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The shift of the energy levels of a quantum system owing to 
broadband electromagnetic vacuum fluctuations—the Lamb 
shift—has been central for the development of quantum elec-
trodynamics and for the understanding of atomic spectra1–6. 
Identifying the origin of small energy shifts is still important 
for engineered quantum systems, in light of the extreme pre-
cision required for applications such as quantum comput-
ing7,8. However, it is challenging to resolve the Lamb shift in its 
original broadband case in the absence of a tuneable environ-
ment. Consequently, previous observations1–5,9 in non-atomic 
systems are limited to environments comprising narrowband 
modes10–12. Here, we observe a broadband Lamb shift in high-
quality superconducting resonators, a scenario also accessing 
static shifts inaccessible in Lamb’s experiment1,2. We measure 
a continuous change of several megahertz in the fundamen-
tal resonator frequency by externally tuning the coupling 
strength to the engineered broadband environment, which is 
based on hybrid normal-metal–insulator–superconductor tun-
nel junctions13–15. Our results may lead to improved control of 
dissipation in high-quality engineered quantum systems and 
open new possibilities for studying synthetic open quantum 
matter16–18 using this hybrid experimental platform.

Physical quantum systems are always open. Thus, exchange of 
energy and information with an environment eventually leads to 
relaxation and degradation of quantum coherence. Interestingly, 
the environment can be in a vacuum state and yet cause significant 
perturbation to the original quantum system. The quantum vacuum 
can be modelled as broadband fluctuations that may absorb energy 
from the coupled quantum systems. These fluctuations also lead to 
an energy-level renormalization—the Lamb shift—of the system, 
such as that observed in atomic systems1–5,9. Despite its fundamental 
nature, the Lamb shift arising from broadband fluctuations is often 
overlooked outside the field of atomic physics as a small constant 
shift that is challenging to distinguish19. Due to the emergence of 
modern engineered quantum systems, in which the desired pre-
cision of the energy levels is comparable to the Lamb shift, it has, 
however, become important to predict accurately the perturbation 
as a function of external control parameters. Neglecting energy 
shifts can potentially take the engineered quantum systems outside 
the region of efficient operation20,21 and may even lead to undesired 
level crossings between subsystems. These issues are pronounced in 
applications requiring strong dissipation. Examples include reser-
voir engineering for autonomous quantum error correction22,23, or 

rapid on-demand entropy and heat evacuation14,15,24,25. Furthermore, 
the role of dissipation in phase transitions of open many-body quan-
tum systems has attracted great interest through the recent progress 
in studying synthetic quantum matter16,17.

In our experimental set-up, the system exhibiting the Lamb shift 
is a superconducting coplanar waveguide resonator with the reso-
nance frequency ωr/2π = 4.7 GHz and 8.5 GHz for samples A and 
B, respectively, with loaded quality factors in the range of 102 to 
103. The total Lamb shift includes two parts: the dynamic part2,26,27 
arising from the fluctuations of the broadband electromagnetic 
environment formed by electron tunnelling across normal-metal–
insulator–superconductor junctions14,15,28,29 (Fig. 1) and the static 
shift originating here from the environment-induced change of 
the resonator mode. Our system differs in three key ways from the 
Lamb shift typically observed in atoms coupled to electromagnetic 
radiation1–5,9. First, in our case, an electron system induces a fre-
quency shift to the electromagnetic system and not vice versa as for 
atoms. Second, we can access the system also when it is essentially 
decoupled from the environment, in contrast to the typical case of 
an atom where the electrons are always coupled to the electromag-
netic environment. Third, our system is sensitive to both the static 
and the dynamic part of the Lamb shift. This is a striking difference 
compared to atomic systems, where the static part is typically inac-
cessible since it corresponds to the additional electromagnetic mass 
already included in the measured masses of the particles.

We observe that the coupling strength between the environ-
ment and the resonator γT/2π can be tuned from 10 kHz to 10 MHz  
(Fig. 2). The exceptionally broad tuning range makes it possible to 
accurately observe the Lamb shift, ranging from −8 MHz to 3 MHz. 
The tuning is controlled with a bias voltage, which shifts the relative 
chemical potential between the normal-metal and superconductor 
leads and activates the tunnelling when the chemical potential is 
near the edge of the gap of the superconductor density of states 
(Fig. 1). Finally, we verify our model by measuring the response 
of the coupling strength to changes in the normal-metal electron 
temperature (Fig. 3).

