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ABSTRACT: A new method is demonstrated for preparing
antifouling and low nonspecific adsorption surfaces on poorly
reactive hydrophobic substrates, without the need for energy-
intensive or environmentally aggressive pretreatments. The
surface-active protein hydrophobin was covalently modified
with a controlled radical polymerization initiator and allowed
to self-assemble as a monolayer on hydrophobic surfaces,
followed by the preparation of antifouling surfaces by Cu(0)-
mediated living radical polymerization of poly(ethylene
glycol) methyl ether acrylate (PEGA) performed in situ. By
taking advantage of hydrophobins to achieve at the same time
the immobilization of protein A, this approach allowed to
prepare surfaces for IgG1 binding featuring greatly reduced
nonspecific adsorption. The success of the surface modifica-
tion strategy was investigated by contact angle, XPS, and AFM characterization, while the antifouling performance and the
reduction of nonspecific binding were confirmed by QCM-D measurements.

KEYWORDS: antifouling surfaces, nonspecific binding, biosensors, hydrophobin, surface-initiated living radical polymerization

■ INTRODUCTION
Surfaces with antifouling properties find major application in
the biomedical field, in particular where the reduction of
nonspecific protein adsorption and cell adhesion is a necessary
requirement, e.g., for prostheses and implantable devices to
avoid effects such as inflammation and fibrosis.1−5 The
minimization of nonspecific binding is important, however,
also in biosensing applications since nonspecific adsorption
may produce a false response, thus decreasing the detection
specificity and sensitivity of a device.6−8

However, the introduction of antifouling features through
surface modification can be a significant challenge in the case
of poorly reactive materials, like some of the most commonly
used hydrophobic polymers (e.g., polyolefins, polystyrene,
poly(dimethylsiloxane), or Teflon). Activation treatments are
typically required which are energy intensive or environ-
mentally aggressive, such as UV-irradiation, plasma, or strongly
oxidizing chemicals. One simple, fast, and environmentally
friendly means of achieving the modification of chemically
inert surfaces is offered by hydrophobins, which are natural
amphiphilic proteins produced by filamentous fungi.9−11

Thanks to their unique Janus-like structure, which features a
hydrophobic patch composed by amino acids with hydro-
phobic side chains, these proteins can self-assemble sponta-
neously on hydrophobic surfaces from aqueous solutions and
form robust monolayers which expose a reactive hydrophilic
side. Previous work showed that they can be used as surface
modification agents for poorly reactive surfaces such as
graphite,12 diamond-like carbon,13 Teflon,14−16 poly-
(vinylidene fluoride),17 polystyrene, and polyethylene.18 In
particular, hydrophobins were shown to permit the successful
immobilization of enzymes, antibodies, and other proteins as
sensing modules in biosensor devices, either by electrostatic
interactions or by expression as fusion proteins.19−25

Among the materials possessing antifouling properties,
poly(ethylene glycol) (PEG) and its derivatives are well-
known and have been studied and successfully employed over
decades of research.1,5,26−29 In recent years it was shown that a
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range of hydrophilic PEG-based comb/brush polymers can be
prepared fast and efficiently in mild conditions, including
aqueous environment, by Cu(0)-mediated living radical
polymerization.30−37 For example, poly(methacrylates) were
grown successfully on various surfaces to prevent nonspecific
protein adsorption,32,38 and graphene oxide (GO) was
functionalized with poly(ethylene glycol) ethyl ether meth-
acrylate (PEGEEMA) to improve GO dispersibility in various
solvents and exhibit thermoresponsive wettability.31

In this study we report the preparation and use of a
macroinitiator obtained by site-specific covalent bioconjuga-
tion of a living radical polymerization initiator to the
hydrophobin NCysHFBI. This new macroinitiator Ini-HFBI
was first allowed to self-assemble as a film on hydrophobic
surfaces by simple substrate immersion in aqueous solution.
Subsequently, Cu(0)-mediated living radical polymerization
under mild conditions of poly(ethylene glycol)methyl ether
acrylate (PEGA) was used to prepare in situ an antifouling
layer of hydrophobin/poly(PEGA) bioconjugate via the
“grafting from” strategy (Figure 1). The same method was
then applied to obtain a surface for IgG1 binding with low
nonspecific adsorption, prepared as a mixed layer of the same
hydrophobin/poly(PEGA) bioconjugate together with an
engineered fusion of the hydrophobin HFBI with protein A
(HFBI-ProtA). The composition and morphology of the
surfaces were investigated by spectroscopic and microscopic
techniques, and their antifouling performance and protein
binding features were studied by quartz crystal microbalance
with dissipation monitoring (QCM-D). The reduction of
nonspecific binding was assessed by investigating the selective
adsorption of IgG1 in the presence of a large excess of BSA,
which is often used as blocker for nonspecific binding sites, for
example, in immunohistochemistry.

