removed. Because of the
reciprocity of each amplifier, apart from the frequency-
ratio factor, this imbalance accounts only for the difference
between the products ηin

2 ηout
1 and ηin

1 ηout
2 . The remaining

(a)

(b)

FIG. 11. Single-MO amplifiers used for cross-gain calibration.
(a) Parameters |S12| (orange) and |S21| (blue) of the single-
MO amplifier built with MO 1, corrected by the average gain√

ηin
2 ηout

1 ηin
1 ηout

2 , still showing an imbalance of 6.8 dB. This value
is calibrated from the fits in black lines. A constant background is
added in the fit expression to reproduce the noise floor. (b) Same
data taken for the other single-MO amplifier built with MO 2,
showing the same imbalance of 6.8 dB, obtained from a separate
fit.
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gains can be computed from this imbalance:

20 log10
(
ηin

2 ηout
1

) = −56.6 ± 1.1 dB,

20 log10
(
ηin

1 ηout
2

) = −63.4 ± 1.1 dB.
(E4)

This calibration entails an input efficiency difference
of 20 log10

(
ηin

1 /ηin
2

) = −4.6 dB between the frequency
ranges of cavity 1 (5.6 GHz) and cavity 2 (3.9 GHz). This
is probably due to the use of resistive lines on this side
of the measurement system, which display higher losses at
higher frequencies. On the other hand, the gain discrepancy
has the other sign on the output side: 20 log10

(
ηout

1 /ηout
2

) =
2.2 dB. An independent calibration of the output lines con-
firms the 2.2 ± 0.3 dB lower gain at the lower frequency
of cavity 2 (3.9 GHz) compared with cavity 1 (5.6 GHz),
mainly due to the proximity to the cut frequency of a
high-pass filter (4 GHz).
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