Figure 1a,b describes the measurement scheme (Methods) and 
the samples, the fabrication of which is detailed in ref. 15. The reso-
nator is capacitively coupled to a normal-metal island that is tun-
nel-coupled to two superconducting leads. An electron tunnelling 
event between the island and the leads shifts the charge of the reso-
nator by an amount ΔQ = αe, where α ≈ 1 is a capacitance fraction 
defined in Fig. 1 and e is the elementary charge. A tunnelling event 
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couples different states of the resonator mode, and can lead to the 
creation and annihilation of photons. The rates of these processes 
are proportional to factors arising from the charge shift, junction 
transparency and energy conservation28 as detailed in Fig. 1c,d 
(Methods). Note, however, that a linear resonator is not dephased 
by charge fluctuations.

The resonator is probed through a 50 Ω transmission line in a 
standard microwave reflection experiment (Fig. 1a). The voltage 
reflection coefficient Γ = |Γ|e−iφ of a weak probe signal at the angu-
lar frequency ωp is given by

Γ
γ γ γ ω ω

γ γ γ ω ω
=

− − + −

+ + − −

2i( )

2i ( )
(1)

tr T 0 p r

tr T 0 p r

where γtr is the coupling strength to the transmission line and γ0 
represents the damping rate of the resonator by excess sources 
(Methods). Figure 2a,b shows the magnitude of the measured 
reflection coefficient for samples A and B (for the phase data, 
see Supplementary Fig. 3). At a given bias voltage, the minimum 
reflection occurring at ωp = ωr yields the resonator frequency. The 
full width of the dip at half-minimum equals the total coupling 
strength γT + γtr + γ0, related to the loaded quality factor by QL = ωr/
(γtr + γT + γ0). At the critical points, where ωp = ωr and γT + γ0 = γtr 
(black colour in Fig. 2a,b), the reflection ideally vanishes because 
of the impedance matching between the transmission line and the 
other electromagnetic environments of the resonator. Thus, the full 
width of the dip 2γtr gives accurately the coupling strength to the 
transmission line. The phase of the reflection coefficient exhibits a 
full 2π winding about the critical points (Supplementary Fig. 3). We 
extract the coupling strengths and the resonator frequency by fitting 
equation (1) to the data (Methods).

Figure 2c,d shows the measured voltage-tuneable coupling 
strength γT for the two samples. The characteristics of the coupling 
strength can be understood by considering tunnelling at different 
bias voltages. If the junction is not biased and ω Δℏ ≪r , where the 
gap parameter Δ is defined in Fig. 1, the electron tunnelling and 
the resulting coupling strength γT are suppressed by the small den-
sity of states in the superconductor gap30, quantified by the Dynes 
parameter γ ≪ 1D . If the bias voltage is near the gap edge, the elec-
tron tunnelling is efficiently assisted by thermal energy. As a result 
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Fig. 1 | Sample and measurement set-up. a, A schematic illustration of the coplanar waveguide resonator (dark blue) capacitively coupled to a normal-
metal island (red) and a transmission line together with a simplified measurement set-up. VNA denotes a vector network analyser. b, A false-colour 
scanning electron micrograph of the two superconductor–insulator–normal-metal (SIN) tunnel junctions used as an engineered environment for the 
resonator modes. Scale bar, 5 μm. See Supplementary Figs. 1 and 2 for details of the sample and the measurement set-up. c, Energy diagram of electron 
tunnelling at a superconductor–insulator–normal-metal junction. In the normal metal, the electron occupation (red shading) follows the Fermi distribution. 
The superconductor density of states exhibits the characteristic Bardeen–Cooper–Schrieffer energy gap of magnitude 2Δ. The states below the gap 
are filled (blue shading). The grey shading denotes empty states. The blue arrow depicts a photon-assisted tunnelling process that absorbs a photon 
with energy ħωr from the resonator mode at the angular frequency ωr. The red arrow corresponds to photon emission. Elastic processes (black arrow) 
do not affect the resonator state but contribute to the Lamb shift and to the thermalization of the normal-metal island28. The bias voltage V shifts the 
electrochemical potential of the normal metal and of the superconductor relative to each other by eV. For voltage biases |eV| < Δ + ħωr, emission processes 
are suppressed by the vanishing density of states in the superconductor gap. d, A tunnelling event on the normal-metal island shifts the charge of the 
resonator by ΔQ = αe. The capacitance fraction α = Cc/(Cc + CΣm) ≈ 1 is given by the coupling capacitance Cc between the resonator and the normal-
metal island and the capacitance of the normal-metal island to ground CΣm (Table 1). The charge shift induces transitions between the resonator energy 

eigenstates ψi(Q) and ψf(Q) via the matrix element ∣ ∣ ∝ ∣ ∣∫ ψ α ψ ρ= − −*M Q e Q Q( ) ( )dif f i
i f2

2
, where ρ = πα2Zr/RK is an interaction parameter expressed in terms 

of the characteristic impedance Zr of the resonator and the von Klitzing constant RK = h/e2 containing the Planck constant h (Methods). The blue and red 
arrows correspond to those in c.