■ MATERIALS AND METHODS
Reagents. The P-type single-side polished silicon wafer (100)

used as the substrate was obtained from Siegert wafer GmbH,
Germany. The gold-coated quartz crystal sensors (QSX 301) were
purchased from Biolin Scientific. Poly(ethylene glycol)methyl ether
acrylate (PEGA; Mn = 480 g mol−1), copper(I) bromide (CuBr),
tris[2-(dimethylamino)ethyl]amine (Me6-TREN), trifluoroacetic acid
(TFA), 1-hexanethiol, chlorotrimethylsilane, decane, acetonitrile
(ACN), ethanol (EtOH), and acetone were purchased from Sigma-
Aldrich. All reagents were used as received. NCysHFBI was produced
using recombinant strains of T. reesei, purified by RP-HPLC as

described previously39 and lyophilized before use. Bovine serum
albumin (BSA), immunoglobulin Lambda from human myeloma
plasma (IgG1), and anti-IgG(γ-chain specific)-gold 5 nm colloidal
gold were purchased from Sigma-Aldrich. The HFBI-ProteinA fusion
protein produced in transient expression mode in Nicotiana tabacum
plants via agroinfiltration40 was produced and purified as previously
described.23

Preparation of the Ini-HFBI Macroinitiator. The maleimidic
initiator 2-bromoisobutyrate ethoxyethyl maleimide was synthesized
according to the literature.41,42 NCysHFBI was first reduced as
previously described43 to reverse the dimerization which occurs by
formation of disulfide bridges between the exposed cysteines situated
close to the N terminus of the proteins. The same cysteine residues
were then used for site-specific conjugation of the maleimide initiator
to the protein. In a typical synthesis, reduced NCysHFBI (4.7 mg)
was dissolved in a mixture of acetonitrile (0.55 mL) and phosphate
buffer (2.45 mL, 0.1 M, pH 7.2). A solution of 2-bromoisobutyrate
ethoxyethyl maleimide (3.3 mg) in ACN (0.5 mL) was added. The
vial containing the mixture was briefly flushed with nitrogen, wrapped
in aluminum foil, and gently stirred at room temperature for 4 h. The
mixture was then centrifuged at 4000 rpm and +20 °C for 10 min,
followed by purification by reverse phase HPLC on a Resource RPC
column using a gradient of water/ACN (both containing 0.1% TFA).
Ini-HFBI was subsequently freeze-dried and recovered typically in
65−70% yield. MALDI-TOF: m/z = 9012.7.

MALDI-TOF Spectrometry. An Autoflex II instrument (Bruker
Daltonics Bremen, Germany) equipped with a UV/N2 laser (337
nm/100 μJ) was used to perform mass spectrometric analyses.
Saturated α-cyano-4-hydroxycinnamic acid (Sigma-Aldrich) in a 1:2
(v/v) mixture of ACN and aqueous 0.1% (v/v) TFA was used as a
matrix. The purified proteins were dissolved in the same solvent
mixture at about 1 mg mL−1 concentration, mixed with the matrix
solutions in 1:1 (v/v) ratio, and applied on a stainless steel target
plate in 0.5 μL aliquots. The sample spot was dried in air at room
temperature. The mass spectrum (4−20 kDa) was measured in linear
positive-ion mode, and protein standard solution I (Bruker Daltonics)
was used for the external molecular mass calibration.

Interfacial Tension Measurements. Interface tensiometric
measurements were performed on a CAM 200 (KSV Instruments
Ltd.), and the built-in software OneAttension was used for data
processing. A 15 μL droplet of HFBI or Ini-HFBI aqueous solution at
various concentrations (heavy phase) was left hanging in decane (light
phase) within a quartz cuvette from the syringe needle. The self-
assembly ability of Ini-HFBI at different pH was studied as well by
using the following buffers at 10 mM concentration: sodium acetate−
acetic acid (pH 4 and 5), sodium phosphate (pH 6 and 7), Tris-HCl
(pH 8), and glycine−NaOH (pH 9.0). The interfacial energies were
obtained from the fitting of the droplet shape by the Young−Laplace
method.

