Wang, Jun; Fan, Lijun; Yao, Tongtong; Gan, Juanjuan; Zhi, Xiaojing; Hou, Nianjun; Gan, Tian; Zhao, Yicheng; Li, Yongdan

A High-Performance direct carbon fuel cell with reed rod Biochar as Fuel

Published in:
Journal of the Electrochemical Society

DOI:
10.1149/2.0321904jes

Published: 15/02/2019

Please cite the original version:
Direct Carbon Fuel cells (DCFCs) are considered as a promising power generation device directly converting chemical energy of solid carbon into electricity. Due to a near zero entropy change of carbon complete oxidation (C+O_2 → CO_2, ΔS = 1.6 J K⁻¹ mol⁻¹) at 600°C, DCFC has a high theoretical efficiency exceeding 100%. In addition, DCFC is environmentally friendly compared to conventional power plants. Furthermore, carbon could be obtained from a variety of resources with abundant reserves such as coal, biomass and even carbonaceous wastes. The electrochemical oxidation of solid carbon exhibits a sluggish kinetics compared with that of gaseous fuels, and thus much research attention has been concentrated on improving anode activity of DCFCs. The crystal structure of carbon shows important effects on performance of DCFCs. Nürnberg et al. and Konsolakis et al. observed that amorphous carbon black was more reactive than graphitic carbon in DCFCs based on solid oxide electrolytes because carbon black has more surface reaction sites such as edges, steps and other surface defects. Cherepy et al. examined electrochemical activities of nine carbon samples in molten carbonate and found that a high discharge rate was obtained by carbon fuels with a low crystallization, a high electrical conductivity and sufficient reactive surface sites. The structure and activity of carbon fuels highly depend on the preparation process. For instance, acid treatment of coal before pyrolysis slightly increases the crystallite size and remarkably increases the mesoporous volume of the carbon obtained, while alkali treatment of coal results in an enhancement of the specific surface area of pyrolytic carbon.

Most of previous studies on DCFCs were focused on the utilization of fossil fuels and their derivatives such as coal, activated carbon and carbon black. Nevertheless, renewable and inexpensive biomass fuels have drawn more attention in recent years. In 2009, Lee et al. reported a maximum power density (P max) of 220 mW cm⁻² achieved at 900°C by a DCFC containing a 10-μm-thick yttrium stabilized zirconia electrolyte layer with biomass-derived activated carbon as fuel. Chien and Chuang used coconut coke as fuel and an anode-supported DCFC, which obtained a P max of 80 mW cm⁻² at 800°C. Hao et al. fabricated a DCFC with bamboo carbon as fuel, and got a P max of 156 mW cm⁻² at 650°C. Yu et al. used corn cob char as the fuel in 2014, and a single cell supported by a 0.65-mm-thick Ce₀.₇Sm₀.₃O₁.₉ (SDC)-carbonate composite electrolyte layer showed a P max of 185 mW cm⁻² at 750°C. Other biomass, such as waste coffee grounds, almond shell char and olive wood charcoal, have also been investigated as fuels of DCFCs. However, low performance of biomass-fueled DCFCs hinders their further development. With a molten antimony anode, Jayakumar et al. achieved 360 mW cm⁻² at 700°C with sugar char as the fuel. Nonetheless, the long-term stability of the cell is hindered by the molten metal with a high causticity. Recently, Cai et al. utilized biochar derived from orchid tree leaves as the fuel. CaCO₃ with a high amount in the leaf char catalyzes the reverse Boudouard reaction and enhances the performance of DCFCs. Hao et al. also found that carbon from magazine waste paper contains much calcite and magnesium calcite, which improve the thermal reactivity of the carbon.

Reeds are one of the most common grass-like plants which is widespread all around the world. In this work, reed biochar is utilized as fuel of a DCFC supported by SDC-carbonate composite electrolyte. The effect of KCl in raw reeds on the activity of biochar has been studied. The composition and structure of reed char are investigated. Promising performance is obtained in 600–750°C.