Table 1 | Key device and model parameters

Parameter Symbol Sample a Sample B

Resonator frequency (GHz) ωr/2π 4.67 8.54

Characteristic impedance (Ω) Zr 34.8 34.8

External coupling (MHz) γtr/2π 3.7 33.6

Excess coupling (MHz) γ0/2π 0.29 10.6

Coupling capacitance (fF) Cc 840 780

Island capacitance (fF) CΣm 10 10

Superconductor gap (μeV) Δ 215 211

Dynes parameter γD 4 × 10−4 4 × 10−4

Junction conductance (μS) GΣ 71 127

Electron temperature (mK) TN 170 180

See Methods for details of the experimental determination of the parameters.
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of thermal activation, the coupling strength γT increases exponen-
tially as a function of the bias voltage, and reaches its maximum 
near the gap edge. At high bias voltages Δ∣ ∣∕ ≫eV 1, the coupling 
strength γT saturates to the value α2ZrGΣωr, where Zr is the charac-
teristic impedance of the resonator and GΣ is the sum of the con-
ductances of the two junctions28. Consequently, we can tune the 
coupling strength γT by approximately three orders of magnitude 
with the bias voltage, which makes it possible to accurately mea-
sure the Lamb shift of the resonator. The measured values for the 
coupling strength are in excellent agreement with the theoretical 
model of bias-voltage-controlled electron tunnelling in normal-
metal–insulator–superconductor junctions28 (Methods), a device 
recently referred to as a quantum-circuit refrigerator14,15. Our result 
expands the experimental operation regime of the quantum-circuit 
refrigerator to loaded quality factors up to 103 and internal quality 
factors above 104.

Figure 2e,f shows the observed shift of the resonator frequency 
ω ω ω= −L r r

0 as a function of the bias voltage for the two samples. 
Here ωr

0 is the resonator frequency at V = 0. The natural frequency 
of a harmonic oscillator experiences a classical damping shift 

γ ω≈ ∕ (8 )T
2

r  (not shown for clarity in the figures) which, in our 
experimental set-up, is in the range of 10 kHz for sample A and 
100 kHz for sample B and cannot explain the data. Interestingly, the 
effective temperature of the environment increases as a function of 
the bias voltage (see Supplementary Fig. 4). However, contrary to the 
anharmonic systems, the harmonic oscillator has no a.c. Stark shift 
by the environment; that is, the energy-level shifts are independent 
of the temperature of the environment6. Thus, we conclude that the 
observed shift of the resonator frequency is the Lamb shift induced by 
the broadband electromagnetic environment formed by the photon-
assisted electron tunnelling. In the following, we confirm our conclu-
sion by comparing the experimental results with a theoretical model.
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Fig. 2 | Observation of the Lamb shift. a,b, Magnitude of the voltage reflection coefficient |Γ| as a function of the probe frequency ωp and of the single-
junction bias voltage V. c,d, Coupling strength γT to the electromagnetic environment formed by the photon-assisted tunnelling at the superconductor–
insulator–normal-metal junctions as a function of the single-junction bias voltage V. For the calculated coupling strengths (solid lines), we use the 
experimentally realized parameter values (see Table 1). The horizontal dashed lines denote the coupling strength to the transmission line γtr and the 
horizontal dotted lines indicate the coupling strength to excess sources γ0. e,f, The Lamb shift as a function of the single-junction bias voltage V (filled 
circles). The solid line in f denotes the total calculated Lamb shift including both the static (dotted line) and the dynamic (dashed line) parts. The grey 
dashed line in e shows the dynamic Lamb shift corresponding to the electron temperature TN = 130 mK, whereas for other theoretical curves we use Table 1.  
a, c and e are for sample A and b, d and f correspond to sample B. The shaded regions denote the 1σ confidence intervals of the extracted parameters 
(see Methods for further details). We define the confidence interval of a parameter such that if the parameter is varied within the confidence interval, the 
complex-valued resonance point of the reflection coefficient in equation (1) lies within a distance less than the root-mean-square fit error from its original 
position (Methods). Each parameter is individually varied while keeping the other parameters at their optimized values. The excess coupling strength γ0 
has a similar confidence interval (not shown) to the coupling strength to the transmission line γtr.
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We model the environment as a continuum of modes6 charac-
terized by their coupling strength γT(ω) to the resonator, where ω 
refers to the frequency of a considered environmental mode. An 
environmental mode exchanges energy with the resonator only at 
resonance, being the principal mechanism for dissipation at the 
rate γ ω( )T r

0 . Yet, all of the environmental modes are coupled to the 
system, leading to the renormalization of its energy levels1,2,6. For a 
broadband environment, the corresponding dynamic Lamb shift for 
a harmonic oscillator is given by6,27











∫ω ω γ ω
ω ω

γ ω
ω ω

γ ω
ω

= −
π −

+
+

−
∞

PV d
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0

T
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where PV indicates the Cauchy principal value integration. The 
dynamic Lamb shift can be derived also from considering the 
broadband environment as a small electric admittance in parallel 
with the resonator and applying the Kramers–Kronig relations31 
(see Methods for details).

