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Local Time-domain Spherical Harmonic Spatial
Encoding for Wave-based Acoustic Simulation

Stefan Bilbao, Senior Member, IEEE, Archontis Politis, Member, IEEE and Brian Hamilton, Member, IEEE

Abstract—Volumetric time-domain simulation methods, such
as the finite difference time domain (FDTD) method, allow for
a fine-grained representation of the dynamics of the acoustic
field. A key feature of such methods is complete access to the
computed field, normally represented over a Cartesian grid.
Simple solutions to the problem of extracting spatially-encoded
signals, necessary in virtual acoustics applications, result. In this
article, a simple time domain representation of spatially-encoded
spherical harmonic signals is written directly in terms of spatial
derivatives of the acoustic field at the receiver location. In a
discrete setting, encoded signals may be obtained, at very low
computational cost and latency, using local approximations with
minimal number of grid points, and avoiding large convolutions
and frequency-domain block processing of previous approaches.
Numerical results illustrating receiver directivity and computed
time domain responses are presented, as well as numerical
solution drift associated with repeated time integration.

Index Terms—FDTD, room acoustics, spatial audio, micro-
phone array, spherical harmonics, ambisonics.

I. INTRODUCTION

Wave-based volumetric time-domain simulation for virtual
acoustics dates back to the 1990s [1]–[3] and relies on a time
domain numerical solution to the 3D wave equation over a
spatial grid. Various interlinked methodologies, including the
finite difference time domain (FDTD) [4]–[6], finite volume
time domain (FVTD) [7], [8], waveguide mesh [9] and pseu-
dospectral methods [10] have been proposed. A key feature
of such volumetric time-domain methods is that the calculated
acoustic field is available in its entirety, and thus the modeling
of locally-defined objects (including sources and receivers) is
reduced to simple locally-defined operations over the grid.

Spatial encoding of simulation output is a necessary step
towards full virtual acoustic auralisation. A good candidate is
the Ambisonics framework [11], [12], which can be decoded
to arbitrary playback systems [13], [14]. For wave-based
volumetric methods, previous approaches have followed from
those used in spatial recording. Spherical array processing
[15], [16] was employed for 3D ambisonic encoding in [17]
and differential microphone processing [18], [19] was used in
[20] to obtain 2D ambisonic signals. An alternative approach
is through plane wave decomposition [21], [22]. These ap-
proaches [17], [21], [22] rely on pre-computation of encoding
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filters, implementing a frequency-domain inversion from pres-
sure values to the encoded signals, and applied to grid signals
using block-processing frequency-domain techniques.

In this work, instead of following the array processing
paradigm, the encoding process is formulated and integrated
directly in the FDTD scheme, operating with very low la-
tency and without extensive pre-computation. We demonstrate
that this is possible through the relation between spherical
harmonic encoding and the local pressure gradients of the
sound-field, through a representation first presented by Dickins
and Kennedy [23], and also employed in non-volumetric
frequency-domain techniques by Mehra et al. [24]. In the
present setting of volumetric time-domain methods, the re-
sulting procedure selects explicit compact grid point sets for
each encoded signal and is recursive in the time-domain.

In Section II, spatially-encoded signals for the acoustic field
are defined for a given receiver location, and written directly
in the spatio-temporal domain. Finite difference time domain
schemes for the 3D wave equation are introduced in Section
III, followed by basic local approximations to the encoded
signals, which may be retrieved from the acoustic field through
low-order recursions. Numerical results appear in Section IV.

II. SPATIAL SOUND FIELD ENCODING

Under free field conditions, the pressure distribution in an
enclosure is assumed to satisfy the 3D wave equation [25]:(

1/c2
)
∂2t p(r, t) = ∆p(r, t) . (1)

Here, p (r, t) is the pressure distribution in Pa, as a function
of time t and a spatial coordinate r = [x, y, z]. c is the wave
speed, in m·s−1, and ∂t represents partial differentiation with
respect to time t. ∆ = ∇ · ∇ is the 3D Laplacian operator,
written in terms of the 3D gradient operation, defined by

∇ = [∂x, ∂y, ∂z] , (2)

where ∂ν represents partial spatial differentiation with respect
to coordinate ν, ν = x, y, z.