Experimental

Preparation of biochar fuels

Natural reeds (Tianjin, China) were broken into powder, and then treated through different procedures as follows to form various carbon samples (Fig. 1).

- **Sample 1:** The reed powder was pyrolyzed at 800°C in N₂ flow (20 ml min⁻¹, STP) for 2 h. The obtained biochar was washed with deionized water, and then dried at 105°C in air for 12 h.
- **Sample 2:** The reed powder was washed with deionized water, and dried subsequently at 105°C for 12 h. Then the dried reed powder was pyrolyzed, washed again and dried step by step in the same way as in the preparation procedure of Sample 1.
- **Sample 3:** The reed powder was washed with deionized water, and then dried at 105°C for 12 h. 0.5 wt% KCl was added into the powder subsequently through impregnation. After drying, the powder was also pyrolyzed, washed and dried in accordance with the preparation procedure of Sample 1.

Finally, the samples were grinded until the size of the particles was smaller than 50 μm.

Characterization

Main impurity elements in the chars were analyzed using an X-ray fluorescence (XRF) spectrometer (S4 Pioneer, Bruker AXS GmbH). X-ray diffraction (XRD) patterns of the samples were recorded using a D8 Focus diffractometer (Bruker Corp) with Cu Kα radiation at a scanning rate of 1° min⁻¹. The interlayer spacing of (002) planes (d_{002}), the crystallite size parameters along graphit basal planes (Lₐ) and along the c axis (L₉) of the biochars can be calculated according to the Bragg equation (Eq. 1) and the
Debye-Scherrer equation (Eqs. 2–3), respectively:

\[d_{002} = \frac{\lambda}{2 \sin \theta_{002}} \]

\[L_a = K_1 \lambda / \beta_{100} \cos \theta_{100} \]

\[L_c = K_2 \lambda / \beta_{002} \cos \theta_{002} \]

where \(\lambda \) is the wavelength of the X-ray beam, \(\theta \) the Bragg angle, \(\beta \) the half-peak width and \(K \) the shape factor. In this study, \(K_1 \) and \(K_2 \) are 1.84 and 0.89 for the calculation of \(L_a \) and \(L_c \), respectively.\(^{36–38} \)

The microstructure of the samples was observed with a Hitachi S-4800 scanning electron microscope (SEM). The graphitization degrees of the samples were determined with Raman spectroscopy using a DXR Microscope instrument in the range of 400–4000 cm\(^{-1} \) with a 532 nm He-Ne laser excitation source at room temperature. Thermogravimetric analysis (TGA) of the samples was measured with a K2 (NETZSCH) in air flows (50 ml min\(^{-1} \)). The microstructure of the samples was determined with Raman spectroscopy using a DXR Microscope instrument in the range of 400–4000 cm\(^{-1} \) with a 532 nm He-Ne laser excitation source at room temperature.

Fuel cell fabrication and test.—SDC powder was prepared with an oxalate coprecipitation method as described in a previous work.\(^{39} \)

50 wt% NiO-50 wt% SDC composite anode was prepared through an incipient wetness impregnation method. The SDC powder was impregnated with an aqueous solution of Ni(NO\(_3\))\(_2\)-6H\(_2\)O (Guangfu fine chemical, Ltd., China) with a concentration of 4.5 mol L\(^{-1} \) with a 3532 nm He-Ne laser excitation source at room temperature. The microstructure of the samples was observed with a Hitachi S–4800 scanning electron microscope (SEM). The graphitization degrees of the samples were determined with Raman spectroscopy using a DXR Microscope instrument in the range of 400–4000 cm\(^{-1} \) with a 532 nm He-Ne laser excitation source at room temperature. Thermogravimetric analysis (TGA) of the samples was measured with a K2 (NETZSCH) in air flows (50 ml min\(^{-1} \)).

The SEM images of Sample 1 are shown in Fig. 4. The reed char shows a hollow tubular structure. The straight tube walls with an average thickness of about 3 \(\mu \)m facilitate electronic conduction in the anode, and the straight through-holes with an average diameter of about 3 \(\mu \)m benefit mass transfer in the anode.