At bias values beyond the superconductor gap eV/Δ ≳ 2, the 
electromagnetic environment formed by the photon-assisted tun-
nelling at the normal-metal–insulator–superconductor junctions 
becomes Ohmic28. Therefore, the coupling strength becomes lin-
early dependent on the frequency γT(ω) = α2ZrGΣω. For an Ohmic 
environment, the dynamic Lamb shift of a harmonic oscillator in 
equation (2) vanishes32. In the experiments, however, we study 
the frequency shifts with respect to the zero-voltage resonance, 
and hence the negative dynamic shift obtained from equation (2) 
at zero bias converts in experiments to a small positive shift at 
high bias.

For sample B, in addition to the dynamic shift we observe a 
shift that we identify as the static shift. We attribute this static 
shift to the effective elongation of the resonator mode caused by 
an increased current flow through the superconductor–insulator–
normal-metal junction at high bias voltages. To the lowest order 
in the coupling strength, any static shift is given by −μγT/π, where 
we obtain the proportionality constant μ = 0.52 for sample B.  
Due to the experimental uncertainties, we cannot make a conclu-
sive statement on the static shift in sample A. We attribute this 
effect to possible differences in the geometry and details of the 
junctions between the samples. As shown in Fig. 2e,f this theory 
of the Lamb shift yields an excellent agreement with the mea-
sured data. Note that there are no free parameters in the theory 
curve of Fig. 2e.

To further verify the applicability of the theoretical model of 
the photon-assisted tunnelling, we study the response of the cou-
pling strength γT to the change in the normal-metal electron tem-
perature TN. We measure the critical bias point Vc, defined as the 
point at which γT + γ0 = γtr, where the reflection ideally vanishes. In 
elevated normal-metal electron temperatures, the thermally acti-
vated electron tunnelling is enhanced, which leads to an increased 
coupling strength γT in the subgap (Fig. 3a). As a result, the critical 
voltage moves to lower values (Fig. 3b). In elevated temperatures, 
the density of quasiparticles is increased in the resonator, which 
leads to larger quasiparticle-related losses33,34. To account for this, 
the excess coupling strength γ0 in Fig. 3 is assumed larger than in 
the low-temperature data of Table 1. For simplicity, we assume it 
to be independent of temperature and voltage. Overall, the good 
agreement between the measured and predicted critical voltages 
confirms that our model correctly captures the physics of the reso-
nator environments.

We demonstrated that the coupling strength between a copla-
nar waveguide resonator and the environment formed by electron 
tunnelling in normal-metal–insulator–superconductor junctions 
is tuneable by approximately three orders of magnitude and con-
sequently the Lamb shift was observed to be tuneable in regimes 
where both the dynamic and static parts significantly contribute. 
Here, the interaction between the system and the environment 
stayed in the weak coupling regime. With optimized parameters, 
however, the configuration may allow systematic studies of the 
Lamb shift in the recently realized ultrastrong-coupling regime35. 
Given that our technique provides rapid and well-characterized 
bias-voltage-controlled tunability, it may be useful in on-demand 
initialization of high-finesse quantum circuits and in environmental 
engineering of synthetic quantum matter.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Sample fabrication. We fabricate the samples on 0.525-mm-thick silicon wafers. 
The silicon surface is passivated by a 300-nm-thick silicon oxide layer. We define 
the resonators by photolithography and ion etching of a 200-nm-thick sputtered 
niobium layer, and then cover them by a 50-nm-thick layer of Al2O3. We produce 
the superconductor–insulator–normal-metal junctions with electron beam 
lithography followed by two-angle evaporation. More fabrication details can be 
found in ref. 15.

Measurements. We use a commercial dilution refrigerator to cool the samples 
down to the base temperature of 10 mK. We attach the samples using vacuum 
grease to a sample holder with a printed circuit board, and bond them with 
aluminium wires. The printed circuit board is connected to the room-temperature 
set-up by coaxial cables. The measurements are repeated multiple times.