Figure 1. Surface-initiated polymerization of poly(PEGA). (a) Process of preparation of an antifouling surface: (a.1) self-assembly of Ini-HFBI on a
hydrophobic surface; (a.2) polymerization of PEGA from Ini-HFBI. (b) Process of preparation of a low nonspecific binding surface: (b.1)
coassembly of Ini-HFBI and fusion protein HFBI-ProtA on a hydrophobic surface; (b.2) polymerization of PEGA from the mixed Ini-HFBI/HFBI-
ProtA layer.
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Preparation of Poly(PEGA)-HFBI Layers. Silicon wafer slides (1
× 1 cm2 size) were cleaned and silanized with chlorotrimethysilane to
obtain a model hydrophobic surface following the procedure reported
in the Supporting Information. A silanized silicon slide was immersed
in Ini-HFBI (50 μg mL−1) aqueous solution for 45 min. At the same
time, H2O (HPLC grade, 1 mL) and Me6-TREN (5.35 μL, 0.02
mmol) were added to a 20 mL glass vial fitted with a magnetic stir bar
and a rubber septum. The mixture was deoxygenated in a N2 stream
for 10 min. CuBr (2.87 mg, 0.02 mmol) was then carefully added
while keeping N2 flowing. The solution was stirred for 15 min to
generate a bluish-green solution of CuBr2/Me6-TREN and a
suspension of Cu(0) powder. Then stirring was stopped and one
Ini-HFBI covered silicon wafer slide was carefully immersed into the
solution, which was again bubbled with N2 for at least 30 min. At the
same time, a mixture of H2O (HPLC grade, 2 mL) and PEGA (960
mg, 881 μL, 2 mmol) was charged into a glass vial equipped with a
rubber septum, and the mixture was deoxygenated for at least 30 min.
After that, the deoxygenated monomer solution was transferred via a
well-deoxygenated syringe through the septum to the bottom of the
glass vial with Cu(0)/CuBr2/Me6-TREN/silicon wafer slide.
Polymerization was performed at room temperature under a nitrogen
atmosphere overnight (for the mixed Ini-HFBI/HFBI-ProtA layers,
the polymerization time was 2 h), and then the polymer-grafted
silicon wafer slide was taken out of the solution, rinsed with abundant
Milli-Q water, and dried under nitrogen flow. The same procedure
was applied to a silanized Si wafer previously half-covered with Teflon
tape for the AFM study.
Water Contact Angle (WCA) and Surface Free Energy. The

contact angles of all surfaces were measured using a CAM 200
instrument (KSV) with 5 μL droplets for Milli-Q water, diiodo-
methane, and benzyl alcohol using the sessile drop method. The drop
profiles were fitted by using the Young−Laplace method. Contact
angles were determined as an average from three parallel experiments
on different areas of the samples by the OneAttension software. The
surface energy was calculated from the contact angle values with
water, diiodomethane, and benzyl alcohol using the Owens−Wendt
method.44 All samples were rinsed with Milli-Q water and dried under
N2 flow before measurement.
X-ray Photoelectron Spectroscopy (XPS). Surface chemistry

was assessed by XPS (AXIS Ultra by Kratos). For the analyses,
samples were mounted on a sample holder with UHV compatible
carbon tape, together with an in situ reference sample of 100% ash-
free cellulose filter paper,45 and pre-evacuated overnight. All
experiments were performed using monochromatic Al K irradiation
at low irradiation (100 W) and under neutralization. Low resolution
wide energy range spectra were recorded together with high
resolution scans of C 1s, O 1s, N 1s, and Si 2p regions on at least
three locations for each sample. With the parameters used, analysis
area is less than 1 mm2, while the analysis depth of XPS is much
smaller, <10 nm. The data were analyzed using CasaXPS. Wide scans
were used in surface elemental analysis, C 1s high resolution data
were curve fitted with Gaussian components for a more detailed
chemical analysis,46 and the binding energies of all spectra were
adjusted with the help of the in situ reference and the CC component
present in all samples (i.e., carbon atoms without oxygen neighbors).
Atomic Force Microscopy (AFM). Topography images were

captured with NanoScopeV Multimode8 AFM (E scanner, Bruker).
All images were recorded using cantilevers with a tip radius of 8 nM
(MikroMasch, f = 325 kHz, k = 40 N m−1) in tapping mode in air
with scan rate 1.4 Hz. The Nanoscope Analysis software (Bruker) was
used for image processing and analysis. The images were only
flattened to remove possible tilt in the image data, with no further
processing.
Scanning Electron Microscopy (SEM). Morphological features

were imaged with a Zeiss Sigma VP scanning electron microscope.
The samples were attached on aluminum SEM stubs with carbon tape
and coated with palladium/platinum by using a Leica EM ACE600
high vacuum sputter coater (35 mA, 4 nm thickness) prior to imaging.
All images were recorded in Secondary Electron (SE) mode with in-
lens detector under an acceleration voltage of 2.0 kV. The labeling

with anti-IgG(γ-chain specific)-gold was performed by diluting 10-
fold the solution received from the supplier with 20 mM Tris buffer
(pH 8) containing 0.05 M NaCl and 0.05% TWEEN, followed by
sample incubation for 1 h and rinsing with Milli-Q.