The Raman spectra of the biochars can be deconvoluted into five bands (Fig. 5a). G band at about 1580 cm\(^{-1} \) represents the stretching vibration mode with \(E_g \) symmetry in ideal graphite lattice. D1 band at about 1350 cm\(^{-1} \) and D2 band at about 1620 cm\(^{-1} \) are both the features of disordered graphite. The former is attributed to the disordered lattices at graphene layers edges, while the latter originates from the structure defects in graphene surface layers. D1 band (~1500 cm\(^{-1} \)) corresponds to amorphous sp\(^2\)-hybridized carbon. D2 band is attributed to the disordered graphitic lattice and other impurities.\(^{41} \)

The ratios between the intensities of different bands are used to evaluate the disorder degree of carbonaceous materials quantitatively.\(^{43–45} \)

Typically, the value of \(I_{D2}/I_{G} + I_{D2} + I_{D3} \) is closely associated with the content of amorphous carbon, and lower \(I_{D2}/I_{G} \) and higher \(I_{D2}/I_{A2} \) values suggest a lower disorder degree of carbon structure.\(^{42,46,47} \) As shown in Fig. 5b, among all the samples, Sample 1 exhibits the highest \(I_{D2}/I_{G} \) and \(I_{D2}/I_{G} + I_{D2} + I_{D3} \) values and the lowest \(I_{D2}/I_{A2} \) values, implying the highest disorder degree of its structure. In contrast, Sample 2 shows the lowest structural disorder degree. The results are in good agreement with the XRD results.

| Table 1. Major impurity elements in Sample 1 before and after washing (wt %). |
|---------------|---|---|---|---|---|---|---|
| | Si | K | Cl | Ca | Mg | S |
| Before washing| 5.69 | 2.12 | 0.74 | 0.60 | 0.12 | 0.40 |
| After washing | 7.02 | 0.08 | 0.00 | 0.20 | 0.03 | 0.02 |

Results and Discussion

Characterization of reed biochar.—The contents of major impurity elements in Sample 1 before and after washing measured with XRF are listed in Table 1. Si, K, Cl, Ca and S are main impurities in the unwashed sample. The contents of all the impurities decrease significantly after washing except Si. Two broad diffraction peaks at 2\(\theta \) values about 23\(^{\circ} \) and 44\(^{\circ} \) are observed in the XRD pattern of Sample 1 (Fig. 2), which correspond to the crystal planes of (002) and (100) in graphite, respectively, indicating that the sample exhibits a short-range ordered graphite-like structure.\(^{37,38} \) In addition, peaks of KCl (JCPDS 072–1540) are detected in the unwashed sample and disappear after washing. No other impurity peaks are observed in the unwashed sample, indicating that KCl is the main impurity in reeds, which is consistent with the XRF result.

Fig. 3a shows the XRD patterns of Sample 1, Sample 2 and Sample 3. The crystallite parameters of the biochars are illustrated in Fig. 3b. Sample 1 exhibits the largest \(d_{002} \) and the smallest \(L_a \) and \(L_c \), indicating that Sample 1 has the lowest graphitization degree among the three samples. Sample 2 with a pre-washing step in the preparation process shows the smallest \(d_{002} \) and the largest \(L_a \) and \(L_c \), implying the highest graphitization degree of Sample 2, which demonstrates that the soluble impurities in reeds have a significant impact on carbon structure during the pyrolysis process. With the addition of 0.5 wt% KCl, Sample 3 displays a larger \(d_{002} \) and smaller \(L_a \) and \(L_c \) compared with those of Sample 2, proving that the main impurity KCl reduces the graphitization degree of biochar during the pyrolysis of reeds.

The SEM images of Sample 1 are shown in Fig. 4. The reed char shows a hollow tubular structure. The straight tube walls with an average thickness of about 3 \(\mu \)m facilitate electronic conduction in the anode, and the straight through-holes with an average diameter of about 3 \(\mu \)m benefit mass transfer in the anode.