The bias voltage is applied to the superconductor–insulator–normal-metal 
junctions by a battery-powered source. We measure the current through the 
junctions by a battery-powered transimpedance amplifier, which is connected to a 
voltmeter through an isolation amplifier. We measure the reflection coefficient of 
the sample with a vector network analyser. Based on the power level of the vector 
network analyser and total attenuation, the power of the signal reaching the sample 
is around −100 dBm (Supplementary Fig. 2).

The quasiparticle temperature of the superconducting leads and the electron 
temperature of the normal-metal island differ from the base temperature due to 
leakage through the radiation shields. They also depend on the level of the probe 
signal. However, no significant changes were noticed in the range of powers from 
−95 dBm to −105 dBm.

Device and model parameters. The resonator frequency ωr, the external 
coupling strength γtr, the coupling strength γT and the excess coupling strength 
γ0 are extracted from the reflection coefficient measurements using equation 
(1) as follows. We assume that the measured reflection coefficient has a voltage-
independent background arising, for example, from electrical delay or other 
reflections between the source and sample or between the sample and the vector 
network analyser. To remove this background, we first divide a finite-voltage 
trace of the measured reflection coefficient by the zero-voltage trace.  
A trace means here a measurement of the reflection coefficient as a function of 
frequency by keeping the single-junction bias voltage fixed. The above-discussed 
division procedure yields us a normalized reflection coefficient illustrated 
in Supplementary Fig. 6a. Next, we fit to this result an equation of the form 
r = Γ(V)/Γ(0), where Γ is the reflection coefficient defined in equation (1) and 
V is the voltage corresponding to the finite-voltage trace. However, the value of 
the voltage V has no direct effect on the fit since we use the coupling strengths 
and the resonance frequencies as fitting parameters. We repeat this procedure 
for all values of the voltage V used in the measured traces and obtain averaged 
parameter values for the zero-voltage reflection coefficient in equation (1); that 
is, we obtain the background-subtracted trace Γ′(0). Subsequently we recalculate 
the background-corrected result for each measured finite-voltage trace as 
Γ′(V) = rΓ′(0) (Supplementary Fig. 6b). This allows us to make a final fit of the 
data to equation (1) at each bias voltage. The results of this final fit are used in 
this manuscript.

The error bars for the fits to equation (1) are determined by drawing a circle 
of radius equal to the root-mean-square fit error in the complex plane for the 
reflection coefficient. The centre of the circle is placed at the resonance point of 
the least-squares fit according to equation (1). The confidence interval of each 
parameter is individually bounded by the condition that the resonance point of a 
function following equation (1) must lie within the circle when this parameter is 
varied but the other parameters correspond to the least-square fit.

The capacitance of the normal-metal island to ground CΣm is a typical value 
for metallic islands with superconductor–insulator–normal-metal junctions14,15. 
We calculate the impedance of the fundamental resonator mode as Zr = (2/π)Z0. 
Here, Z0 is the characteristic impedance of the coplanar waveguide structure 
obtained from the geometrical details of the device such as its centre conductor 
and gap width.

We extract the superconductor gap Δ, the Dynes parameter γD and the 
junction conductance GΣ from the current–voltage characteristics of the 
superconductor–insulator–normal-metal–insulator–superconductor junction29. 
The Dynes parameter γD dominates the subgap current. The exact value of the 
junction conductance GΣ is obtained from the slope of the current–voltage curve 
at voltages beyond the superconductor gap and from the coupling strength at 
the high-bias values γT = α2ZrGΣωr. In refs. 14,15, an extra pair of superconductor–
insulator–normal-metal junctions served as a thermometer measuring the electron 
temperature of the normal-metal TN. From these measurements, we estimate 
the electron temperature of the normal metal in the samples studied here. With 
a 10 mK base temperature of the dilution refrigerator, the electron temperature 
TN thermalizes to the values in the range from 50 mK to 200 mK for an unbiased 
junction. The exact value of the electron temperature TN in Table 1 is obtained by 
the best fit of the theoretical result to the data in Fig. 2c,d. For the higher cryostat 
temperatures in Fig. 3, we assumed that the electron temperature TN equals the 
base temperature.

Coupling strength from electron tunnelling. Ref. 28 details the theory of the 
photon-assisted tunnelling at a normal-metal–insulator–superconductor junction. 
According to the theory, the photon-assisted tunnelling forms an electromagnetic 
environment for a quantum circuit, such as a high-quality superconducting 
resonator. See also ref. 29 for a general overview on tunnelling at nanostructures. For 
completeness, we present here the main results of the theory, namely the coupling 
strength and the effective temperature of the electromagnetic environment. 
Importantly, we extend the theory by the derivation of the Lamb shift in the next 
section.