Antifouling Features of Poly(PEGA)-HFBI Layers. Quartz
crystal microbalance with dissipation monitoring (QCM-D; Q-Sense
E4 system, Biolin Scientific, Sweden) was first used to measure the
adsorption of BSA on hydrophobin surfaces with and without the
poly(PEGA) layer, using the wild-type parent protein HFBI as a
control layer. For all QCM-D experiments reported in this work, the
surface-adsorbed masses were estimated with the QTools software
using the viscoelastic Voigt model.

The QCM gold sensor disks were first coated with 1-hexanethiol to
obtain a model hydrophobic surface. The gold sensor disks were first
cleaned in a UV/ozone chamber for 10 min and immersed in a heated
(75 °C) H2O/NH3/H2O2 mixture (5:1:1) for another 10 min
followed by thorough rinsing with Milli-Q water and drying with N2.
Then dried sensor disks were treated in the UV/ozone chamber for
another 10 min before immersing in pure EtOH for 2 min to sensitize
the surfaces. The wet sensor disks were then immersed in 1-
hexanethiol/EtOH (0.05 M) solution overnight at room temperature.
Finally, they were rinsed with pure EtOH and Milli-Q water and dried
with N2. Then the hydrophobic gold sensor disks were immersed in
aqueous solutions of Ini-HFBI (50 μg mL−1) and HFBI (50 μg mL−1)
for 50 min and rinsed with water to remove excess hydrophobin. The
sensor modified with HFBI was dried with N2 after deposition and
conserved for QCM-D as a control sample. After rinsing with Milli-Q
water, the sensor modified with Ini-HFBI was immediately transferred
into the solution containing the reagents for the polymerization of
PEGA, which was performed as described above. After polymer-
ization, the sensor disk was rinsed with water and dried with N2 prior
to mounting into the measurement chamber of the QCM-D.

For the antifouling tests, BSA was first dissolved in sodium
acetate−acetic acid buffer (10 mM) at pH 5.5 to a concentration of 1
mg mL−1. During the QCM-D measurements, the BSA solution was
pumped through the measurement chambers at a 0.1 mL min−1 flow
rate for 6 min. The flow was then interrupted, and the system was
allowed to stabilize for 110 min; then rinsing was performed with the
buffer solution until the signal stabilized.

Surfaces for IgG1 Binding with Reduced Nonspecific
Adsorption. The coassembly of the fusion protein HFBI-ProtA
with the wild-type hydrophobin HFBI was first investigated by QCM-
D using hexanethiol-coated gold sensor disks to study the IgG1-
binding capacity of different mixed layers. During the QCM-D
measurement, mixtures of HFBI-ProtA and wild-type HFBI in
different HFBI-ProtA/HFBI molar ratios (0/100, 20/80, 40/60,
and 60/40), for a total concentration of 2.27 μM in sodium phosphate
(10 mM) at pH 7 were pumped into the chambers at 0.1 mL min−1

flow for 6 min. The sensors were then incubated for ca. 60 min in
zero-flow conditions. After rinsing with buffer solution until a stable
baseline was obtained again, IgG1 solutions of increasing concen-
tration (8, 80, and 800 nM) were injected in sequence into the
chambers at a flow rate of 0.1 mL min−1 for 6 min.23 The sensors were
allowed to equilibrate in zero-flow condition for ca. 70 min and rinsed
with the running buffer in between injections to remove excess IgG1.

To verify the reduction of nonspecific protein adsorption on IgG1
binding surfaces, a mixed layer of Ini-HFBI and HFBI-ProtA (40%
molar ProtA in solution) was first assembled outside the QCM-D
instrument on a hexanethiol-coated QCM sensor using a total protein
concentration of 100 μg mL−1 and then performing the polymer-
ization of PEGA using the same procedures described above for pure
Ini-HFBI layers. These surface-modified sensors were then used in
QCM-D protein adsorption experiments performed under the same
conditions described above for the antifouling tests (0.1 mL min−1

flow, 700 μL volume of protein solution), using solutions of BSA (1
mg mL−1, 15 μM) and BSA/IgG1 mixtures (BSA: 15 μM; IgG1: 8 or
80 nM) in sodium acetate−acetic acid buffer (10 mM) at pH 5.5.
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■ RESULTS AND DISCUSSION
Characterization of the Macroinitiator Ini-HFBI. To