The Raman spectra of the biochars can be deconvoluted into five bands (Fig. 5a). G band at about 1580 cm\(^{-1} \) represents the stretching vibration mode with \(E_g \) symmetry in ideal graphite lattice. D1 band at about 1350 cm\(^{-1} \) and D2 band at about 1620 cm\(^{-1} \) are both the features of disordered graphite. The former is attributed to the disordered lattices at graphene layers edges, while the latter originates from the structure defects in graphene surface layers. D1 band (~1500 cm\(^{-1} \)) corresponds to amorphous sp\(^2\)-hybridized carbon. D2 band is attributed to the disordered graphitic lattice and other impurities.\(^{41} \)

The ratios between the intensities of different bands are used to evaluate the disorder degree of carbonaceous materials quantitatively.\(^{43–45} \)

Typically, the value of \(I_{D2}/I_{G} + I_{D2} + I_{D3} \) is closely associated with the content of amorphous carbon, and lower \(I_{D2}/I_{G} \) and higher \(I_{D2}/I_{A2} \) values suggest a lower disorder degree of carbon structure.\(^{42,46,47} \) As shown in Fig. 5b, among all the samples, Sample 1 exhibits the highest \(I_{D2}/I_{G} \) and \(I_{D2}/I_{G} + I_{D2} + I_{D3} \) values and the lowest \(I_{D2}/I_{A2} \) values, implying the highest disorder degree of its structure. In contrast, Sample 2 shows the lowest structural disorder degree. The results are in good agreement with the XRD results.
Figure 2. XRD patterns of Sample 1 before and after washing.

Figure 3. (a) XRD patterns and (b) crystallite parameters of the samples.

Figure 4. Surface morphology of Sample 1.

Figure 5. (a) Raman spectra and (b) band area ratios of the samples.

The TGA-DTG curves of different samples in air are displayed in Fig. 6. It should be noted that all of the samples were washed before the test. Therefore, effects of the soluble impurity ions on the oxidation process are negligible, and the difference in the oxidation behaviors between the samples is mainly attributed to the difference in their structure. The weight losses of all of the three samples are about 80%. The remains are mainly insoluble impurities such as SiO₂. The oxidation of Sample 1 starts at 314°C and reaches the maximum rate at 540°C, which are lower than the other two samples, indicating that Sample 1 has the highest oxidation activity probably due to the highest disorder degree of its structure. Sample 2 exhibits the highest oxidation rate at 630°C. The oxidation temperature of Sample 3 (610°C) is lower than that of Sample 2, which can be explained by the lower graphitization degree of Sample 3 due to the addition of KCl in the pyrolysis process.

Fuel cell test.—Cross-sectional morphology of a single cell is shown in Fig. 7. Porous anode and cathode layers adhere closely to the dense electrolyte layer with obvious interfaces. The thicknesses...
of the anode, electrolyte and cathode layers are about 40, 610 and
230 μm, respectively.

I-V and I-P characteristics of single cells with various fuels at
750°C are exhibited in Fig. 8a. The open circuit voltages (OCVs) of
the cells are around 0.96 V, which are close to the theoretical electromotive
force of DCFCs (0.98 V) at that temperature. The cell with Sample
1 as the fuel shows the highest P_{max} of 378 mW cm$^{-2}$. The cells fed
with Samples 2 and 3 exhibit lower P_{max} of 205 and 245 mW cm$^{-2}$,
respectively. The EIS results of the cells at 750°C are shown in Fig. 8b.
The high-frequency intercepts of the curves on the real axis correspond
to ohmic resistances (R_o) of the cells, and the low-frequency arcs
represent total resistances of the electrode processes (R_p). R_o of all the
cells are about 0.07 Ω cm2, much lower than DCFCs with a similar
configuration fed with carbon fiber and corn cob char39,48 implying
high electronic conductivities of the anodes in this work due to the
straight hollow structure of the reed char. The cell fed with Sample
1 exhibits the lowest R_p because of the highest oxidation activity of
the fuel, resulting in the highest P_{max} of the cell. The R_p of the cell
with Sample 3 as fuel is larger than that of the cell fed with Sample 1,
and the cell fed with Sample 2 exhibits the largest R_p and lowest P_{max}
consequently due to the lowest oxidation activity of the fuel.