We consider a normal-metal–insulator–superconductor junction at the energy 
bias E and define rate functions

∫ ε ε ε ε= − −F E
h

n f f E( ) 1 d ( )[1 ( )] ( ) (3a)f S S N

∫ ε ε ε ε= − −F E
h

n f f E( ) 1 d ( )[1 ( )] ( ) (3b)b S N S

where ε denotes electron energy. The functions F E( )f  and F E( )b  give the 
normalized rate of forward and backward quasiparticle tunnelling for a junction 
with conductance G equal to half of the conductance quantum G0 = 2e2/h. 
The tunnelling rates are dictated by the occupations of the normal metal and 
superconductors through the Fermi functions, fN(ε) and fS(ε), respectively, as well 
as by the normalized quasiparticle density of the states in the superconductor
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where Δ is the superconductor gap parameter and γD is the Dynes parameter 
(Table 1) characterizing the subgap density of states nS(0) ≈ γD. A tunnelling 
event shifts the charge of the resonator by an amount of ΔQ = αe, where α = Cc/
(Cc + CΣm) is a capacitance fraction of the normal-metal island. The charge shift 
induces transitions from the resonator energy eigenstate ∣ ⟩m  to the eigenstate ∣ ′⟩m  

− ′ ≥m m( 0)  through the matrix element28,36
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where ψm(Q) = ⟨ ∣ ⟩Q m  are the resonator energy eigenstates represented in the 
charge basis, ρ = πα2Zr/RK is an interaction parameter expressed in terms of the 
characteristic impedance Zr of the resonator and ρ′

′−L ( )m
m m  denote the generalized 

Laguerre polynomials37.
The resonator transition rate becomes28

∑Γ τ ω= ∣ ∣ + ℏ − ′ −′ ′ Σ
τ=±

V M R G F eV m m E( ) ( ( ) ) (6)m m mm,
2

K
1

f r N

where we have assumed that two superconductor–insulator–normal-metal 
junctions of the superconductor–insulator–normal-metal–insulator–
superconductor construction are sufficiently identical, the electrodes are at equal 
temperatures, and that the charging energy EN = e2/2(Cc + CΣm) ~ h × 10 MHz of the 
normal-metal island is the smallest of the relevant energy scales of the set-up (Δ, 
ħωr and kBTN). In a typical experimental scenario, the interaction parameter ρ is 
well below unity since ≪Z Rr K. Thus, from equation (5) one sees that at low powers 
the dominant transitions are those between adjacent states Γm,m−1 and Γm,m+1. In 
this case, we characterize the electromagnetic environment through its coupling 
strength γT

∑γ ω α τ ω= π ℓ + ℓℏ −Σ
τℓ =±

V Z G F eV E( , ) ( ) (7)T r
2

r
, 1

f r N

as well as the effective mode temperature TT,
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which are defined through the mapping Γm,m−1 = γT(NT + 1)m and 
Γm,m+1 = γTNT(m + 1) of the transition rates, where the mean number of excitations 

= ∕ −ωℏ ∕N 1 [e 1]k T
T

( )r B T  defines the effective mode temperature TT. Here, kB is the 
Boltzmann constant.

The electron tunnelling across the normal-metal–insulator–superconductor 
junction, characterized by the tunnelling rate function F E( )f  in equation (3a), 
defines the dependence of the coupling strength γT on the resonator frequency ωr 
and the bias voltage eV. To completely map the tunnelling rate function,  
one needs to measure both the coupling strength γT and TT. In refs. 14,15,28, we  
have probed these quantities with excellent agreement with the theoretical 
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equations (7) and (8). Here, we probe the dependence of the coupling strength 
γT on the bias voltage (Fig. 2c,d) and observe that the experimental results are 
in accordance with the theory. Combining these observations, we verify that 
our model is valid. The dependence of the coupling strength on the resonator 
frequency ωr originates from the same rate function summing to the voltage, thus 
validating the use of equation (7) in the calculation of the Lamb shift where it is 
used for a broad range of frequencies.

Lamb shift from electron tunnelling. We present here a derivation of the  
dynamic Lamb shift ωL

dyn of a resonator caused by the electron tunnelling  
at the two capacitively coupled superconductor–insulator–normal-metal  
junctions. The derivation follows the assumptions and guidelines of refs. 28,29.  
We apply second-order perturbation theory, since the first-order correction 
vanishes (see the discussion below, after equation (12)). Thus, we start by 
introducing the unperturbed Hamiltonians of the electric circuit Ĥ0, the normal-
metal electrode ĤN and one of the superconducting leads ĤS for the system 
depicted in Fig. 1a:

∑ ∑Ĥ ω= + ℏ × ∣ ⟩ ⟨ ∣
=−∞

∞

=

∞

E Q m Q m Q m[( ) , , ] (9a)
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∑Ĥ ε= ̂ ̂
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ℓ ℓ
†