prepare the macroinitiator Ini-HFBI, 2-bromoisobutyrate
ethoxyethyl maleimide was covalently bound by site-specific
conjugation to NCysHFBI, a genetically engineered variant of
the wild-type hydrophobin HFBI.39 NCysHFBI features an
added strand of 13 amino acids to the N-terminus of HFBI,
which contains one cysteine amino acid that can be selectively
reacted with compounds containing a maleimide functional
group. MALDI-TOF mass spectrometry confirmed the success
of the derivatization, as the modified protein displayed a
molecular weight of 9012 Da (Figure S1).
The ability of the modified hydrophobin Ini-HFBI to

assemble at interfaces and reduce interfacial tension was
investigated for protein aqueous solutions with different
concentrations at the interface between water and decane,
and the results were compared to those obtained with the wild-
type protein HFBI (Figure 2, green curve). Droplet

tensiometry shows that the typical surface activity of
hydrophobins is retained in Ini-HFBI. The surface tension
decreased rapidly within the first 100 s, which is attributed to
protein adsorption at the interface. This was followed by a
subsequent slower reduction of interface tension due to a
rearrangement of the protein film, until a stable state was
reached. This behavior was largely independent of the pH as
no significant changes or clear trends could be observed when
varying the pH between 4 and 9 (Figure S2).
To determine the most suitable conditions for protein film

assembly, the kinetics of interface energy reduction of Ini-
HFBI was studied at 100, 50, and 10 μg/mL (11.1, 5.6, and 1.1
μM) concentration (Figure 2). The results show that with 100
and 50 μg/mL of Ini-HFBI aqueous solutions the reduction of
interface tension proceeds in a similar way. However, at 10 μg/
mL concentration the reduction of surface tension was
considerably slower, and the system was not stable even after
30 min. Therefore, a concentration of 50 μg/mL was chosen
for the experiments.
Compositional Characterization of the Surfaces. A

simple method to verify surface modification is represented by
the measurement of water contact angle (WCA) (Table S1).
After silanization of a cleaned silicon wafer surface with
chlorotrimethylsilane, WCA increased from 14.7° to 95.6°,

which indicates a change in the nature of the surface from
hydrophilic to hydrophobic. The WCA then decreased to
35.6° after deposition of Ini-HFBI layer, confirming that the
protein adhered to the substrate through its hydrophobic patch
and inverted its wettability. After growth of poly(PEGA) the
WCA changed to 66.5°, which is in reasonable accord with
values previously reported for surfaces modified with PEG-like
acrylate polymers.47 Further information can be obtained by
evaluating the surface free energy (SFE) and its polar (γP) and
dispersive (γD) components through the Owens−Wendt
method44 (see Table S1 and the Supporting Information).
As the silanol groups were reacted with chlorotrimethylsilane, a
large decrease in polar SFE components was observed. The
overall SFE and particularly its polar components then rose
significantly as a result of the formation of an Ini-HFBI layer,
confirming that the self-assembled film exposes the hydrophilic
side of the protein which contains amino acids with polar and
charged side chains.
Finally, the success of the in situ polymerization of

poly(PEGA) is reflected by a further significant decrease in
polar components since the polymer does not contain any
charged moieties.
A more in-depth characterization of the chemical nature of

the modified surfaces was obtained by XPS (Table 1 and

Figure S3). The deposition of the protein layer over the
silanized silicon is reflected by concurrent increase in carbon
and decrease in Si content as well as by the appearance of
nitrogen. This is accompanied by the onset of C−O and CO
components in the C 1s peak, which is also consistent with the
protein composition (Figure 3).
After polymerization there is a decrease of the amount of

nitrogen, which is not present in poly(PEGA). CO functions
are present in the polymer, but their relative amount is
expected to be lower compared to the protein, as for
poly(PEGA) the CO/C−O ratio is close to 1/16. This is
also confirmed by the analysis of the C 1s peak components.
Finally, XPS data allow also some considerations about the

thickness of the deposited layer. Because XPS typically probes
a depth of ca. 10 nm, the fact that a high amount of Si is still
observed in the poly(PEGA)-functionalized surface clearly
indicates that the average thickness of the layer is well below
10 nm. This is further confirmed by the fact that the C/O ratio
is considerably smaller than the 2/1 ratio, which is roughly
expected for a pure poly(PEGA) surface, as well as from the
AFM structural characterization, as described in the following
paragraph.