P_{max} of the cell with Sample 1 as fuel reaches 378, 307, 183 and
80 mW cm$^{-2}$ at 750, 700, 650 and 600°C, respectively (Fig. 9), much
higher than most of the DCFCs with thick electrolyte layers have been
reported. The high performance is mainly attributed to the high struc-
tural disorder degree of reed char, which is due to the presence of KCl
in the pyrolysis process of raw reed. Meanwhile, the straight hollow
structure of reed char brings about a high electronic conductivity of
the anode, which is another reason for the high performance of the
cell.

The chronopotentiometry result of the cell with Sample 1 as fuel
at 700°C is shown in Fig. 10. Under a discharge current density of

![Figure 6. TGA curves of the samples in air.](image)

![Figure 7. Cross-sectional morphology of (a) interface between anode and
electrolyte layers and (b) a single cell.](image)

![Figure 8. (a) I-V and I-P curves and (b) EIS of cells with various fuels at
750°C.](image)

![Figure 9. I-V and I-P curves of the single cell fed with Sample 1 at different
temperatures.](image)

![Figure 10. Stability of the cell with Sample 1 as fuel under 30 mA cm$^{-2}$ at
700°C.](image)
Figure 11. Producing rates of CO and CO₂ in the anode using Sample 1 as fuel at 700°C under various output current density.

30 mA cm⁻², the output voltage of the cell keeps almost constant at around 0.7 V during the first two hours, and then drops gradually during the third hour. A fuel utilization rate of 15% is calculated according to Faraday’s equation assuming that each carbon atom releases four electrons, close to the discharge efficiencies of DCFCs reported in other works.⁴⁷,⁵⁰ The low utilization of carbon is partly attributed to the gradual aggregation of carbon on the surface of molten carbonate due to the difference in density, which could be avoided by the stir of carbonate in practical application. Another reason for the low discharge efficiency is the partial oxidation of the carbon fuel. As shown in Fig. 11, the flow rate of CO in the anode outlet gas rises with the increase of current density, and reaches the maximum value at the current density of 75 mW cm⁻². Since the reverse Boudouard reaction is not significant at 700°C, the CO is mainly generated by the partial oxidation of carbon. With the further acceleration of anode reaction, more CO is consumed as a fuel, and its content in the reaction is not significant at 700°C, the CO is mainly generated by the partial oxidation of carbon at the current density of 75 mW cm⁻² with the increase of current density, and reaches the maximum value shown in Fig. 11, the flow rate of CO in the anode outlet gas rises on the contrary, the producing rate of CO₂ in the anode increases monotonically with the increase of current density. When the output current density reaches 125 mA cm⁻², CO₂ begins to dominate the anode product, resulting in a high discharge efficiency.

Conclusions

In this work, biochar obtained from the pyrolysis of reeds is examined as the fuel of a DCFC with an SDC-carbonate composite electrolyte. KCl in raw reed increases the structural disorder degree of reed char. The cell exhibits a straight tubular structure, which benefits electronic conduction in the anode. The cell exhibits a high activity and selectivity. The anode increases monotonically with the increase of current density. The cell also exhibits a good stability. Besides, a high current density benefits the complete oxidation of reed char. The results demonstrate that reed-derived biochar is a promising fuel for high-performance DCFCs.

Acknowledgments

The financial support of NSF of China under contract numbers 51402210 and 21120102039, the support of Tianjin Municipal Science and Technology Commission under contract numbers 15JCQNJC0500, and the support of the Ministry of Education of China under contract number 20130302120023 are gratefully acknowledged. The work has been also supported by the Program of Introducing Talents to the University Disciplines under file number B06006, and the Program for Changjiang Scholars and Innovative Research Teams in Universities under file number IRT 0641.

ORCID

Yicheng Zhao https://orcid.org/0000-0003-4389-6057

References

Downloaded on 2019-04-04 to IP 130.233.216.230 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).