ℓd d (9b)N

∑ ∑Ĥ ϵ ĉ ĉ ĉ ĉ ĉ ĉ= − + Δ + Δ
σ

σ σ
†
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†

− ↓
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↑ − ↓eV( ) ( * ) (9C)
k

k k k
k
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The Hamiltonian Ĥ0 corresponds to the charge states of the normal-metal island 
QN, QN = 0, ±1,… with the charging energy EN = e2/2CN and to the resonator with 

the bare, unnormalized frequency ωr
0 and Fock states ∣ ⟩m  displaced by the charge 

of the normal-metal island Φ∣ ⟩ = − ̂ ∣ ⟩ ∣ ⟩
ℏ( )Q m Q m Q, exp iQ

C
C

e
N N NN

c
N

, where m = 0, 
1, 2,…. Here, Φ̂ refers to the flux of the resonator, e is the elementary charge, Cc is 
the coupling capacitance, and CN = Cc + CΣm is the capacitance of the normal-metal 
island. The energy of the normal-metal (superconducting) lead is represented by 
ĤN Ĥ( )S , where the annihilation operator ̂

σℓd  ĉ σ( )k  refers to the quasiparticle state 
with momentum ℓ (k), energy εℓ ϵ( )k  and spin σ. The gap parameter coupling the 
quasiparticles of the superconductor is denoted by Δk. The bias voltage displaces 
the energy of the superconductor quasiparticles by eV.

The perturbation is caused by the quasiparticle tunnelling between  
the normal-metal and superconducting leads represented by the tunnelling 
Hamiltonian29
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where ℓT k is a tunnelling matrix element. The perturbation separates into the 
electronic and electric parts. The electronic part Θ̂ describes the quasiparticle 
transitions and the electric part Φ± ̂

ℏe i e
N describes the associated transitions in the 

state of the electromagnetic degrees of freedom, namely, the displacement of the 
island charge ̂ → ̂ ±Q Q eN N , where Φ̂N and Q̂ N refer to the flux and charge of the 
normal-metal island. This tunnelling Hamiltonian corresponds to the transitions 
through one of the superconductor–insulator–normal-metal junctions. Small 
junction conductance GT ≲ 100 μS implies that the probability for co-tunnelling is 
negligibly small and tunnelling at the two junctions can be considered separately. 
We add the contribution of the other junction below.

The energy-level shift ħδη by the second-order time-independent perturbation 
theory is

∑δ
η Ĥ η
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where η∣ ⟩ = ∣ ℓ ⟩Q m k, , ,QN N
 is a notation for the combined state of the unperturbed 

system with the total energy ω ε ϵ= + ℏ + +η ℓE E Q m kN N
2

r
0 . Since Φ± ̂

ℏe i e
N is the 

displacement operator of the island charge, it yields the matrix element of the 
electric circuit
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where Mmm′ is the matrix element in equation (5) between the charge-shifted Fock 
states of the resonator. Note that since the matrix element of equation (12) involves 
a charge shift, the energy shift by the diagonal first-order perturbation theory 
vanishes.

Given the matrix element of the electric circuit of equation (12), the frequency 
shift of equation (11) reduces to


















∑δ
Θ

ω

Θ
ω

ℏ = − ∣ ∣ ∣⟨ℓ′ ′∣ ̂ ∣ℓ ⟩∣
− + ℏ ′− + −

+ ∣⟨ℓ′ ′∣ ̂ ∣ℓ ⟩∣
+ + ℏ ′− + −

′ ′ ′
′

′ ′

′ ′

η
ℓ

†

ℓ ℓ

ℓ ℓ

M
k k

E Q m m E E

k k
E Q m m E E

(1 2 ) ( )

(1 2 ) ( )

(13)
m k

mm
k k

k k

, ,

2
2

N N r
0

2

N N r
0

Since the charging energy EN = e2/2(Cc + CΣm) ~ h × 10 MHz is the smallest of the 
relevant energy scales of the set-up (Δ, ωℏ r

0 and kBTN), we can expand equation (13) 
in 2ENQN and average over the symmetric charge-state distribution pQN (ref. 28). 
Furthermore, we trace over the state of the normal-metal and the superconducting 
leads. The result is
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From equation (5) we expand |Mmm′|2 up to the first order in ρ, which 
is justified by the typical experimental values ρ ≈ 0.001, resulting 
in Oρ ρ∣ ∣ = − + +M m1 (1 2 ) ( )m m,