Under Fourier transformation, p (r, t) −→ p̂ (r, ω), where ω
is angular frequency, and (1) reduces to Helmholtz’s equation:

−
(
ω2/c2

)
p̂(r, ω) = ∆p̂(r, ω) . (3)

A general solution is a plane wave superposition [16]:

p̂ (r, ω) =

∫
S2

â (γ, ω) ei
ω
c γ·rdΩ . (4)

Here, the unit sphere S2 is parameterized by the angle pair
(α, β), 0 ≤ α < 2π, and 0 ≤ β ≤ π. The surface differential
element dΩ = sinβdβdα, and the unit-length vector γ is

γ = [γx, γy, γz] = [cosα sinβ, sinα sinβ, cosβ] . (5)
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TABLE I
Yl,m (γ) FOR l = 0, 1, 2.

m\ l 0 1 2

-2 · ·
√

15/4πγxγy

-1 ·
√

3/4πγy
√

15/4πγyγz

0
√

1/4π
√

3/4πγz
√

5/16π
(
2γ2z − γ2x − γ2y

)
1 ·

√
3/4πγx

√
15/4πγxγz

2 · ·
√

15/16π
(
γ2x − γ2y

)
â(γ, ω) represents the wave amplitude density at frequency ω,
and with direction of incidence γ. It may be decomposed into
spherical harmonics Yl,m with coefficients âl,m (ω) as

â (γ, ω) =
∞∑
l=0

l∑
m=−l

âl,m (ω)Yl,m (γ) . (6)

Obtaining the coefficients âl,m (ω) forms the basis of am-
bisonic recording. By convention in Ambisonics, real spherical
harmonics Yl,m are assumed here, of order l = 0, . . . ,∞ and
degree m = −l, . . . , l, that are orthonormal over S2:∫

S2

Yl,m (γ)Yl′,m′ (γ) dΩ =

{
1, l = l′,m = m′

0, otherwise
. (7)

Equations (4) and (6) may be combined to yield

p̂ (r, ω) =
∞∑
l=0

l∑
m=−l

âl,m (ω)

∫
S2

Yl,m (γ) ei
ω
c γ·rdΩ . (8)

Through a direct evaluation of (8), one may arrive at the more
familiar Fourier-Bessel expansion for the acoustic field [26]:

p̂ (r, ω) = 4π
∞∑
l=0

l∑
m=−l

iljl (ωr/c)Yl,m (r̂) al,m (ω) , (9)

where r = |r| and r̂ = r/r, and jl is the lth order spherical
Bessel function. The form in (8), however, is a good starting
point for spatio-temporal series representations of the field,
useful in an FDTD setting. See Section III.

The spherical harmonic Yl,m (γ), when written in terms of
the components γx, γy and γz of the unit length vector γ, is a
homogeneous polynomial of degree l. Explicit forms for Yl,m,
up to order l = 2, are as shown in Table I. A corresponding
spatial differential operator Dl,m may be defined by

Dl,m = Yl,m (∇) , (10)

also a polynomial, now in the components of the gradient op-
eration defined in (2). For example, D2,2 =

√
15
16π

(
∂2x − ∂2y

)
.

A. Acoustic Field Derivatives

The Taylor expansion has been studied mostly in the context
of differential array processing [19], [27]. In sound field
recording, where the Fourier-Bessel expansion is more com-
monly used, relations between the terms of the two expansions
were given by Cotterell up to 2nd order [28] and by Dickins for
the general case [29]. Additionally, [30] exploited this relation
to express room transfer functions for directional receivers.

Applying the spatial differential operator Dl′,m′ , as defined
in (10), to the representation in (8) leads to

Dl′,m′ p̂ =
∞∑
l=0

l∑
m=−l

âl,m (ω)

∫
S2

Yl,m (γ)Dl′,m′ei
ω
c γ·rdΩ .