Morphology of the Functionalized Surfaces. Poly-
(PEGA)-HFBI layers on silicon wafer surfaces were imaged by
AFM to characterize their morphology and thickness. It has

Figure 2. Plots of interfacial tension versus time at the interface
between aqueous protein solutions and decane.

Table 1. Elemental Analysis As Derived from XPS for
Different Functionalized Silicon Wafer Surfaces and the
Relative Abundance of Different Components of the C 1s
Peak (All Values in %)

elemental analysis C 1s components

sample C 1s O 1s Si 2p N 1s C−C C−O CO

silanized silicon 9.0 32.1 58.9 86.0
silanized silicon +
Ini-HFBI

35.4 22.9 33.6 7.9 48.2 29.0 22.8

silanized silicon +
poly(PEGA)-
HFBI

30.4 26.2 40.5 3.0 56.4 33.3 10.3
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been shown earlier that HFBI proteins form a full dense
monolayer on hydrophobic surfaces.18,48 This ability is
confirmed here for Ini-HFBI, as AFM images clearly show a
difference between the smooth silanized silicon surface and the
rougher surface evenly covered with Ini-HFBI (Figure 4a,b).
The topography of the surface after in situ growth of the
poly(PEGA) layer shows a different morphology with more
extended and interconnected relief areas, which may suggest a
tendency toward segregation of poly(PEGA) in the dry state
(Figure 4c). The functionalization appeared to be quite
homogeneous throughout the surfaces, as shown by the
additional AFM and SEM images reported in Figures S4 and
S5.
To estimate the thickness of the deposited layer, one sample

was prepared by covering a portion of the silanized Si wafer
with Teflon tape before functionalization with Ini-HFBI and
poly(PEGA) and removing the tape delicately before AFM
characterization in air. The image in Figure 4d shows a clear
edge between the two areas of the sample, and the section
shows that the height of the combined protein and polymer
layer is close to 2.5 nm. This value is actually comparable to
the thickness of the hydrophobin monolayer,49 which is in
agreement with the considerations resulting from XPS and
suggests that the poly(PEGA) chains collapse on the
hydrophobin layer in the dry state, rather than forming a
brush structure. This is not unexpected since there is only one
polymerization initiator site on each hydrophobin molecule,
and the section of a hydrophobin is roughly 2.2 × 2.2 nm2.9,49

Therefore, the obtained polymer layer is predictably not dense
enough to form a polymer brush. In spite of this relatively low
density, the poly(PEGA) surface still displayed very good
antifouling properties, as demonstrated by the protein
adsorption studies below.
Antifouling Features and Reduction of Nonspecific

Binding. The antifouling properties of the poly(PEGA)-HFBI
surfaces were first studied by measuring the adsorption of BSA
at pH 5.5, which was reported to yield maximum adsorption
on layers of the wild-type, nonconjugated protein HFBI.50

Compared to a surface only covered by HFBI, the adsorption
of BSA was reduced almost completely in the presence of the
poly(PEGA) layer (Figure 5), thus demonstrating excellent

antifouling performance. The value indicated in Figure 5 for
BSA adsorption on HFBI is significantly different from the one

Figure 3. XPS C 1s spectra of (a) silanized Si surface, (b) Ini-HFBI-
coated surface, and (c) poly(PEGA)-HFBI-coated surface.

Figure 4. AFM images: (a) silanized Si wafer; (b) silanized Si wafer
with an adsorbed layer of Ini-HFBI; (c) silanized Si wafer with a layer
of poly(PEGA)-HFBI; (d) edge of the poly(PEGA)-HFBI layer (the
silanized Si wafer was partially covered with Teflon tape before
functionalization) and section along the line shown in panel d; (e)
three-dimensional representation of the image in panel d. All images
show areas of 1 × 1 μm2.

Figure 5. QCM-D measurements for antifouling performance:
comparison of BSA adsorption on wild-type HFBI and poly-
(PEGA)-HFBI layers.
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reported by Wang et al. (ca. 350 ng cm−2).50 However, it
should be noted that the two hydrophobin surfaces were
prepared in very different ways. In Wang’s case the assembly
was performed directly inside the QCM instrument, by rapid
fluxing of an HFBI solution followed by incubation for 30−60
min with ca. 40 μL of the same solution (roughly
corresponding to the volume of a QCM chamber); these
conditions are ideal for the formation of a smooth HFBI layer.
In our case a much larger volume of protein solution was used
in the incubation step (1 mL), and the presence of an air−
water interface may have caused the formation of some
hydrophobin aggregates, which is a well-known phenomen-
on.51 These factors, together with possible shrinking effects
upon drying of the deposited hydrophobin layer,43 may give
rise to a considerably rougher surface, which may thus bind
higher amounts of BSA.
Surfaces with antifouling features can be useful in biosensing