2 2 , Oρ ρ∣ ∣ = + ++M m( 1) ( )m m, 1
2 2 , 

|Mm,m−1|2 = ρm + O(ρ2) and O ρ∣ ∣ =±M ( )m m s
s

,
2

 for s ≥ 2. By taking into account 
the terms up to the first order in ρ, we obtain that the dynamic Lamb shift of the 
harmonic oscillator ∼ ∼ω δ δ= −+m mL 1  is
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where we have denoted the first and the second part by ωL,el
dyn and ωL,ph

dyn.  
The part ωL,ph

dyn originates from the photon-assisted transitions, whereas the 
part ωL,el

dyn originates from the elastic transitions and can be expressed as 
ω ω ω= − ω →lim ( )L,el

dyn
0 L,ph

dyn
r
0

r
0 . Thus, we begin by simplifying ωL,ph

dyn.
To calculate the matrix elements of the quasiparticle transitions Θ∣⟨ℓ′ ′∣ ̂ ∣ℓ ⟩∣k k  

in equation (15), we proceed similarly as in refs. 28,29 by expressing the  
matrix elements in terms of the Fermi functions of the normal-metal fN(ε)  
and superconducting leads ϵf ( )S

 and the normalized quasiparticle density  
of the states in the superconductor ϵn ( )S . Furthermore, we assume that the 
tunnelling matrix elements ℓT k are approximately constant around the Fermi 
energies and their effect can be expressed with the junction conductance GT.  
The result is
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where PV denotes the Cauchy principal value integration. Next we consider also 
the other normal-metal–insulator–superconductor junction in the construction. 
By assuming that the temperatures of all the leads in the construction are identical 
(fN = fS) and that the junction conductances are identical, it follows that the only 
difference in the derivation of the Lamb shift by the other junction is that the bias 
voltage is opposite eV → −eV in equation (16). We sum up the contributions from 
both junctions resulting in
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Next we utilize the notion of the normalized rate of forward F E( )f  and backward 
F E( )b  quasiparticle tunnelling in equations (3a) and (3b). These rates obey the 
symmetry − =F E F E( ) ( )f b ; thus, equation (17) can be expressed in a simpler form
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where the total conductance is GΣ = 2GT. Furthermore, by expressing equation (18) 
in terms of the coupling strength γT of the effective electromagnetic environment 
derived in ref. 28
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we finally arrive at the dynamic Lamb shift by both the photon-assisted and elastic 
tunnelling transitions ω ω ω= +L
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The first two terms originate from the photon-assisted tunnelling processes.  
Hence, they depend on the resonator frequency. The third term originates from  
the elastic tunnelling and is independent of the resonator frequency. Importantly, 
the elastic tunnelling affects the energy levels despite exchanging no energy with 
the resonator and having no contribution to the coupling strength γT or the effective 
temperature TT.

Lamb shift from the Kramers–Kronig relations. In general, causality  
imposes restrictions on linear-response coefficients in frequency space,  
referred to as Kramers–Kronig relations31. In particular, the real and the  
imaginary part of any physical admittance Y(ω) are related by the Hilbert 
transform that reads
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0

As above, we model the resonator without coupling to the environment as a 
harmonic oscillator realized by a parallel LC circuit with voltage V, characteristic 
impedance Zr and resonance frequency ωr

0. The environment adds a small shunting 
admittance with ∣ ∣ ≪Y Z 1r . The Kirchhoff current rule reads
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where the first term in the bracket is the admittance of the resonator. The modes 
of the system thus correspond to the roots of the term in the bracket. Given the 
fact that the shunt is small, we can obtain an approximate expression for the 
position (frequency and damping) of the eigenmode including the environment. In 
particular, we parameterize the root by ω ω ω γ= + + ∕i 2r

0
L
dyn

T
 with ωL

dyn being the 
dynamic Lamb shift and γT being the coupling strength to the environment. As a 
result, we obtain a relation of the admittance to the relevant quantities of the form
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With these relations, we obtain from equation (21) the Kramers–Kronig-type 
relation between the coupling strength and the dynamic Lamb shift
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Note that this expression coincides with equation (20).
However, we stress that a frequency-independent coupling strength γT 

gives rise to a vanishing Lamb shift in equation (24) and similarly a frequency-
independent Lamb shift yields a vanishing contribution to the coupling strength. 
Thus, equations (21), (23a) and (23b) are valid only up to frequency-independent 
shifts. These frequency-independent shifts are identical to the static Lamb shifts we 
consider in the main text in addition to the dynamic Lamb shift given by equations 
(20) and (24). If a static shift is independent of the bias voltage, it is not resolved 
in the experiment, and hence we consider only static shifts linear in the coupling 
strength, that is, the lowest-order static corrections to the dynamic shift.

Data availability
The data that support the findings of this study are available at https://doi.
org/10.5281/zenodo.1995361.
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