(11)
But, using

Dl′,m′ei
ω
c γ·r = (iω/c)

l′
Yl′,m′ (γ) ei

ω
c γ·r , (12)

and evaluating (11) at r = 0 gives

(Dl′,m′ p̂) |(0,ω) = (13)

(iω/c)
l′
∞∑
l=0

l∑
m=−l

âl,m (ω)

∫
S2

Yl,m (γ)Yl′,m′ (γ) dΩ .

Employing the orthonormality of Yl,m, from (7), yields

(iω/c)
l
âl,m = (Dl,mp̂) |(0,ω) . (14)

This expression appears in Dickins [29].
Inverse Fourier transforming to the time domain gives

(d/dt)
l
al,m = cl (Dl,mp) |(0,t) . (15)

The representation in (15) is expressed directly in the spatio-
temporal domain, as a relation between the lth time derivative
of a given expansion coefficient al,m (t) and an lth order
combination of spatial derivatives of the acoustic field p (r, t)
at r = 0. It is also exact, and can be viewed as a convenient
context-free starting point for discretisation, regardless of the
particular configuration of the spatial grid.

III. FINITE DIFFERENCE TIME DOMAIN METHODS

Finite difference time domain methods for the wave equa-
tion are covered in a variety of sources [31]. For the sake of
brevity, only the most basic scheme will be presented here.

First, assume a spatial grid, with spacing X and indexed by
the integer-valued 3-vector q = [qx, qy, qz]. The grid function
pnq represents an approximation to p (r, t) at r = qX and
t = nT for integer n and time step T . A two-step explicit
scheme for the 3D wave equation (1) has the form

pn+1
q = 2pnq − pn−1q + λ2

∑
ν∈Q

(
pnq+ν − pnq

)
. (16)

Here, Q = {q ∈ Z3|‖q‖1 = 1} defines the nearest neighbour
stencil of the scheme, and λ = cT/X is the Courant number
[32] for the scheme. For numerical stability, the Courant-
Friedrichs-Lewy condition λ ≤ 1/

√
3 must be satisfied.

A plane wave solution satisfying (16) is of the form

pnq = ei(ω̃nT+k̃·qX) , (17)

where ω̃ and k̃ = k̃γ are the numerical angular frequency and
wave vector, respectively, where k̃ is the numerical wavenum-
ber. They are related by the numerical dispersion relation

ω̃ =
2

T
sin−1

(
λ

√∑
ν=x,y,z

sin2
(
k̃γνX/2

))
. (18)

Note that ω̃ 6= ck̃, and thus wave speed is dependent
on frequency and direction. Above a cutoff frequency ω̃c =
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(2/T ) sin−1 (λ) the scheme does not support wave prop-
agation in all directions; below this cutoff, (18) may be
inverted numerically to determine an expression k̃ (ω̃,γ) for
wavenumber in terms of frequency and direction.

A. Difference Operators and Recursion

The representation (15) is a set of differential equations,
driven by data obtained from the acoustic field derivatives. It
may be approximated numerically as a recursion. First, define
anl,m, approximating al,m (t) at t = nT , for integer n. Forward
and backward shift operators s+t and s−t are defined through
s+t a

n
l,m = an+1

l,m and s−t a
n
l,m = an−1l,m . Forward and backward

approximations δ+t and δ−t to the time derivative d/dt, and a
backward averaging operator µ−t may be written as

δ+t =
1

T

(
s+t − 1

)
δ−t =

1

T

(
1− s−t

)
µ−t =

1

2

(
1 + s−t

)
.

(19)
A given order l ≥ 0 may be written as l = 2N + α, for

integer N ≥ 0 and α ∈ {0, 1}. Basic approximations to the
lth time derivative dl/dtl may be written as

δ
(min)
t,l =

(
δ+t
)N+α (

δ−t
)N

δ
(◦)
t,l =

(
µ−t
)α
δ
(min)
t,l . (20)

δ
(min)
t,l is minimal in terms of the number of time steps

employed, but is non-centered (forward biased) for odd l. δ(◦)t,l

is centered for all l, but not minimal.
Equation (15) requires the approximation of lth order spatial

derivatives of the acoustic field at r = 0, corresponding
to grid location q = 0. The differential operator Dl,m is
homogeneous of degree l, and thus may be represented as

Dl,m =
∑
ξ∈Vl

σ
(ξ)
l,m∂

ξx
x ∂

ξy
y ∂

ξz
z , (21)

where Vl is the set of non-negative integer-valued 3-vectors
ξ = [ξx, ξy, ξz] whose components sum to l, and σ(ξ)

l,m, ξ ∈ Vl
are associated coefficients.