applications. By saturating the nonspecific binding sites of a
sensor surface with antifouling materials, it is possible to
reduce the adsorption of nontarget compounds and thus
increase detection specificity and sensitivity.52,53 In the area of
biosensing, hydrophobins have been reported as an effective
means for the immobilization of enzymes and antibod-
ies.19−22,54,55 In particular, one fusion of HFBI with protein
A was recently used in the preparation of highly sensitive
sensing surfaces for IgG1 binding.23 Protein A is a highly stable
surface receptor produced by Staphylococcus aureus, which is
capable of binding the Fc portion of immunoglobulins with
high affinity, especially IgGs, from a large number of
species.56,57 We investigated therefore the possibility to
prepare IgG1-binding surfaces from mixed layers of this
same fusion protein (HFBI-ProtA) with our poly(PEGA)-
HFBI bioconjugate and tested their ability to reduce
nonspecific protein adsorption.
For a biosensor surface functionalized with a full monolayer

of HFBI-ProtA, it is reasonable to assume that under
conditions requiring high sensitivity measurement (i.e., low
IgG1 concentrations and small sample volumes), not all
available protein A units will actually bind IgG1. On the other
hand, for significantly higher analyte concentrations the same
will happen for sterical reasons due to the large size of IgG1
compared to HFBI-ProtA (150 kDa vs 44 kDa). It follows that
a portion of the HFBI-ProtA fusions can be replaced without
significantly compromising the IgG1-binding capacity of the
surface. To estimate the extent of the replaceable portion, we
first studied by QCM-D the adsorption of mixed layers
coassembled from solutions containing HFBI-ProtA and HFBI
in different molar ratios, followed by the binding at pH 7 of
IgG1 injected in sequence at 8, 80, and 800 nM concentration.
Figure 6 shows the adsorbed mass increase at each step as well
as the total adorbed mass, while the corresponding sensor-
grams can be found in Figure S6. Based on the adsorbed mass
of HFBI/HFBI-ProtA (blue blocks in Figure 6), a rough
estimate of the actual amount of HFBI-ProtA adsorbed on the
surface can be made. For molar ratios of 20%, 40%, and 60%
HFBI-ProtA in solution, the corresponding percentages in the
adsorbed layer are estimated as 19%, 33%, and 38% (see the
Supporting Information and Table S2 for the details of the
calculation). While these values should be considered as rough
approximations, they appear realistic when considering that the
larger size of protein A compared to HFBI will make it difficult
for HFBI-ProtA alone to achieve a densely packed surface

layer, thus leaving empty spaces that can be filled by the
smaller wild-type HFBI.
The mixed hydrophobin layers appeared quite homogeneous

at the structural AFM analysis. No evident sign of segregation
of HFBI-ProtA was observed, which would be expected to
cause the appearance of higher patches due to the considerably
larger size of the fusion protein23 (Figure S7); analogous
observations can be made also for layers coassembled from Ini-
HFBI and HFBI-ProtA (Figure S8). This homogeneity was
further confirmed by incubating the coassembled surfaces with
nanogold-labeled anti-IgG, which appeared to be well-
distributed throughout the surfaces in the SEM images (Figure
S9) and was present in larger quantity on surfaces prepared
from solutions containing higher amounts of HFBI-ProtA.
The hydrophobin layers were exposed in sequence to

increasing IgG1 concentrations (Figure 6 and Figure S6).
Expectedly, very little IgG1 binding was observed when HFBI-
ProtA was absent. The amount of IgG1 bound on the mixed
layers increased with both immunoglobulin concentration and
fraction of HFBI-ProtA in the layers. However, the adsorbed
mass increased only slightly when the IgG1 concentration
exceeded 80 nM and for hydrophobin layers assembled from
solutions containing more than 40% molar HFBI-ProtA
(Figure 6 and Figure S6); this suggests that the maximum
IgG1 binding capacity is already achieved at those values.
According to these observations, all following experiments

were performed using protein mixtures containing 40% molar
HFBI-ProtA. The structural homogeneity of these films was
confirmed by SEM (Figure S10). At pH 5.5, 373 ng cm−2 of
BSA bound to a surface coassembled from an HFBI-ProtA/
HFBI mixture (Figure 7a and Figure S11) this value is lower
than that observed for a pure HFBI surface (Figure 5),
probably because HFBI-ProtA is somewhat less efficient than
HFBI in binding BSA through electrostatic interaction at this
pH (the pI’s of HFBI and protein A are respectively 6.058 and
4.8−5.0; that of BSA is 4.7). This still substantial adsorption is
almost entirely prevented when poly(PEGA) is present.