For a given coordinate ν, ν = x, y, z, unit forward and
backward shifts s+ν and s−ν may be defined, through their
operation on the grid function pnq as s+ν p

n
q = pnq+eν and

s−ν p
n
q = pnq−eν , where eν is a unit vector in the ν direc-

tion. As before, forward and backward difference operators
approximating ∂ν are defined by

δ+ν =
1

X

(
s+ν − 1

)
δ−ν =

1

X

(
1− s−ν

)
µ−ν =

1

2

(
1 + s−ν

)
.

(22)
As above, minimal and centered difference approximations to
δξν , for integer ξ ≥ 0, decomposable uniquely as ξ = 2M +γ,
for integer M ≥ 0, and γ ∈ {0, 1}, may be defined as

δ
(min)
ν,ξ =

(
δ+ν
)M+γ (

δ−ν
)M

δ
(◦)
ν,ξ =

(
µ−ν
)γ
δ
(min)
ν,ξ . (23)

Approximations to the differential operator Dl,m, in the form
given in (21), may be written as

δ
(·)
r,l,m =

∑
ξ∈Vl

σ
(ξ)
l,mδ

(·)
x,ξx

δ
(·)
y,ξy

δ
(·)
z,ξz

, (24)

where (·) represents either approximation in (23) above.
Centered approximations have no phase error, but a larger

magnitude error relative to the minimal approximation. See
Section IV-A.

Finally, the encoding equation (15) is approximated as

δ
(·)
t,la

n
l,m = cl

(
δ
(·)
r,l,mp

)n
0

. (25)

This can be implemented directly as a recursion for each anl,m,
employing previously computed approximations to derivatives
of the acoustic field, deduced from the grid function pnq,
computed through scheme (16), and centered around the
listener location at q = 0, at time step n.

Computational cost is very low for these encoding methods,
and scales with l3. For the minimal scheme, for example, for
(l,m) = (0, 0), (1,−1) and (2,−2):

an0,0 =
√

1/4πpn0 (26a)

an+1
1,−1 = an1,−1 +

√
3/4πλ

(
pne2
− pn0

)
(26b)

an+1
2,−2 = 2an2,−2 − an−12,−2 (26c)

+
√

15/4πλ2
(
pne2+e1

− pne2
− pne1

+ pn0
)

.

These methods are the most basic available, but are suscep-
tible to drift, due to the multiple time integrations which they
approximate, from (15); this effect can be alleviated by using
more refined integration schemes. See Section IV-B.

IV. NUMERICAL RESULTS

In this section, numerical results are presented. The scheme
used is as defined by (16), with a time step T = 1/44100 s
and c = 344 m/s, and a Courant number λ = 1/

√
3.

A. Numerical Directivity
Consider the encoding equation (25) under a plane wave

solution (17), of angular frequency ω̃, propagation direction γ

and wavenumber k̃ = k̃ (ω̃,γ). anl,m = A
(·)
l,m (ω̃,γ) eiω̃nT is

the corresponding complex exponential under steady harmonic
excitation, of amplitude A parameterized by γ.

The temporal shift operations s+t and s−t behave as mul-
tiplicative factors eiω̃T and e−iω̃T , respectively, and spatial
shift operations s+ν and s−ν , for ν = x, y, z, as multiplicative
factors eik̃γνX and e−ik̃γνX , respectively. The operators δ(·)r,l,m

and δ(·)t,l then act as multiplicative factors

δ
(·)
r,l,m → δ̂

(·)
r,l,m (ω,γ) δ

(·)
t,l → δ̂

(·)
t,l (ω) . (27)

The numerical directivity is then defined by

A
(·)
l,m (ω̃,γ) = clδ̂

(·)
r,l,m (ω̃,γ) /δ̂

(·)
t,l (ω̃) . (28)

This expression incorporates both the effects of numerical
dispersion in the scheme, as well as inaccuracy in the ap-
proximation (25) used to extract spatially encoded signals.