Figure 6. Average adsorbed mass as determined by QCM-D for
hydrophobin layers coassembled from solutions having different
HFBI-ProtA/HFBI molar ratios (blue) and subsequent binding of
IgG1 injected in sequence at increasing concentration (shades of
orange). The numbers inside the boxes indicate the increase in bound
mass at each step, while the total adsorbed mass is shown above the
columns.
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Therefore, a very good performance can still be obtained even
when the surface is not fully covered by the poly(PEGA)-HFBI
bioconjugate.
We then investigated the reduction of nonspecific

adsorption by studying the competitive binding of BSA and
IgG1 on the same surfaces. To do so, small amounts of
immunoglobulin were added to the same BSA solution used
previously (15 μM BSA spiked with 8 or 80 nM IgG1); the
averaged results are shown in Figure 7b, while the
corresponding sensorgrams are reported in Figure S12. By
assuming that the adsorption of BSA is about the same as that
shown in Figure 7a, it follows that the adsorbed mass on the
layer containing poly(PEGA)-HFBI is essentially due only to
specific adsorption of IgG1, while in the absence of the
antifouling polymer there is a substantial contribution from
nonspecific BSA binding (shown in green in Figure 7b; the
corresponding sensorgrams are reported in Figure S12). The
presence of poly(PEGA) led to a partial reduction also of IgG1
binding under the conditions of our study, which was rather
substantial at very low IgG1 concentration (8 nM). However,
this effect is already significantly reduced at 80 nM IgG1, and it
should be remarked that in the absence of the antifouling
polymer the false positive coming from nonspecific BSA
adsorption is of comparable intensity to that of the signal due
to specific IgG1 adsorption.
It should be remarked that antifouling performance

measured against binary protein mixtures is not necessarily
the same registered with more complex samples;59,60 some
preliminary measurements suggested a lesser performance
when animal serum was used (data not shown). A possible
approach to improve this aspect is to increase the density of
grafted polymer and will be the object of a future study.
Nevertheless, the results reported here indicate that this
strategy is promising to increase measurement sensitivity in
biosensing devices. The use of poly(PEGA)-HFBI managed to
prevent almost entirely the nonspecific adsorption of BSA and
led to a remarkable enhancement of binding selectivity, making
it possible to detect only the signal due to specific IgG1
binding even in samples where the immunoglobulin was a very
minor component with respect to BSA.

■ CONCLUSION

In summary, the spontaneous self-assembly of hydrophobins
was combined here with controlled radical polymerization
concepts to prepare surfaces with antifouling and low

nonspecific adsorption properties. The covalent, site-specific
conjugation of a small-molecule polymerization initiator
allowed the preparation of a hydrophobin-based macro-
initiator, which retained the outstanding ability of the parent
protein to self-assemble rapidly and spontaneously from
aqueous solution on poorly reactive hydrophobic surfaces.
The subsequent in situ polymerization of poly(PEGA) resulted
in nanosized layers which displayed excellent antifouling
performance, as demonstrated in QCM-D tests where BSA
adsorption was reduced almost completely. These soft thin
films show potential for use in biomaterial applications, e.g., for
simple and fast deposition of nonfouling layers on PTFE,
which is often used in biomaterials but has very poor reactivity.
We further showed that by coassembling the same macro-
initiator with a protein A-hydrophobin fusion and performing
in situ polymerization of poly(PEGA), it is possible to prepare
immunoglobulin-binding surfaces where the nonspecific
adsorption of BSA from binary protein mixtures was essentially
prevented. These surfaces greatly enhanced detection specific-
ity for small volume samples featuring very low IgG1/BSA
molar ratios. Even though also IgG1 binding was reduced to
some extent on the surfaces containing the antifouling
polymer, this effect can be expected to minimize through the
optimization of e.g. the ratio between Ini-HFBI and HFBI-
ProtA, the polymerization degree of poly(PEGA), and the
experimental conditions in QCM-D binding experiments (e.g.,
sample flow rate and volume). These optimization aspects will
be the object of ongoing and future studies.
The hydrophobin−polymer bioconjugate approach reported

here shows promise for the preparation of biosensing devices
with high specificity and sensitivity based on hydrophobin
fusion proteins, which allow easy and rapid preparation of
sensing layers, e.g., on the graphene electrodes of GFET
devices23 without requiring any surface activation procedure.
Further investigations in this sense are ongoing in our
laboratories.
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