Directivity plots are shown, for selected encoding coeffi-
cients up to third order in Figure 1, using both the minimal and
centered encoding schemes. The minimal encoding scheme
exhibits very low magnitude error, and a large phase error,
and the centered encoding scheme shows a larger magnitude
error, and no phase error (as is expected). The numerical
frequency ω̃ is chosen near the numerical cutoff in this case,
at approximately ω̃ = 0.7ω̃c; for lower frequencies, the errors
are reduced.
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Fig. 1. Numerical directivity of approximations (25) used to obtain spatially
encoded signals, for selected l,m pairs, as indicated. Here, the directivity
shown is the expression given in (28), normalized by ‖Yl,m‖∞, and in the
x, y plane, so γ = [cos (α) , sin (α) , 0], for angle α with 0 ≤ α < 2π.
Magnitude, in dB, is shown in the top row, and phase in the bottom row. In
each case, the exact directivity is shown as a black line, the directivity due to
a minimal order encoding by white circles, and due to a centered encoding
by a white line with crosses. Directivity patterns are shown for a numerical
frequency of ω̃ = 2π · 6000 rad./sec.

B. Solution Drift

Volumetric wave-based methods inherently capture near-
field behaviour. The encoding equation (15) relies on repeated
time integration, and thus one should expect that low frequency
temporal solution drift will occur (polynomial, of order l− 1,
for l ≥ 1). The drift is a near-field effect—in particular, it
is not a numerical effect, but a consequence of the definition
of the encoding coefficients al,m. To illustrate this, consider
a free-field setting, with a monopole source at coordinates rs,
in m, relative to the listener position at r = 0. The source is
Gaussian signal of variance 10−4 s. See Figure 2, illustrating
examples of encoded first- and second-order signals using
scheme (25), and for source coordinates rs = [0.2, 0.2, 0.2]
and rs = [1, 1, 1]; the drift effect decreases with source
distance (or as the listening position enters the far field).

Drift in encoded signals is obviously undesirable, and thus

Fig. 2. Encoded signals al,m under the basic scheme (25), exhibiting
drift (dashed line) and under leaky integration (solid line), as defined in
(29). Results are shown at source distances of rs = [0.2, 0.2, 0.2] and
rs = [1, 1, 1], as indicated.

some additional filtering is required. A very simple approach
is to employ leaky integration, effectively moving the lth order
system poles away from DC. In the present context of time
domain methods, one can replace the difference operators
defined in (19) by the operators

δ+t =
1

T

(
s+t − e−2πf0T

)
δ−t =

1

T

(
1− e−2πf0T s−t

)
(29)

for a given cutoff frequency f0. See Figure 2, illustrating the
suppression of drift in encoded signals using this approach,
with f0 = 60 Hz. The examples presented here are quite
extreme—for sources a reasonable distance away from the
listening point, the drift effect is greatly reduced.

V. CONCLUDING REMARKS

A procedure has been demonstrated here whereby spatially
encoded signals may be extracted, locally, from a wave-based
simulation at very low computational cost.

An important feature of the expression (15) is that is framed
in the continuous space-time domain, and is separated into an
approximation to the gradient followed by time integrations.
Thus, the problem is reduced to approximation of spatial
derivatives of the acoustic field, which can be performed for
any grid arrangement (including unstructured grids). Here,
the listener location is taken to lie at a grid location, but
interpolated listener locations (possibly dynamic) are also
possible, as in the case of source modeling [33]. There are
clearly many ways to approximate spatial derivatives over a
grid; very simple minimal but non-centered approximations

The problem of low-frequency solution drift has been briefly
addressed here. It is not a consequence of the formulation pre-
sented here, and the analogous problem of filter designs with
multiple poles at DC occurs in microphone array processing—
see, e.g., [16]. A simple leaky integrator has been presented
here, but far better designs are possible, allowing for better
drift suppression with less distortion of the encoded signals
over the audio range.
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